//===-- MipsISelLowering.h - Mips DAG Lowering Interface --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that Mips uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H #define LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H #include "MCTargetDesc/MipsABIInfo.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "Mips.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/IR/Function.h" #include "llvm/Target/TargetLowering.h" #include #include namespace llvm { namespace MipsISD { enum NodeType { // Start the numbering from where ISD NodeType finishes. FIRST_NUMBER = ISD::BUILTIN_OP_END, // Jump and link (call) JmpLink, // Tail call TailCall, // Get the Higher 16 bits from a 32-bit immediate // No relation with Mips Hi register Hi, // Get the Lower 16 bits from a 32-bit immediate // No relation with Mips Lo register Lo, // Handle gp_rel (small data/bss sections) relocation. GPRel, // Thread Pointer ThreadPointer, // Floating Point Branch Conditional FPBrcond, // Floating Point Compare FPCmp, // Floating Point Conditional Moves CMovFP_T, CMovFP_F, // FP-to-int truncation node. TruncIntFP, // Return Ret, EH_RETURN, // Node used to extract integer from accumulator. MFHI, MFLO, // Node used to insert integers to accumulator. MTLOHI, // Mult nodes. Mult, Multu, // MAdd/Sub nodes MAdd, MAddu, MSub, MSubu, // DivRem(u) DivRem, DivRemU, DivRem16, DivRemU16, BuildPairF64, ExtractElementF64, Wrapper, DynAlloc, Sync, Ext, Ins, // EXTR.W instrinsic nodes. EXTP, EXTPDP, EXTR_S_H, EXTR_W, EXTR_R_W, EXTR_RS_W, SHILO, MTHLIP, // DPA.W intrinsic nodes. MULSAQ_S_W_PH, MAQ_S_W_PHL, MAQ_S_W_PHR, MAQ_SA_W_PHL, MAQ_SA_W_PHR, DPAU_H_QBL, DPAU_H_QBR, DPSU_H_QBL, DPSU_H_QBR, DPAQ_S_W_PH, DPSQ_S_W_PH, DPAQ_SA_L_W, DPSQ_SA_L_W, DPA_W_PH, DPS_W_PH, DPAQX_S_W_PH, DPAQX_SA_W_PH, DPAX_W_PH, DPSX_W_PH, DPSQX_S_W_PH, DPSQX_SA_W_PH, MULSA_W_PH, MULT, MULTU, MADD_DSP, MADDU_DSP, MSUB_DSP, MSUBU_DSP, // DSP shift nodes. SHLL_DSP, SHRA_DSP, SHRL_DSP, // DSP setcc and select_cc nodes. SETCC_DSP, SELECT_CC_DSP, // Vector comparisons. // These take a vector and return a boolean. VALL_ZERO, VANY_ZERO, VALL_NONZERO, VANY_NONZERO, // These take a vector and return a vector bitmask. VCEQ, VCLE_S, VCLE_U, VCLT_S, VCLT_U, // Element-wise vector max/min. VSMAX, VSMIN, VUMAX, VUMIN, // Vector Shuffle with mask as an operand VSHF, // Generic shuffle SHF, // 4-element set shuffle. ILVEV, // Interleave even elements ILVOD, // Interleave odd elements ILVL, // Interleave left elements ILVR, // Interleave right elements PCKEV, // Pack even elements PCKOD, // Pack odd elements // Vector Lane Copy INSVE, // Copy element from one vector to another // Combined (XOR (OR $a, $b), -1) VNOR, // Extended vector element extraction VEXTRACT_SEXT_ELT, VEXTRACT_ZEXT_ELT, // Load/Store Left/Right nodes. LWL = ISD::FIRST_TARGET_MEMORY_OPCODE, LWR, SWL, SWR, LDL, LDR, SDL, SDR }; } //===--------------------------------------------------------------------===// // TargetLowering Implementation //===--------------------------------------------------------------------===// class MipsFunctionInfo; class MipsSubtarget; class MipsCCState; class MipsTargetLowering : public TargetLowering { bool isMicroMips; public: explicit MipsTargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI); static const MipsTargetLowering *create(const MipsTargetMachine &TM, const MipsSubtarget &STI); /// createFastISel - This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override; MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; } void LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const override; /// LowerOperation - Provide custom lowering hooks for some operations. SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// ReplaceNodeResults - Replace the results of node with an illegal result /// type with new values built out of custom code. /// void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; /// getTargetNodeName - This method returns the name of a target specific // DAG node. const char *getTargetNodeName(unsigned Opcode) const override; /// getSetCCResultType - get the ISD::SETCC result ValueType EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const override; struct LTStr { bool operator()(const char *S1, const char *S2) const { return strcmp(S1, S2) < 0; } }; void HandleByVal(CCState *, unsigned &, unsigned) const override; unsigned getRegisterByName(const char* RegName, EVT VT) const override; protected: SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const; // This method creates the following nodes, which are necessary for // computing a local symbol's address: // // (add (load (wrapper $gp, %got(sym)), %lo(sym)) template SDValue getAddrLocal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG, bool IsN32OrN64) const { unsigned GOTFlag = IsN32OrN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT; SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty), getTargetNode(N, Ty, DAG, GOTFlag)); SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT, MachinePointerInfo::getGOT(), false, false, false, 0); unsigned LoFlag = IsN32OrN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO; SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(N, Ty, DAG, LoFlag)); return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo); } // This method creates the following nodes, which are necessary for // computing a global symbol's address: // // (load (wrapper $gp, %got(sym))) template SDValue getAddrGlobal(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG, unsigned Flag, SDValue Chain, const MachinePointerInfo &PtrInfo) const { SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty), getTargetNode(N, Ty, DAG, Flag)); return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0); } // This method creates the following nodes, which are necessary for // computing a global symbol's address in large-GOT mode: // // (load (wrapper (add %hi(sym), $gp), %lo(sym))) template SDValue getAddrGlobalLargeGOT(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG, unsigned HiFlag, unsigned LoFlag, SDValue Chain, const MachinePointerInfo &PtrInfo) const { SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(N, Ty, DAG, HiFlag)); Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty)); SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi, getTargetNode(N, Ty, DAG, LoFlag)); return DAG.getLoad(Ty, DL, Chain, Wrapper, PtrInfo, false, false, false, 0); } // This method creates the following nodes, which are necessary for // computing a symbol's address in non-PIC mode: // // (add %hi(sym), %lo(sym)) template SDValue getAddrNonPIC(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG) const { SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI); SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO); return DAG.getNode(ISD::ADD, DL, Ty, DAG.getNode(MipsISD::Hi, DL, Ty, Hi), DAG.getNode(MipsISD::Lo, DL, Ty, Lo)); } // This method creates the following nodes, which are necessary for // computing a symbol's address using gp-relative addressing: // // (add $gp, %gp_rel(sym)) template SDValue getAddrGPRel(NodeTy *N, SDLoc DL, EVT Ty, SelectionDAG &DAG) const { assert(Ty == MVT::i32); SDValue GPRel = getTargetNode(N, Ty, DAG, MipsII::MO_GPREL); return DAG.getNode(ISD::ADD, DL, Ty, DAG.getRegister(Mips::GP, Ty), DAG.getNode(MipsISD::GPRel, DL, DAG.getVTList(Ty), GPRel)); } /// This function fills Ops, which is the list of operands that will later /// be used when a function call node is created. It also generates /// copyToReg nodes to set up argument registers. virtual void getOpndList(SmallVectorImpl &Ops, std::deque< std::pair > &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const; protected: SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const; // Subtarget Info const MipsSubtarget &Subtarget; // Cache the ABI from the TargetMachine, we use it everywhere. const MipsABIInfo &ABI; private: // Create a TargetGlobalAddress node. SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; // Create a TargetExternalSymbol node. SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; // Create a TargetBlockAddress node. SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; // Create a TargetJumpTable node. SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; // Create a TargetConstantPool node. SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const; // Lower Operand helpers SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals, TargetLowering::CallLoweringInfo &CLI) const; // Lower Operand specifics SDValue lowerBR_JT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const; SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue lowerVAARG(SDValue Op, SelectionDAG &DAG) const; SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerFABS(SDValue Op, SelectionDAG &DAG) const; SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const; SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG& DAG) const; SDValue lowerShiftRightParts(SDValue Op, SelectionDAG& DAG, bool IsSRA) const; SDValue lowerADD(SDValue Op, SelectionDAG &DAG) const; SDValue lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; /// isEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. virtual bool isEligibleForTailCallOptimization(const CCState &CCInfo, unsigned NextStackOffset, const MipsFunctionInfo &FI) const = 0; /// copyByValArg - Copy argument registers which were used to pass a byval /// argument to the stack. Create a stack frame object for the byval /// argument. void copyByValRegs(SDValue Chain, SDLoc DL, std::vector &OutChains, SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, SmallVectorImpl &InVals, const Argument *FuncArg, unsigned FirstReg, unsigned LastReg, const CCValAssign &VA, MipsCCState &State) const; /// passByValArg - Pass a byval argument in registers or on stack. void passByValArg(SDValue Chain, SDLoc DL, std::deque> &RegsToPass, SmallVectorImpl &MemOpChains, SDValue StackPtr, MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg, unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle, const CCValAssign &VA) const; /// writeVarArgRegs - Write variable function arguments passed in registers /// to the stack. Also create a stack frame object for the first variable /// argument. void writeVarArgRegs(std::vector &OutChains, SDValue Chain, SDLoc DL, SelectionDAG &DAG, CCState &State) const; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; SDValue passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain, SDValue Arg, SDLoc DL, bool IsTailCall, SelectionDAG &DAG) const; SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const override; bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const override; // Inline asm support ConstraintType getConstraintType(const std::string &Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const override; /// This function parses registers that appear in inline-asm constraints. /// It returns pair (0, 0) on failure. std::pair parseRegForInlineAsmConstraint(StringRef C, MVT VT) const; std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, const std::string &Constraint, MVT VT) const override; /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. If hasMemory is /// true it means one of the asm constraint of the inline asm instruction /// being processed is 'm'. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; unsigned getInlineAsmMemConstraint( const std::string &ConstraintCode) const override { if (ConstraintCode == "R") return InlineAsm::Constraint_R; else if (ConstraintCode == "ZC") return InlineAsm::Constraint_ZC; return TargetLowering::getInlineAsmMemConstraint(ConstraintCode); } bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override; bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override; EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const override; /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool isFPImmLegal(const APFloat &Imm, EVT VT) const override; unsigned getJumpTableEncoding() const override; /// Emit a sign-extension using sll/sra, seb, or seh appropriately. MachineBasicBlock *emitSignExtendToI32InReg(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, unsigned SrcRec) const; MachineBasicBlock *emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, bool Nand = false) const; MachineBasicBlock *emitAtomicBinaryPartword(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, bool Nand = false) const; MachineBasicBlock *emitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const; MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const; MachineBasicBlock *emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitPseudoSELECT(MachineInstr *MI, MachineBasicBlock *BB, bool isFPCmp, unsigned Opc) const; }; /// Create MipsTargetLowering objects. const MipsTargetLowering * createMips16TargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI); const MipsTargetLowering * createMipsSETargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI); namespace Mips { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } } #endif