//===- MipsInstrInfo.td - Mips Register defs ---------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "MipsInstrFormats.td" //===----------------------------------------------------------------------===// // Mips profiles and nodes //===----------------------------------------------------------------------===// def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisInt<4>]>; def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_MipsMAddMSub : SDTypeProfile<0, 4, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisSameAs<2, 3>]>; def SDT_MipsDivRem : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>]>; // Call def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; // Hi and Lo nodes are used to handle global addresses. Used on // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol // static model. (nothing to do with Mips Registers Hi and Lo) def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; // Return def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain, SDNPOptInGlue]>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; // MAdd*/MSub* nodes def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub, [SDNPOptInGlue, SDNPOutGlue]>; def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub, [SDNPOptInGlue, SDNPOutGlue]>; def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub, [SDNPOptInGlue, SDNPOutGlue]>; def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub, [SDNPOptInGlue, SDNPOutGlue]>; // DivRem(u) nodes def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem, [SDNPOutGlue]>; def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem, [SDNPOutGlue]>; //===----------------------------------------------------------------------===// // Mips Instruction Predicate Definitions. //===----------------------------------------------------------------------===// def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">; def HasBitCount : Predicate<"Subtarget.hasBitCount()">; def HasSwap : Predicate<"Subtarget.hasSwap()">; def HasCondMov : Predicate<"Subtarget.hasCondMov()">; def IsMips32 : Predicate<"Subtarget.isMips32()">; def IsMips32r2 : Predicate<"Subtarget.isMips32r2()">; //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def brtarget : Operand; def calltarget : Operand; def simm16 : Operand; def shamt : Operand; // Unsigned Operand def uimm16 : Operand { let PrintMethod = "printUnsignedImm"; } // Address operand def mem : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops simm16, CPURegs); } // Transformation Function - get the lower 16 bits. def LO16 : SDNodeXFormgetZExtValue() & 0xFFFF); }]>; // Transformation Function - get the higher 16 bits. def HI16 : SDNodeXFormgetZExtValue() >> 16); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; // Node immediate fits as 16-bit zero extended on target immediate. // The LO16 param means that only the lower 16 bits of the node // immediate are caught. // e.g. addiu, sltiu def immZExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); else return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; // shamt field must fit in 5 bits. def immZExt5 : PatLeaf<(imm), [{ return N->getZExtValue() == ((N->getZExtValue()) & 0x1f) ; }]>; // Mips Address Mode! SDNode frameindex could possibily be a match // since load and store instructions from stack used it. def addr : ComplexPattern; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Arithmetic 3 register operands let isCommutable = 1 in class ArithR op, bits<6> func, string instr_asm, SDNode OpNode, InstrItinClass itin>: FR; let isCommutable = 1 in class ArithOverflowR op, bits<6> func, string instr_asm>: FR; // Arithmetic 2 register operands class ArithI op, string instr_asm, SDNode OpNode, Operand Od, PatLeaf imm_type> : FI; class ArithOverflowI op, string instr_asm, SDNode OpNode, Operand Od, PatLeaf imm_type> : FI; // Arithmetic Multiply ADD/SUB let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in class MArithR func, string instr_asm, SDNode op> : FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt), !strconcat(instr_asm, "\t$rs, $rt"), [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul>; // Logical class LogicR func, string instr_asm, SDNode OpNode>: FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, CPURegs:$c), !strconcat(instr_asm, "\t$dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu>; class LogicI op, string instr_asm, SDNode OpNode>: FI; class LogicNOR op, bits<6> func, string instr_asm>: FR; // Shifts class LogicR_shift_rotate_imm func, bits<5> _rs, string instr_asm, SDNode OpNode>: FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$b, shamt:$c), !strconcat(instr_asm, "\t$dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, immZExt5:$c))], IIAlu> { let rs = _rs; } class LogicR_shift_rotate_reg func, bits<5> _shamt, string instr_asm, SDNode OpNode>: FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$c, CPURegs:$b), !strconcat(instr_asm, "\t$dst, $b, $c"), [(set CPURegs:$dst, (OpNode CPURegs:$b, CPURegs:$c))], IIAlu> { let shamt = _shamt; } // Load Upper Imediate class LoadUpper op, string instr_asm>: FI< op, (outs CPURegs:$dst), (ins uimm16:$imm), !strconcat(instr_asm, "\t$dst, $imm"), [], IIAlu>; // Memory Load/Store let canFoldAsLoad = 1, hasDelaySlot = 1 in class LoadM op, string instr_asm, PatFrag OpNode>: FI; class StoreM op, string instr_asm, PatFrag OpNode>: FI; // Conditional Branch let isBranch = 1, isTerminator=1, hasDelaySlot = 1 in { class CBranch op, string instr_asm, PatFrag cond_op>: FI; class CBranchZero op, string instr_asm, PatFrag cond_op>: FI; } // SetCC class SetCC_R op, bits<6> func, string instr_asm, PatFrag cond_op>: FR; class SetCC_I op, string instr_asm, PatFrag cond_op, Operand Od, PatLeaf imm_type>: FI; // Unconditional branch let isBranch=1, isTerminator=1, isBarrier=1, hasDelaySlot = 1 in class JumpFJ op, string instr_asm>: FJ; let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1 in class JumpFR op, bits<6> func, string instr_asm>: FR; // Jump and Link (Call) let isCall=1, hasDelaySlot=1, // All calls clobber the non-callee saved registers... Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, K0, K1, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9], Uses = [GP] in { class JumpLink op, string instr_asm>: FJ; let rd=31 in class JumpLinkReg op, bits<6> func, string instr_asm>: FR; class BranchLink: FI<0x1, (outs), (ins CPURegs:$rs, brtarget:$target, variable_ops), !strconcat(instr_asm, "\t$rs, $target"), [], IIBranch>; } // Mul, Div let Defs = [HI, LO] in { class Mul func, string instr_asm, InstrItinClass itin>: FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b), !strconcat(instr_asm, "\t$a, $b"), [], itin>; class Div func, string instr_asm, InstrItinClass itin>: FR<0x00, func, (outs), (ins CPURegs:$a, CPURegs:$b), !strconcat(instr_asm, "\t$$zero, $a, $b"), [(op CPURegs:$a, CPURegs:$b)], itin>; } // Move from Hi/Lo class MoveFromLOHI func, string instr_asm>: FR<0x00, func, (outs CPURegs:$dst), (ins), !strconcat(instr_asm, "\t$dst"), [], IIHiLo>; class MoveToLOHI func, string instr_asm>: FR<0x00, func, (outs), (ins CPURegs:$src), !strconcat(instr_asm, "\t$src"), [], IIHiLo>; class EffectiveAddress : FI<0x09, (outs CPURegs:$dst), (ins mem:$addr), instr_asm, [(set CPURegs:$dst, addr:$addr)], IIAlu>; // Count Leading Ones/Zeros in Word class CountLeading func, string instr_asm, list pattern>: FR<0x1c, func, (outs CPURegs:$dst), (ins CPURegs:$src), !strconcat(instr_asm, "\t$dst, $src"), pattern, IIAlu>, Requires<[HasBitCount]> { let shamt = 0; let rt = rd; } // Sign Extend in Register. class SignExtInReg func, string instr_asm, ValueType vt>: FR<0x3f, func, (outs CPURegs:$dst), (ins CPURegs:$src), !strconcat(instr_asm, "\t$dst, $src"), [(set CPURegs:$dst, (sext_inreg CPURegs:$src, vt))], NoItinerary>; // Byte Swap class ByteSwap func, string instr_asm>: FR<0x1f, func, (outs CPURegs:$dst), (ins CPURegs:$src), !strconcat(instr_asm, "\t$dst, $src"), [(set CPURegs:$dst, (bswap CPURegs:$src))], NoItinerary>; // Conditional Move class CondMov func, string instr_asm, PatLeaf MovCode>: FR<0x00, func, (outs CPURegs:$dst), (ins CPURegs:$F, CPURegs:$T, CPURegs:$cond), !strconcat(instr_asm, "\t$dst, $T, $cond"), [], NoItinerary>; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// // As stack alignment is always done with addiu, we need a 16-bit immediate let Defs = [SP], Uses = [SP] in { def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2), "!ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } // Some assembly macros need to avoid pseudoinstructions and assembler // automatic reodering, we should reorder ourselves. def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>; def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>; def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>; def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>; // These macros are inserted to prevent GAS from complaining // when using the AT register. def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>; def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>; // When handling PIC code the assembler needs .cpload and .cprestore // directives. If the real instructions corresponding these directives // are used, we have the same behavior, but get also a bunch of warnings // from the assembler. def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>; def CPRESTORE : MipsPseudo<(outs), (ins uimm16:$loc), ".cprestore\t$loc\n", []>; //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MipsI Instructions //===----------------------------------------------------------------------===// /// Arithmetic Instructions (ALU Immediate) def ADDiu : ArithI<0x09, "addiu", add, simm16, immSExt16>; def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16>; def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16>; def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16>; def ANDi : LogicI<0x0c, "andi", and>; def ORi : LogicI<0x0d, "ori", or>; def XORi : LogicI<0x0e, "xori", xor>; def LUi : LoadUpper<0x0f, "lui">; /// Arithmetic Instructions (3-Operand, R-Type) def ADDu : ArithR<0x00, 0x21, "addu", add, IIAlu>; def SUBu : ArithR<0x00, 0x23, "subu", sub, IIAlu>; def ADD : ArithOverflowR<0x00, 0x20, "add">; def SUB : ArithOverflowR<0x00, 0x22, "sub">; def SLT : SetCC_R<0x00, 0x2a, "slt", setlt>; def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult>; def AND : LogicR<0x24, "and", and>; def OR : LogicR<0x25, "or", or>; def XOR : LogicR<0x26, "xor", xor>; def NOR : LogicNOR<0x00, 0x27, "nor">; /// Shift Instructions def SLL : LogicR_shift_rotate_imm<0x00, 0x00, "sll", shl>; def SRL : LogicR_shift_rotate_imm<0x02, 0x00, "srl", srl>; def SRA : LogicR_shift_rotate_imm<0x03, 0x00, "sra", sra>; def SLLV : LogicR_shift_rotate_reg<0x04, 0x00, "sllv", shl>; def SRLV : LogicR_shift_rotate_reg<0x06, 0x00, "srlv", srl>; def SRAV : LogicR_shift_rotate_reg<0x07, 0x00, "srav", sra>; // Rotate Instructions let Predicates = [IsMips32r2] in { def ROTR : LogicR_shift_rotate_imm<0x02, 0x01, "rotr", rotr>; def ROTRV : LogicR_shift_rotate_reg<0x06, 0x01, "rotrv", rotr>; } /// Load and Store Instructions def LB : LoadM<0x20, "lb", sextloadi8>; def LBu : LoadM<0x24, "lbu", zextloadi8>; def LH : LoadM<0x21, "lh", sextloadi16>; def LHu : LoadM<0x25, "lhu", zextloadi16>; def LW : LoadM<0x23, "lw", load>; def SB : StoreM<0x28, "sb", truncstorei8>; def SH : StoreM<0x29, "sh", truncstorei16>; def SW : StoreM<0x2b, "sw", store>; /// Jump and Branch Instructions def J : JumpFJ<0x02, "j">; def JR : JumpFR<0x00, 0x08, "jr">; def JAL : JumpLink<0x03, "jal">; def JALR : JumpLinkReg<0x00, 0x09, "jalr">; def BEQ : CBranch<0x04, "beq", seteq>; def BNE : CBranch<0x05, "bne", setne>; let rt=1 in def BGEZ : CBranchZero<0x01, "bgez", setge>; let rt=0 in { def BGTZ : CBranchZero<0x07, "bgtz", setgt>; def BLEZ : CBranchZero<0x07, "blez", setle>; def BLTZ : CBranchZero<0x01, "bltz", setlt>; } def BGEZAL : BranchLink<"bgezal">; def BLTZAL : BranchLink<"bltzal">; let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1, rs=0, rt=0, shamt=0 in def RET : FR <0x00, 0x02, (outs), (ins CPURegs:$target), "jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>; /// Multiply and Divide Instructions. def MULT : Mul<0x18, "mult", IIImul>; def MULTu : Mul<0x19, "multu", IIImul>; def SDIV : Div; def UDIV : Div; let Defs = [HI] in def MTHI : MoveToLOHI<0x11, "mthi">; let Defs = [LO] in def MTLO : MoveToLOHI<0x13, "mtlo">; let Uses = [HI] in def MFHI : MoveFromLOHI<0x10, "mfhi">; let Uses = [LO] in def MFLO : MoveFromLOHI<0x12, "mflo">; /// Sign Ext In Register Instructions. let Predicates = [HasSEInReg] in { let shamt = 0x10, rs = 0 in def SEB : SignExtInReg<0x21, "seb", i8>; let shamt = 0x18, rs = 0 in def SEH : SignExtInReg<0x20, "seh", i16>; } /// Count Leading def CLZ : CountLeading<0b100000, "clz", [(set CPURegs:$dst, (ctlz CPURegs:$src))]>; def CLO : CountLeading<0b100001, "clo", [(set CPURegs:$dst, (ctlz (not CPURegs:$src)))]>; /// Byte Swap let Predicates = [HasSwap] in { let shamt = 0x3, rs = 0 in def WSBW : ByteSwap<0x20, "wsbw">; } /// Conditional Move def MIPS_CMOV_ZERO : PatLeaf<(i32 0)>; def MIPS_CMOV_NZERO : PatLeaf<(i32 1)>; // Conditional moves: // These instructions are expanded in MipsISelLowering::EmitInstrWithCustomInserter // if target does not have conditional move instructions. // flag:int, data:int let usesCustomInserter = 1, shamt = 0, Constraints = "$F = $dst" in class CondMovIntInt funct, string instr_asm> : FR<0, funct, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$cond, CPURegs:$F), !strconcat(instr_asm, "\t$dst, $T, $cond"), [], NoItinerary>; def MOVZ_I : CondMovIntInt<0x0a, "movz">; def MOVN_I : CondMovIntInt<0x0b, "movn">; /// No operation let addr=0 in def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>; // FrameIndexes are legalized when they are operands from load/store // instructions. The same not happens for stack address copies, so an // add op with mem ComplexPattern is used and the stack address copy // can be matched. It's similar to Sparc LEA_ADDRi def LEA_ADDiu : EffectiveAddress<"addiu\t$dst, ${addr:stackloc}">; // MADD*/MSUB* def MADD : MArithR<0, "madd", MipsMAdd>; def MADDU : MArithR<1, "maddu", MipsMAddu>; def MSUB : MArithR<4, "msub", MipsMSub>; def MSUBU : MArithR<5, "msubu", MipsMSubu>; // MUL is a assembly macro in the current used ISAs. In recent ISA's // it is a real instruction. def MUL : ArithR<0x1c, 0x02, "mul", mul, IIImul>, Requires<[IsMips32]>; //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Small immediates def : Pat<(i32 immSExt16:$in), (ADDiu ZERO, imm:$in)>; def : Pat<(i32 immZExt16:$in), (ORi ZERO, imm:$in)>; // Arbitrary immediates def : Pat<(i32 imm:$imm), (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; // Carry patterns def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs), (SUBu CPURegs:$lhs, CPURegs:$rhs)>; def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs), (ADDu CPURegs:$lhs, CPURegs:$rhs)>; def : Pat<(addc CPURegs:$src, immSExt16:$imm), (ADDiu CPURegs:$src, imm:$imm)>; // Call def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)), (JAL tglobaladdr:$dst)>; def : Pat<(MipsJmpLink (i32 texternalsym:$dst)), (JAL texternalsym:$dst)>; //def : Pat<(MipsJmpLink CPURegs:$dst), // (JALR CPURegs:$dst)>; // hi/lo relocs def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)), (ADDiu CPURegs:$hi, tglobaladdr:$lo)>; def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)), (ADDiu CPURegs:$hi, tblockaddress:$lo)>; def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)), (ADDiu CPURegs:$hi, tjumptable:$lo)>; def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)), (ADDiu CPURegs:$hi, tconstpool:$lo)>; // gp_rel relocs def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)), (ADDiu CPURegs:$gp, tglobaladdr:$in)>; def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)), (ADDiu CPURegs:$gp, tconstpool:$in)>; // Mips does not have "not", so we expand our way def : Pat<(not CPURegs:$in), (NOR CPURegs:$in, ZERO)>; // extended load and stores def : Pat<(extloadi1 addr:$src), (LBu addr:$src)>; def : Pat<(extloadi8 addr:$src), (LBu addr:$src)>; def : Pat<(extloadi16 addr:$src), (LHu addr:$src)>; // peepholes def : Pat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; // brcond patterns def : Pat<(brcond (setne CPURegs:$lhs, 0), bb:$dst), (BNE CPURegs:$lhs, ZERO, bb:$dst)>; def : Pat<(brcond (seteq CPURegs:$lhs, 0), bb:$dst), (BEQ CPURegs:$lhs, ZERO, bb:$dst)>; def : Pat<(brcond (setge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLT CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLTu CPURegs:$lhs, CPURegs:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setge CPURegs:$lhs, immSExt16:$rhs), bb:$dst), (BEQ (SLTi CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setuge CPURegs:$lhs, immSExt16:$rhs), bb:$dst), (BEQ (SLTiu CPURegs:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : Pat<(brcond (setle CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLT CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond (setule CPURegs:$lhs, CPURegs:$rhs), bb:$dst), (BEQ (SLTu CPURegs:$rhs, CPURegs:$lhs), ZERO, bb:$dst)>; def : Pat<(brcond CPURegs:$cond, bb:$dst), (BNE CPURegs:$cond, ZERO, bb:$dst)>; // select patterns multiclass MovzPats { def : Pat<(select (setge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (SLT CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; def : Pat<(select (setuge CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (SLTu CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; def : Pat<(select (setge CPURegs:$lhs, immSExt16:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (SLTi CPURegs:$lhs, immSExt16:$rhs), RC:$F)>; def : Pat<(select (setuge CPURegs:$lh, immSExt16:$rh), RC:$T, RC:$F), (MOVZInst RC:$T, (SLTiu CPURegs:$lh, immSExt16:$rh), RC:$F)>; def : Pat<(select (setle CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (SLT CPURegs:$rhs, CPURegs:$lhs), RC:$F)>; def : Pat<(select (setule CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (SLTu CPURegs:$rhs, CPURegs:$lhs), RC:$F)>; def : Pat<(select (seteq CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVZInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; def : Pat<(select (seteq CPURegs:$lhs, 0), RC:$T, RC:$F), (MOVZInst RC:$T, CPURegs:$lhs, RC:$F)>; } multiclass MovnPats { def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), RC:$T, RC:$F), (MOVNInst RC:$T, (XOR CPURegs:$lhs, CPURegs:$rhs), RC:$F)>; def : Pat<(select CPURegs:$cond, RC:$T, RC:$F), (MOVNInst RC:$T, CPURegs:$cond, RC:$F)>; def : Pat<(select (setne CPURegs:$lhs, 0), RC:$T, RC:$F), (MOVNInst RC:$T, CPURegs:$lhs, RC:$F)>; } defm : MovzPats; defm : MovnPats; // select patterns with got access let AddedComplexity = 10 in def : Pat<(select (setne CPURegs:$lhs, CPURegs:$rhs), (i32 tglobaladdr:$T), CPURegs:$F), (MOVN_I CPURegs:$F, (ADDiu GP, tglobaladdr:$T), (XOR CPURegs:$lhs, CPURegs:$rhs))>; // setcc patterns def : Pat<(seteq CPURegs:$lhs, CPURegs:$rhs), (SLTu (XOR CPURegs:$lhs, CPURegs:$rhs), 1)>; def : Pat<(setne CPURegs:$lhs, CPURegs:$rhs), (SLTu ZERO, (XOR CPURegs:$lhs, CPURegs:$rhs))>; def : Pat<(setle CPURegs:$lhs, CPURegs:$rhs), (XORi (SLT CPURegs:$rhs, CPURegs:$lhs), 1)>; def : Pat<(setule CPURegs:$lhs, CPURegs:$rhs), (XORi (SLTu CPURegs:$rhs, CPURegs:$lhs), 1)>; def : Pat<(setgt CPURegs:$lhs, CPURegs:$rhs), (SLT CPURegs:$rhs, CPURegs:$lhs)>; def : Pat<(setugt CPURegs:$lhs, CPURegs:$rhs), (SLTu CPURegs:$rhs, CPURegs:$lhs)>; def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs), (XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>; def : Pat<(setuge CPURegs:$lhs, CPURegs:$rhs), (XORi (SLTu CPURegs:$lhs, CPURegs:$rhs), 1)>; def : Pat<(setge CPURegs:$lhs, immSExt16:$rhs), (XORi (SLTi CPURegs:$lhs, immSExt16:$rhs), 1)>; def : Pat<(setuge CPURegs:$lhs, immSExt16:$rhs), (XORi (SLTiu CPURegs:$lhs, immSExt16:$rhs), 1)>; //===----------------------------------------------------------------------===// // Floating Point Support //===----------------------------------------------------------------------===// include "MipsInstrFPU.td"