//===-- MipsSubtarget.h - Define Subtarget for the Mips ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the Mips specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef MIPSSUBTARGET_H #define MIPSSUBTARGET_H #include "MCTargetDesc/MipsReginfo.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #define GET_SUBTARGETINFO_HEADER #include "MipsGenSubtargetInfo.inc" namespace llvm { class StringRef; class MipsTargetMachine; class MipsSubtarget : public MipsGenSubtargetInfo { virtual void anchor(); public: // NOTE: O64 will not be supported. enum MipsABIEnum { UnknownABI, O32, N32, N64, EABI }; protected: enum MipsArchEnum { Mips32, Mips32r2, Mips64, Mips64r2 }; // Mips architecture version MipsArchEnum MipsArchVersion; // Mips supported ABIs MipsABIEnum MipsABI; // IsLittle - The target is Little Endian bool IsLittle; // IsSingleFloat - The target only supports single precision float // point operations. This enable the target to use all 32 32-bit // floating point registers instead of only using even ones. bool IsSingleFloat; // IsFP64bit - The target processor has 64-bit floating point registers. bool IsFP64bit; // IsFP64bit - General-purpose registers are 64 bits wide bool IsGP64bit; // HasVFPU - Processor has a vector floating point unit. bool HasVFPU; // isLinux - Target system is Linux. Is false we consider ELFOS for now. bool IsLinux; // UseSmallSection - Small section is used. bool UseSmallSection; /// Features related to the presence of specific instructions. // HasSEInReg - SEB and SEH (signext in register) instructions. bool HasSEInReg; // HasCondMov - Conditional mov (MOVZ, MOVN) instructions. bool HasCondMov; // HasSwap - Byte and half swap instructions. bool HasSwap; // HasBitCount - Count leading '1' and '0' bits. bool HasBitCount; // HasFPIdx -- Floating point indexed load/store instructions. bool HasFPIdx; // InMips16 -- can process Mips16 instructions bool InMips16Mode; // Mips16 hard float bool InMips16HardFloat; // PreviousInMips16 -- the function we just processed was in Mips 16 Mode bool PreviousInMips16Mode; // InMicroMips -- can process MicroMips instructions bool InMicroMipsMode; // HasDSP, HasDSPR2 -- supports DSP ASE. bool HasDSP, HasDSPR2; // Allow mixed Mips16 and Mips32 in one source file bool AllowMixed16_32; // Optimize for space by compiling all functions as Mips 16 unless // it needs floating point. Functions needing floating point are // compiled as Mips32 bool Os16; // HasMSA -- supports MSA ASE. bool HasMSA; InstrItineraryData InstrItins; // The instance to the register info section object MipsReginfo MRI; // Relocation Model Reloc::Model RM; // We can override the determination of whether we are in mips16 mode // as from the command line enum {NoOverride, Mips16Override, NoMips16Override} OverrideMode; MipsTargetMachine *TM; public: virtual bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const; /// Only O32 and EABI supported right now. bool isABI_EABI() const { return MipsABI == EABI; } bool isABI_N64() const { return MipsABI == N64; } bool isABI_N32() const { return MipsABI == N32; } bool isABI_O32() const { return MipsABI == O32; } unsigned getTargetABI() const { return MipsABI; } /// This constructor initializes the data members to match that /// of the specified triple. MipsSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, bool little, Reloc::Model RM, MipsTargetMachine *TM); /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef FS); bool hasMips32() const { return MipsArchVersion >= Mips32; } bool hasMips32r2() const { return MipsArchVersion == Mips32r2 || MipsArchVersion == Mips64r2; } bool hasMips64() const { return MipsArchVersion >= Mips64; } bool hasMips64r2() const { return MipsArchVersion == Mips64r2; } bool isLittle() const { return IsLittle; } bool isFP64bit() const { return IsFP64bit; } bool isNotFP64bit() const { return !IsFP64bit; } bool isGP64bit() const { return IsGP64bit; } bool isGP32bit() const { return !IsGP64bit; } bool isSingleFloat() const { return IsSingleFloat; } bool isNotSingleFloat() const { return !IsSingleFloat; } bool hasVFPU() const { return HasVFPU; } bool inMips16Mode() const { switch (OverrideMode) { case NoOverride: return InMips16Mode; case Mips16Override: return true; case NoMips16Override: return false; } llvm_unreachable("Unexpected mode"); } bool inMips16ModeDefault() const { return InMips16Mode; } bool inMips16HardFloat() const { return inMips16Mode() && InMips16HardFloat; } bool inMicroMipsMode() const { return InMicroMipsMode; } bool hasDSP() const { return HasDSP; } bool hasDSPR2() const { return HasDSPR2; } bool hasMSA() const { return HasMSA; } bool isLinux() const { return IsLinux; } bool useSmallSection() const { return UseSmallSection; } bool hasStandardEncoding() const { return !inMips16Mode(); } bool mipsSEUsesSoftFloat() const; /// Features related to the presence of specific instructions. bool hasSEInReg() const { return HasSEInReg; } bool hasCondMov() const { return HasCondMov; } bool hasSwap() const { return HasSwap; } bool hasBitCount() const { return HasBitCount; } bool hasFPIdx() const { return HasFPIdx; } const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } bool allowMixed16_32() const { return inMips16ModeDefault() | AllowMixed16_32;} bool os16() const { return Os16;}; // Grab MipsRegInfo object const MipsReginfo &getMReginfo() const { return MRI; } // Grab relocation model Reloc::Model getRelocationModel() const {return RM;} /// \brief Reset the subtarget for the Mips target. void resetSubtarget(MachineFunction *MF); }; } // End llvm namespace #endif