//===-- PPC32CodeEmitter.cpp - JIT Code Emitter for PowerPC32 -----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PowerPC 32-bit CodeEmitter and associated machinery to // JIT-compile bytecode to native PowerPC. // //===----------------------------------------------------------------------===// #include "PPC32JITInfo.h" #include "PPC32TargetMachine.h" #include "PowerPC.h" #include "llvm/Module.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/Debug.h" using namespace llvm; namespace { class JITResolver { MachineCodeEmitter &MCE; // LazyCodeGenMap - Keep track of call sites for functions that are to be // lazily resolved. std::map LazyCodeGenMap; // LazyResolverMap - Keep track of the lazy resolver created for a // particular function so that we can reuse them if necessary. std::map LazyResolverMap; public: JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} unsigned getLazyResolver(Function *F); unsigned addFunctionReference(unsigned Address, Function *F); private: unsigned emitStubForFunction(Function *F); static void CompilationCallback(); unsigned resolveFunctionReference(unsigned RetAddr); }; static JITResolver &getResolver(MachineCodeEmitter &MCE) { static JITResolver *TheJITResolver = 0; if (TheJITResolver == 0) TheJITResolver = new JITResolver(MCE); return *TheJITResolver; } } unsigned JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; unsigned Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// unsigned JITResolver::emitStubForFunction(Function *F) { std::cerr << "PPC32CodeEmitter::emitStubForFunction() unimplemented!\n"; abort(); return 0; } void JITResolver::CompilationCallback() { std::cerr << "PPC32CodeEmitter: CompilationCallback() unimplemented!"; abort(); } namespace { class PPC32CodeEmitter : public MachineFunctionPass { TargetMachine &TM; MachineCodeEmitter &MCE; // Tracks which instruction references which BasicBlock std::vector > > BBRefs; // Tracks where each BasicBlock starts std::map BBLocations; /// getMachineOpValue - evaluates the MachineOperand of a given MachineInstr /// int64_t getMachineOpValue(MachineInstr &MI, MachineOperand &MO); unsigned getAddressOfExternalFunction(Function *F); public: PPC32CodeEmitter(TargetMachine &T, MachineCodeEmitter &M) : TM(T), MCE(M) {} const char *getPassName() const { return "PowerPC Machine Code Emitter"; } /// runOnMachineFunction - emits the given MachineFunction to memory /// bool runOnMachineFunction(MachineFunction &MF); /// emitBasicBlock - emits the given MachineBasicBlock to memory /// void emitBasicBlock(MachineBasicBlock &MBB); /// emitWord - write a 32-bit word to memory at the current PC /// void emitWord(unsigned w) { MCE.emitWord(w); } /// getValueBit - return the particular bit of Val /// unsigned getValueBit(int64_t Val, unsigned bit) { return (Val >> bit) & 1; } /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(MachineInstr &MI); }; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get /// machine code emitted. This uses a MachineCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should returns true if machine code emission is /// not supported. /// bool PPC32TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { // Keep as `true' until this is a functional JIT to allow llvm-gcc to build return true; // Machine code emitter pass for PowerPC PM.add(new PPC32CodeEmitter(*this, MCE)); // Delete machine code for this function after emitting it PM.add(createMachineCodeDeleter()); return false; } bool PPC32CodeEmitter::runOnMachineFunction(MachineFunction &MF) { MCE.startFunction(MF); MCE.emitConstantPool(MF.getConstantPool()); for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) emitBasicBlock(*BB); MCE.finishFunction(MF); // Resolve branches to BasicBlocks for the entire function for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { long Location = BBLocations[BBRefs[i].first]; unsigned *Ref = BBRefs[i].second.first; MachineInstr *MI = BBRefs[i].second.second; DEBUG(std::cerr << "Fixup @ " << std::hex << Ref << " to 0x" << Location << " in instr: " << std::dec << *MI); for (unsigned ii = 0, ee = MI->getNumOperands(); ii != ee; ++ii) { MachineOperand &op = MI->getOperand(ii); if (op.isPCRelativeDisp()) { // the instruction's branch target is made such that it branches to // PC + (branchTarget * 4), so undo that arithmetic here: // Location is the target of the branch // Ref is the location of the instruction, and hence the PC int64_t branchTarget = (Location - (long)Ref) >> 2; MI->SetMachineOperandConst(ii, MachineOperand::MO_SignExtendedImmed, branchTarget); unsigned fixedInstr = PPC32CodeEmitter::getBinaryCodeForInstr(*MI); MCE.emitWordAt(fixedInstr, Ref); break; } } } BBRefs.clear(); BBLocations.clear(); return false; } void PPC32CodeEmitter::emitBasicBlock(MachineBasicBlock &MBB) { BBLocations[MBB.getBasicBlock()] = MCE.getCurrentPCValue(); for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I){ MachineInstr &MI = *I; unsigned Opcode = MI.getOpcode(); if (Opcode == PPC::IMPLICIT_DEF) continue; // pseudo opcode, no side effects else if (Opcode == PPC::MovePCtoLR) { // This can be simplified: the resulting 32-bit code is 0x48000005 MachineInstr *MI = BuildMI(PPC::BL, 1).addImm(1); emitWord(getBinaryCodeForInstr(*MI)); delete MI; } else emitWord(getBinaryCodeForInstr(*I)); } } unsigned PPC32CodeEmitter::getAddressOfExternalFunction(Function *F) { static std::map ExternalFn2Addr; std::map::iterator Addr = ExternalFn2Addr.find(F); if (Addr == ExternalFn2Addr.end()) ExternalFn2Addr[F] = MCE.forceCompilationOf(F); return ExternalFn2Addr[F]; } static unsigned enumRegToMachineReg(unsigned enumReg) { switch (enumReg) { case PPC::R0 : case PPC::F0 : return 0; case PPC::R1 : case PPC::F1 : return 1; case PPC::R2 : case PPC::F2 : return 2; case PPC::R3 : case PPC::F3 : return 3; case PPC::R4 : case PPC::F4 : return 4; case PPC::R5 : case PPC::F5 : return 5; case PPC::R6 : case PPC::F6 : return 6; case PPC::R7 : case PPC::F7 : return 7; case PPC::R8 : case PPC::F8 : return 8; case PPC::R9 : case PPC::F9 : return 9; case PPC::R10: case PPC::F10: return 10; case PPC::R11: case PPC::F11: return 11; case PPC::R12: case PPC::F12: return 12; case PPC::R13: case PPC::F13: return 13; case PPC::R14: case PPC::F14: return 14; case PPC::R15: case PPC::F15: return 15; case PPC::R16: case PPC::F16: return 16; case PPC::R17: case PPC::F17: return 17; case PPC::R18: case PPC::F18: return 18; case PPC::R19: case PPC::F19: return 19; case PPC::R20: case PPC::F20: return 20; case PPC::R21: case PPC::F21: return 21; case PPC::R22: case PPC::F22: return 22; case PPC::R23: case PPC::F23: return 23; case PPC::R24: case PPC::F24: return 24; case PPC::R25: case PPC::F25: return 25; case PPC::R26: case PPC::F26: return 26; case PPC::R27: case PPC::F27: return 27; case PPC::R28: case PPC::F28: return 28; case PPC::R29: case PPC::F29: return 29; case PPC::R30: case PPC::F30: return 30; case PPC::R31: case PPC::F31: return 31; default: std::cerr << "Unhandled reg in enumRegToRealReg!\n"; abort(); } } int64_t PPC32CodeEmitter::getMachineOpValue(MachineInstr &MI, MachineOperand &MO) { int64_t rv = 0; // Return value; defaults to 0 for unhandled cases // or things that get fixed up later by the JIT. if (MO.isRegister()) { rv = enumRegToMachineReg(MO.getReg()); } else if (MO.isImmediate()) { rv = MO.getImmedValue(); } else if (MO.isGlobalAddress()) { GlobalValue *GV = MO.getGlobal(); rv = MCE.getGlobalValueAddress(GV); if (rv == 0) { if (Function *F = dyn_cast(GV)) { if (F->isExternal()) rv = getAddressOfExternalFunction(F); else { // Function has not yet been code generated! Use lazy resolution. getResolver(MCE).addFunctionReference(MCE.getCurrentPCValue(), F); rv = getResolver(MCE).getLazyResolver(F); } } else if (GlobalVariable *GVar = dyn_cast(GV)) { if (GVar->isExternal()) { rv = MCE.getGlobalValueAddress(MO.getSymbolName()); if (!rv) { std::cerr << "PPC32CodeEmitter: External global addr not found: " << *GVar; abort(); } } else { std::cerr << "PPC32CodeEmitter: global addr not found: " << *GVar; abort(); } } } if (MO.isPCRelative()) { // Global variable reference rv = (rv - MCE.getCurrentPCValue()) >> 2; } } else if (MO.isMachineBasicBlock()) { const BasicBlock *BB = MO.getMachineBasicBlock()->getBasicBlock(); unsigned* CurrPC = (unsigned*)(intptr_t)MCE.getCurrentPCValue(); BBRefs.push_back(std::make_pair(BB, std::make_pair(CurrPC, &MI))); } else if (MO.isConstantPoolIndex()) { unsigned index = MO.getConstantPoolIndex(); rv = MCE.getConstantPoolEntryAddress(index); } else if (MO.isFrameIndex()) { std::cerr << "PPC32CodeEmitter: error: Frame index unhandled!\n"; abort(); } else { std::cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } // Special treatment for global symbols: constants and vars if (MO.isConstantPoolIndex() || MO.isGlobalAddress()) { unsigned Opcode = MI.getOpcode(); int64_t MBBLoc = BBLocations[MI.getParent()->getBasicBlock()]; if (Opcode == PPC::LOADHiAddr) { // LoadHiAddr wants hi16(addr - mbb) rv = (rv - MBBLoc) >> 16; } else if (Opcode == PPC::LWZ || Opcode == PPC::LA || Opcode == PPC::LFS || Opcode == PPC::LFD) { // These load opcodes want lo16(addr - mbb) rv = (rv - MBBLoc) & 0xffff; } } return rv; } void *PPC32JITInfo::getJITStubForFunction(Function *F, MachineCodeEmitter &MCE){ return (void*)((unsigned long)getResolver(MCE).getLazyResolver(F)); } void PPC32JITInfo::replaceMachineCodeForFunction (void *Old, void *New) { std::cerr << "PPC32JITInfo::replaceMachineCodeForFunction not implemented\n"; abort(); } #include "PPC32GenCodeEmitter.inc"