//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for PowerPC, // converting from a legalized dag to a PPC dag. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPCMachineFunctionInfo.h" #include "PPCTargetMachine.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; #define DEBUG_TYPE "ppc-codegen" // FIXME: Remove this once the bug has been fixed! cl::opt ANDIGlueBug("expose-ppc-andi-glue-bug", cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); static cl::opt UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), cl::desc("use aggressive ppc isel for bit permutations"), cl::Hidden); static cl::opt BPermRewriterNoMasking( "ppc-bit-perm-rewriter-stress-rotates", cl::desc("stress rotate selection in aggressive ppc isel for " "bit permutations"), cl::Hidden); namespace llvm { void initializePPCDAGToDAGISelPass(PassRegistry&); } namespace { //===--------------------------------------------------------------------===// /// PPCDAGToDAGISel - PPC specific code to select PPC machine /// instructions for SelectionDAG operations. /// class PPCDAGToDAGISel : public SelectionDAGISel { const PPCTargetMachine &TM; const PPCSubtarget *PPCSubTarget; const PPCTargetLowering *PPCLowering; unsigned GlobalBaseReg; public: explicit PPCDAGToDAGISel(PPCTargetMachine &tm) : SelectionDAGISel(tm), TM(tm) { initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &MF) override { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; PPCSubTarget = &MF.getSubtarget(); PPCLowering = PPCSubTarget->getTargetLowering(); SelectionDAGISel::runOnMachineFunction(MF); if (!PPCSubTarget->isSVR4ABI()) InsertVRSaveCode(MF); return true; } void PreprocessISelDAG() override; void PostprocessISelDAG() override; /// getI32Imm - Return a target constant with the specified value, of type /// i32. inline SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDValue getI64Imm(uint64_t Imm) { return CurDAG->getTargetConstant(Imm, MVT::i64); } /// getSmallIPtrImm - Return a target constant of pointer type. inline SDValue getSmallIPtrImm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, PPCLowering->getPointerTy()); } /// isRotateAndMask - Returns true if Mask and Shift can be folded into a /// rotate and mask opcode and mask operation. static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME); /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. SDNode *getGlobalBaseReg(); SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *Select(SDNode *N) override; SDNode *SelectBitfieldInsert(SDNode *N); SDNode *SelectBitPermutation(SDNode *N); /// SelectCC - Select a comparison of the specified values with the /// specified condition code, returning the CR# of the expression. SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl); /// SelectAddrImm - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement [r+imm]. bool SelectAddrImm(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false); } /// SelectAddrImmOffs - Return true if the operand is valid for a preinc /// immediate field. Note that the operand at this point is already the /// result of a prior SelectAddressRegImm call. bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { if (N.getOpcode() == ISD::TargetConstant || N.getOpcode() == ISD::TargetGlobalAddress) { Out = N; return true; } return false; } /// SelectAddrIdx - Given the specified addressed, check to see if it can be /// represented as an indexed [r+r] operation. Returns false if it can /// be represented by [r+imm], which are preferred. bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG); } /// SelectAddrIdxOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); } /// SelectAddrImmX4 - Returns true if the address N can be represented by /// a base register plus a signed 16-bit displacement that is a multiple of 4. /// Suitable for use by STD and friends. bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true); } // Select an address into a single register. bool SelectAddr(SDValue N, SDValue &Base) { Base = N; return true; } /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for /// inline asm expressions. It is always correct to compute the value into /// a register. The case of adding a (possibly relocatable) constant to a /// register can be improved, but it is wrong to substitute Reg+Reg for /// Reg in an asm, because the load or store opcode would have to change. bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, std::vector &OutOps) override { switch(ConstraintID) { default: errs() << "ConstraintID: " << ConstraintID << "\n"; llvm_unreachable("Unexpected asm memory constraint"); case InlineAsm::Constraint_es: case InlineAsm::Constraint_i: case InlineAsm::Constraint_m: case InlineAsm::Constraint_o: case InlineAsm::Constraint_Q: case InlineAsm::Constraint_Z: case InlineAsm::Constraint_Zy: // We need to make sure that this one operand does not end up in r0 // (because we might end up lowering this as 0(%op)). const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo(); const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32); SDValue NewOp = SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(Op), Op.getValueType(), Op, RC), 0); OutOps.push_back(NewOp); return false; } return true; } void InsertVRSaveCode(MachineFunction &MF); const char *getPassName() const override { return "PowerPC DAG->DAG Pattern Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "PPCGenDAGISel.inc" private: SDNode *SelectSETCC(SDNode *N); void PeepholePPC64(); void PeepholePPC64ZExt(); void PeepholeCROps(); SDValue combineToCMPB(SDNode *N); void foldBoolExts(SDValue &Res, SDNode *&N); bool AllUsersSelectZero(SDNode *N); void SwapAllSelectUsers(SDNode *N); SDNode *transferMemOperands(SDNode *N, SDNode *Result); }; } /// InsertVRSaveCode - Once the entire function has been instruction selected, /// all virtual registers are created and all machine instructions are built, /// check to see if we need to save/restore VRSAVE. If so, do it. void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { // Check to see if this function uses vector registers, which means we have to // save and restore the VRSAVE register and update it with the regs we use. // // In this case, there will be virtual registers of vector type created // by the scheduler. Detect them now. bool HasVectorVReg = false; for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { HasVectorVReg = true; break; } } if (!HasVectorVReg) return; // nothing to do. // If we have a vector register, we want to emit code into the entry and exit // blocks to save and restore the VRSAVE register. We do this here (instead // of marking all vector instructions as clobbering VRSAVE) for two reasons: // // 1. This (trivially) reduces the load on the register allocator, by not // having to represent the live range of the VRSAVE register. // 2. This (more significantly) allows us to create a temporary virtual // register to hold the saved VRSAVE value, allowing this temporary to be // register allocated, instead of forcing it to be spilled to the stack. // Create two vregs - one to hold the VRSAVE register that is live-in to the // function and one for the value after having bits or'd into it. unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); MachineBasicBlock &EntryBB = *Fn.begin(); DebugLoc dl; // Emit the following code into the entry block: // InVRSAVE = MFVRSAVE // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE // MTVRSAVE UpdatedVRSAVE MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), UpdatedVRSAVE).addReg(InVRSAVE); BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); // Find all return blocks, outputting a restore in each epilog. for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { if (!BB->empty() && BB->back().isReturn()) { IP = BB->end(); --IP; // Skip over all terminator instructions, which are part of the return // sequence. MachineBasicBlock::iterator I2 = IP; while (I2 != BB->begin() && (--I2)->isTerminator()) IP = I2; // Emit: MTVRSAVE InVRSave BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); } } } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { if (!GlobalBaseReg) { const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo(); // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); const Module *M = MF->getFunction()->getParent(); DebugLoc dl; if (PPCLowering->getPointerTy() == MVT::i32) { if (PPCSubTarget->isTargetELF()) { GlobalBaseReg = PPC::R30; if (M->getPICLevel() == PICLevel::Small) { BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); MF->getInfo()->setUsesPICBase(true); } else { BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::UpdateGBR), GlobalBaseReg) .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); MF->getInfo()->setUsesPICBase(true); } } else { GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); } } else { GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); } } return CurDAG->getRegister(GlobalBaseReg, PPCLowering->getPointerTy()).getNode(); } /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; Imm = (short)cast(N)->getZExtValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast(N)->getZExtValue(); else return Imm == (int64_t)cast(N)->getZExtValue(); } static bool isIntS16Immediate(SDValue Op, short &Imm) { return isIntS16Immediate(Op.getNode(), Imm); } /// isInt32Immediate - This method tests to see if the node is a 32-bit constant /// operand. If so Imm will receive the 32-bit value. static bool isInt32Immediate(SDNode *N, unsigned &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { Imm = cast(N)->getZExtValue(); return true; } return false; } /// isInt64Immediate - This method tests to see if the node is a 64-bit constant /// operand. If so Imm will receive the 64-bit value. static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { Imm = cast(N)->getZExtValue(); return true; } return false; } // isInt32Immediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isInt32Immediate(SDValue N, unsigned &Imm) { return isInt32Immediate(N.getNode(), Imm); } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).getNode(), Imm); } SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { SDLoc dl(SN); int FI = cast(N)->getIndex(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; if (SN->hasOneUse()) return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, getSmallIPtrImm(Offset)); return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, getSmallIPtrImm(Offset)); } bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, unsigned &SH, unsigned &MB, unsigned &ME) { // Don't even go down this path for i64, since different logic will be // necessary for rldicl/rldicr/rldimi. if (N->getValueType(0) != MVT::i32) return false; unsigned Shift = 32; unsigned Indeterminant = ~0; // bit mask marking indeterminant results unsigned Opcode = N->getOpcode(); if (N->getNumOperands() != 2 || !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) return false; if (Opcode == ISD::SHL) { // apply shift left to mask if it comes first if (isShiftMask) Mask = Mask << Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu << Shift); } else if (Opcode == ISD::SRL) { // apply shift right to mask if it comes first if (isShiftMask) Mask = Mask >> Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu >> Shift); // adjust for the left rotate Shift = 32 - Shift; } else if (Opcode == ISD::ROTL) { Indeterminant = 0; } else { return false; } // if the mask doesn't intersect any Indeterminant bits if (Mask && !(Mask & Indeterminant)) { SH = Shift & 31; // make sure the mask is still a mask (wrap arounds may not be) return isRunOfOnes(Mask, MB, ME); } return false; } /// SelectBitfieldInsert - turn an or of two masked values into /// the rotate left word immediate then mask insert (rlwimi) instruction. SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDLoc dl(N); APInt LKZ, LKO, RKZ, RKO; CurDAG->computeKnownBits(Op0, LKZ, LKO); CurDAG->computeKnownBits(Op1, RKZ, RKO); unsigned TargetMask = LKZ.getZExtValue(); unsigned InsertMask = RKZ.getZExtValue(); if ((TargetMask | InsertMask) == 0xFFFFFFFF) { unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); unsigned Value, SH = 0; TargetMask = ~TargetMask; InsertMask = ~InsertMask; // If the LHS has a foldable shift and the RHS does not, then swap it to the // RHS so that we can fold the shift into the insert. if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && Op1.getOperand(0).getOpcode() != ISD::SRL) { std::swap(Op0, Op1); std::swap(Op0Opc, Op1Opc); std::swap(TargetMask, InsertMask); } } unsigned MB, ME; if (isRunOfOnes(InsertMask, MB, ME)) { SDValue Tmp1, Tmp2; if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && isInt32Immediate(Op1.getOperand(1), Value)) { Op1 = Op1.getOperand(0); SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value; } if (Op1Opc == ISD::AND) { // The AND mask might not be a constant, and we need to make sure that // if we're going to fold the masking with the insert, all bits not // know to be zero in the mask are known to be one. APInt MKZ, MKO; CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO); bool CanFoldMask = InsertMask == MKO.getZExtValue(); unsigned SHOpc = Op1.getOperand(0).getOpcode(); if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { // Note that Value must be in range here (less than 32) because // otherwise there would not be any bits set in InsertMask. Op1 = Op1.getOperand(0).getOperand(0); SH = (SHOpc == ISD::SHL) ? Value : 32 - Value; } } SH &= 31; SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); } } return nullptr; } // Predict the number of instructions that would be generated by calling // SelectInt64(N). static unsigned SelectInt64CountDirect(int64_t Imm) { // Assume no remaining bits. unsigned Remainder = 0; // Assume no shift required. unsigned Shift = 0; // If it can't be represented as a 32 bit value. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; // If the shifted value fits 32 bits. if (isInt<32>(ImmSh)) { // Go with the shifted value. Imm = ImmSh; } else { // Still stuck with a 64 bit value. Remainder = Imm; Shift = 32; Imm >>= 32; } } // Intermediate operand. unsigned Result = 0; // Handle first 32 bits. unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; // Simple value. if (isInt<16>(Imm)) { // Just the Lo bits. ++Result; } else if (Lo) { // Handle the Hi bits and Lo bits. Result += 2; } else { // Just the Hi bits. ++Result; } // If no shift, we're done. if (!Shift) return Result; // Shift for next step if the upper 32-bits were not zero. if (Imm) ++Result; // Add in the last bits as required. if ((Hi = (Remainder >> 16) & 0xFFFF)) ++Result; if ((Lo = Remainder & 0xFFFF)) ++Result; return Result; } static uint64_t Rot64(uint64_t Imm, unsigned R) { return (Imm << R) | (Imm >> (64 - R)); } static unsigned SelectInt64Count(int64_t Imm) { unsigned Count = SelectInt64CountDirect(Imm); if (Count == 1) return Count; for (unsigned r = 1; r < 63; ++r) { uint64_t RImm = Rot64(Imm, r); unsigned RCount = SelectInt64CountDirect(RImm) + 1; Count = std::min(Count, RCount); // See comments in SelectInt64 for an explanation of the logic below. unsigned LS = findLastSet(RImm); if (LS != r-1) continue; uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); uint64_t RImmWithOnes = RImm | OnesMask; RCount = SelectInt64CountDirect(RImmWithOnes) + 1; Count = std::min(Count, RCount); } return Count; } // Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count // (above) needs to be kept in sync with this function. static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { // Assume no remaining bits. unsigned Remainder = 0; // Assume no shift required. unsigned Shift = 0; // If it can't be represented as a 32 bit value. if (!isInt<32>(Imm)) { Shift = countTrailingZeros(Imm); int64_t ImmSh = static_cast(Imm) >> Shift; // If the shifted value fits 32 bits. if (isInt<32>(ImmSh)) { // Go with the shifted value. Imm = ImmSh; } else { // Still stuck with a 64 bit value. Remainder = Imm; Shift = 32; Imm >>= 32; } } // Intermediate operand. SDNode *Result; // Handle first 32 bits. unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; auto getI32Imm = [CurDAG](unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); }; // Simple value. if (isInt<16>(Imm)) { // Just the Lo bits. Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo)); } else if (Lo) { // Handle the Hi bits. unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); // And Lo bits. Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } else { // Just the Hi bits. Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); } // If no shift, we're done. if (!Shift) return Result; // Shift for next step if the upper 32-bits were not zero. if (Imm) { Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Shift), getI32Imm(63 - Shift)); } // Add in the last bits as required. if ((Hi = (Remainder >> 16) & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Hi)); } if ((Lo = Remainder & 0xFFFF)) { Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0), getI32Imm(Lo)); } return Result; } static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) { unsigned Count = SelectInt64CountDirect(Imm); if (Count == 1) return SelectInt64Direct(CurDAG, dl, Imm); unsigned RMin = 0; int64_t MatImm; unsigned MaskEnd; for (unsigned r = 1; r < 63; ++r) { uint64_t RImm = Rot64(Imm, r); unsigned RCount = SelectInt64CountDirect(RImm) + 1; if (RCount < Count) { Count = RCount; RMin = r; MatImm = RImm; MaskEnd = 63; } // If the immediate to generate has many trailing zeros, it might be // worthwhile to generate a rotated value with too many leading ones // (because that's free with li/lis's sign-extension semantics), and then // mask them off after rotation. unsigned LS = findLastSet(RImm); // We're adding (63-LS) higher-order ones, and we expect to mask them off // after performing the inverse rotation by (64-r). So we need that: // 63-LS == 64-r => LS == r-1 if (LS != r-1) continue; uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); uint64_t RImmWithOnes = RImm | OnesMask; RCount = SelectInt64CountDirect(RImmWithOnes) + 1; if (RCount < Count) { Count = RCount; RMin = r; MatImm = RImmWithOnes; MaskEnd = LS; } } if (!RMin) return SelectInt64Direct(CurDAG, dl, Imm); auto getI32Imm = [CurDAG](unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); }; SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0); return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, getI32Imm(64 - RMin), getI32Imm(MaskEnd)); } // Select a 64-bit constant. static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) { SDLoc dl(N); // Get 64 bit value. int64_t Imm = cast(N)->getZExtValue(); return SelectInt64(CurDAG, dl, Imm); } namespace { class BitPermutationSelector { struct ValueBit { SDValue V; // The bit number in the value, using a convention where bit 0 is the // lowest-order bit. unsigned Idx; enum Kind { ConstZero, Variable } K; ValueBit(SDValue V, unsigned I, Kind K = Variable) : V(V), Idx(I), K(K) {} ValueBit(Kind K = Variable) : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} bool isZero() const { return K == ConstZero; } bool hasValue() const { return K == Variable; } SDValue getValue() const { assert(hasValue() && "Cannot get the value of a constant bit"); return V; } unsigned getValueBitIndex() const { assert(hasValue() && "Cannot get the value bit index of a constant bit"); return Idx; } }; // A bit group has the same underlying value and the same rotate factor. struct BitGroup { SDValue V; unsigned RLAmt; unsigned StartIdx, EndIdx; // This rotation amount assumes that the lower 32 bits of the quantity are // replicated in the high 32 bits by the rotation operator (which is done // by rlwinm and friends in 64-bit mode). bool Repl32; // Did converting to Repl32 == true change the rotation factor? If it did, // it decreased it by 32. bool Repl32CR; // Was this group coalesced after setting Repl32 to true? bool Repl32Coalesced; BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), Repl32Coalesced(false) { DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R << " [" << S << ", " << E << "]\n"); } }; // Information on each (Value, RLAmt) pair (like the number of groups // associated with each) used to choose the lowering method. struct ValueRotInfo { SDValue V; unsigned RLAmt; unsigned NumGroups; unsigned FirstGroupStartIdx; bool Repl32; ValueRotInfo() : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX), Repl32(false) {} // For sorting (in reverse order) by NumGroups, and then by // FirstGroupStartIdx. bool operator < (const ValueRotInfo &Other) const { // We need to sort so that the non-Repl32 come first because, when we're // doing masking, the Repl32 bit groups might be subsumed into the 64-bit // masking operation. if (Repl32 < Other.Repl32) return true; else if (Repl32 > Other.Repl32) return false; else if (NumGroups > Other.NumGroups) return true; else if (NumGroups < Other.NumGroups) return false; else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) return true; return false; } }; // Return true if something interesting was deduced, return false if we're // providing only a generic representation of V (or something else likewise // uninteresting for instruction selection). bool getValueBits(SDValue V, SmallVector &Bits) { switch (V.getOpcode()) { default: break; case ISD::ROTL: if (isa(V.getOperand(1))) { unsigned RotAmt = V.getConstantOperandVal(1); SmallVector LHSBits(Bits.size()); getValueBits(V.getOperand(0), LHSBits); for (unsigned i = 0; i < Bits.size(); ++i) Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt]; return true; } break; case ISD::SHL: if (isa(V.getOperand(1))) { unsigned ShiftAmt = V.getConstantOperandVal(1); SmallVector LHSBits(Bits.size()); getValueBits(V.getOperand(0), LHSBits); for (unsigned i = ShiftAmt; i < Bits.size(); ++i) Bits[i] = LHSBits[i - ShiftAmt]; for (unsigned i = 0; i < ShiftAmt; ++i) Bits[i] = ValueBit(ValueBit::ConstZero); return true; } break; case ISD::SRL: if (isa(V.getOperand(1))) { unsigned ShiftAmt = V.getConstantOperandVal(1); SmallVector LHSBits(Bits.size()); getValueBits(V.getOperand(0), LHSBits); for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i) Bits[i] = LHSBits[i + ShiftAmt]; for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i) Bits[i] = ValueBit(ValueBit::ConstZero); return true; } break; case ISD::AND: if (isa(V.getOperand(1))) { uint64_t Mask = V.getConstantOperandVal(1); SmallVector LHSBits(Bits.size()); bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits); for (unsigned i = 0; i < Bits.size(); ++i) if (((Mask >> i) & 1) == 1) Bits[i] = LHSBits[i]; else Bits[i] = ValueBit(ValueBit::ConstZero); // Mark this as interesting, only if the LHS was also interesting. This // prevents the overall procedure from matching a single immediate 'and' // (which is non-optimal because such an and might be folded with other // things if we don't select it here). return LHSTrivial; } break; case ISD::OR: { SmallVector LHSBits(Bits.size()), RHSBits(Bits.size()); getValueBits(V.getOperand(0), LHSBits); getValueBits(V.getOperand(1), RHSBits); bool AllDisjoint = true; for (unsigned i = 0; i < Bits.size(); ++i) if (LHSBits[i].isZero()) Bits[i] = RHSBits[i]; else if (RHSBits[i].isZero()) Bits[i] = LHSBits[i]; else { AllDisjoint = false; break; } if (!AllDisjoint) break; return true; } } for (unsigned i = 0; i < Bits.size(); ++i) Bits[i] = ValueBit(V, i); return false; } // For each value (except the constant ones), compute the left-rotate amount // to get it from its original to final position. void computeRotationAmounts() { HasZeros = false; RLAmt.resize(Bits.size()); for (unsigned i = 0; i < Bits.size(); ++i) if (Bits[i].hasValue()) { unsigned VBI = Bits[i].getValueBitIndex(); if (i >= VBI) RLAmt[i] = i - VBI; else RLAmt[i] = Bits.size() - (VBI - i); } else if (Bits[i].isZero()) { HasZeros = true; RLAmt[i] = UINT32_MAX; } else { llvm_unreachable("Unknown value bit type"); } } // Collect groups of consecutive bits with the same underlying value and // rotation factor. If we're doing late masking, we ignore zeros, otherwise // they break up groups. void collectBitGroups(bool LateMask) { BitGroups.clear(); unsigned LastRLAmt = RLAmt[0]; SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); unsigned LastGroupStartIdx = 0; for (unsigned i = 1; i < Bits.size(); ++i) { unsigned ThisRLAmt = RLAmt[i]; SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); if (LateMask && !ThisValue) { ThisValue = LastValue; ThisRLAmt = LastRLAmt; // If we're doing late masking, then the first bit group always starts // at zero (even if the first bits were zero). if (BitGroups.empty()) LastGroupStartIdx = 0; } // If this bit has the same underlying value and the same rotate factor as // the last one, then they're part of the same group. if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) continue; if (LastValue.getNode()) BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, i-1)); LastRLAmt = ThisRLAmt; LastValue = ThisValue; LastGroupStartIdx = i; } if (LastValue.getNode()) BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, Bits.size()-1)); if (BitGroups.empty()) return; // We might be able to combine the first and last groups. if (BitGroups.size() > 1) { // If the first and last groups are the same, then remove the first group // in favor of the last group, making the ending index of the last group // equal to the ending index of the to-be-removed first group. if (BitGroups[0].StartIdx == 0 && BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && BitGroups[0].V == BitGroups[BitGroups.size()-1].V && BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { DEBUG(dbgs() << "\tcombining final bit group with inital one\n"); BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; BitGroups.erase(BitGroups.begin()); } } } // Take all (SDValue, RLAmt) pairs and sort them by the number of groups // associated with each. If there is a degeneracy, pick the one that occurs // first (in the final value). void collectValueRotInfo() { ValueRots.clear(); for (auto &BG : BitGroups) { unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; VRI.V = BG.V; VRI.RLAmt = BG.RLAmt; VRI.Repl32 = BG.Repl32; VRI.NumGroups += 1; VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); } // Now that we've collected the various ValueRotInfo instances, we need to // sort them. ValueRotsVec.clear(); for (auto &I : ValueRots) { ValueRotsVec.push_back(I.second); } std::sort(ValueRotsVec.begin(), ValueRotsVec.end()); } // In 64-bit mode, rlwinm and friends have a rotation operator that // replicates the low-order 32 bits into the high-order 32-bits. The mask // indices of these instructions can only be in the lower 32 bits, so they // can only represent some 64-bit bit groups. However, when they can be used, // the 32-bit replication can be used to represent, as a single bit group, // otherwise separate bit groups. We'll convert to replicated-32-bit bit // groups when possible. Returns true if any of the bit groups were // converted. void assignRepl32BitGroups() { // If we have bits like this: // // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 // Groups: | RLAmt = 8 | RLAmt = 40 | // // But, making use of a 32-bit operation that replicates the low-order 32 // bits into the high-order 32 bits, this can be one bit group with a RLAmt // of 8. auto IsAllLow32 = [this](BitGroup & BG) { if (BG.StartIdx <= BG.EndIdx) { for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } } else { for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } for (unsigned i = 0; i <= BG.EndIdx; ++i) { if (!Bits[i].hasValue()) continue; if (Bits[i].getValueBitIndex() >= 32) return false; } } return true; }; for (auto &BG : BitGroups) { if (BG.StartIdx < 32 && BG.EndIdx < 32) { if (IsAllLow32(BG)) { if (BG.RLAmt >= 32) { BG.RLAmt -= 32; BG.Repl32CR = true; } BG.Repl32 = true; DEBUG(dbgs() << "\t32-bit replicated bit group for " << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n"); } } } // Now walk through the bit groups, consolidating where possible. for (auto I = BitGroups.begin(); I != BitGroups.end();) { // We might want to remove this bit group by merging it with the previous // group (which might be the ending group). auto IP = (I == BitGroups.begin()) ? std::prev(BitGroups.end()) : std::prev(I); if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with group with range [" << IP->StartIdx << ", " << IP->EndIdx << "]\n"); IP->EndIdx = I->EndIdx; IP->Repl32CR = IP->Repl32CR || I->Repl32CR; IP->Repl32Coalesced = true; I = BitGroups.erase(I); continue; } else { // There is a special case worth handling: If there is a single group // covering the entire upper 32 bits, and it can be merged with both // the next and previous groups (which might be the same group), then // do so. If it is the same group (so there will be only one group in // total), then we need to reverse the order of the range so that it // covers the entire 64 bits. if (I->StartIdx == 32 && I->EndIdx == 63) { assert(std::next(I) == BitGroups.end() && "bit group ends at index 63 but there is another?"); auto IN = BitGroups.begin(); if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && IsAllLow32(*I)) { DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" << I->StartIdx << ", " << I->EndIdx << "] with 32-bit replicated groups with ranges [" << IP->StartIdx << ", " << IP->EndIdx << "] and [" << IN->StartIdx << ", " << IN->EndIdx << "]\n"); if (IP == IN) { // There is only one other group; change it to cover the whole // range (backward, so that it can still be Repl32 but cover the // whole 64-bit range). IP->StartIdx = 31; IP->EndIdx = 30; IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; IP->Repl32Coalesced = true; I = BitGroups.erase(I); } else { // There are two separate groups, one before this group and one // after us (at the beginning). We're going to remove this group, // but also the group at the very beginning. IP->EndIdx = IN->EndIdx; IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; IP->Repl32Coalesced = true; I = BitGroups.erase(I); BitGroups.erase(BitGroups.begin()); } // This must be the last group in the vector (and we might have // just invalidated the iterator above), so break here. break; } } } ++I; } } SDValue getI32Imm(unsigned Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } uint64_t getZerosMask() { uint64_t Mask = 0; for (unsigned i = 0; i < Bits.size(); ++i) { if (Bits[i].hasValue()) continue; Mask |= (UINT64_C(1) << i); } return ~Mask; } // Depending on the number of groups for a particular value, it might be // better to rotate, mask explicitly (using andi/andis), and then or the // result. Select this part of the result first. void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) { if (BPermRewriterNoMasking) return; for (ValueRotInfo &VRI : ValueRotsVec) { unsigned Mask = 0; for (unsigned i = 0; i < Bits.size(); ++i) { if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) continue; if (RLAmt[i] != VRI.RLAmt) continue; Mask |= (1u << i); } // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask for value bit groups"); bool NeedsRotate = VRI.RLAmt != 0; // We're trying to minimize the number of instructions. If we have one // group, using one of andi/andis can break even. If we have three // groups, we can use both andi and andis and break even (to use both // andi and andis we also need to or the results together). We need four // groups if we also need to rotate. To use andi/andis we need to do more // than break even because rotate-and-mask instructions tend to be easier // to schedule. // FIXME: We've biased here against using andi/andis, which is right for // POWER cores, but not optimal everywhere. For example, on the A2, // andi/andis have single-cycle latency whereas the rotate-and-mask // instructions take two cycles, and it would be better to bias toward // andi/andis in break-even cases. unsigned NumAndInsts = (unsigned) NeedsRotate + (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0) + (unsigned) (bool) Res; DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << ":" << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << VRI.NumGroups << "\n"); if (NumAndInsts >= VRI.NumGroups) continue; DEBUG(dbgs() << "\t\t\t\tusing masking\n"); if (InstCnt) *InstCnt += NumAndInsts; SDValue VRot; if (VRI.RLAmt) { SDValue Ops[] = { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) }; VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { VRot = VRI.V; } SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, VRot, getI32Imm(ANDIMask)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, VRot, getI32Imm(ANDISMask)), 0); SDValue TotalVal; if (!ANDIVal) TotalVal = ANDISVal; else if (!ANDISVal) TotalVal = ANDIVal; else TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, ANDIVal, ANDISVal), 0); if (!Res) Res = TotalVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, Res, TotalVal), 0); // Now, remove all groups with this underlying value and rotation // factor. for (auto I = BitGroups.begin(); I != BitGroups.end();) { if (I->V == VRI.V && I->RLAmt == VRI.RLAmt) I = BitGroups.erase(I); else ++I; } } } // Instruction selection for the 32-bit case. SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { SDLoc dl(N); SDValue Res; if (InstCnt) *InstCnt = 0; // Take care of cases that should use andi/andis first. SelectAndParts32(dl, Res, InstCnt); // If we've not yet selected a 'starting' instruction, and we have no zeros // to fill in, select the (Value, RLAmt) with the highest priority (largest // number of groups), and start with this rotated value. if ((!HasZeros || LateMask) && !Res) { ValueRotInfo &VRI = ValueRotsVec[0]; if (VRI.RLAmt) { if (InstCnt) *InstCnt += 1; SDValue Ops[] = { VRI.V, getI32Imm(VRI.RLAmt), getI32Imm(0), getI32Imm(31) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { Res = VRI.V; } // Now, remove all groups with this underlying value and rotation factor. for (auto I = BitGroups.begin(); I != BitGroups.end();) { if (I->V == VRI.V && I->RLAmt == VRI.RLAmt) I = BitGroups.erase(I); else ++I; } } if (InstCnt) *InstCnt += BitGroups.size(); // Insert the other groups (one at a time). for (auto &BG : BitGroups) { if (!Res) { SDValue Ops[] = { BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1), getI32Imm(Bits.size() - BG.StartIdx - 1) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); } else { SDValue Ops[] = { Res, BG.V, getI32Imm(BG.RLAmt), getI32Imm(Bits.size() - BG.EndIdx - 1), getI32Imm(Bits.size() - BG.StartIdx - 1) }; Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); } } if (LateMask) { unsigned Mask = (unsigned) getZerosMask(); unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in zeros mask?"); if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32, Res, getI32Imm(ANDIMask)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32, Res, getI32Imm(ANDISMask)), 0); if (!ANDIVal) Res = ANDISVal; else if (!ANDISVal) Res = ANDIVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, ANDIVal, ANDISVal), 0); } return Res.getNode(); } unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, bool IsIns) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (Repl32) return 1; if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || InstMaskEnd == 63 - RLAmt) return 1; return 2; } // For 64-bit values, not all combinations of rotates and masks are // available. Produce one if it is available. SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, unsigned *InstCnt = nullptr) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (InstCnt) *InstCnt += 1; if (Repl32) { // This rotation amount assumes that the lower 32 bits of the quantity // are replicated in the high 32 bits by the rotation operator (which is // done by rlwinm and friends). assert(InstMaskStart >= 32 && "Mask cannot start out of range"); assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); SDValue Ops[] = { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32), getI32Imm(InstMaskEnd - 32) }; return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63) { SDValue Ops[] = { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); } if (InstMaskStart == 0) { SDValue Ops[] = { V, getI32Imm(RLAmt), getI32Imm(InstMaskEnd) }; return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63 - RLAmt) { SDValue Ops[] = { V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); } // We cannot do this with a single instruction, so we'll use two. The // problem is that we're not free to choose both a rotation amount and mask // start and end independently. We can choose an arbitrary mask start and // end, but then the rotation amount is fixed. Rotation, however, can be // inverted, and so by applying an "inverse" rotation first, we can get the // desired result. if (InstCnt) *InstCnt += 1; // The rotation mask for the second instruction must be MaskStart. unsigned RLAmt2 = MaskStart; // The first instruction must rotate V so that the overall rotation amount // is RLAmt. unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; if (RLAmt1) V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); } // For 64-bit values, not all combinations of rotates and masks are // available. Produce a rotate-mask-and-insert if one is available. SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32, unsigned MaskStart, unsigned MaskEnd, unsigned *InstCnt = nullptr) { // In the notation used by the instructions, 'start' and 'end' are reversed // because bits are counted from high to low order. unsigned InstMaskStart = 64 - MaskEnd - 1, InstMaskEnd = 64 - MaskStart - 1; if (InstCnt) *InstCnt += 1; if (Repl32) { // This rotation amount assumes that the lower 32 bits of the quantity // are replicated in the high 32 bits by the rotation operator (which is // done by rlwinm and friends). assert(InstMaskStart >= 32 && "Mask cannot start out of range"); assert(InstMaskEnd >= 32 && "Mask cannot end out of range"); SDValue Ops[] = { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart - 32), getI32Imm(InstMaskEnd - 32) }; return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, Ops), 0); } if (InstMaskEnd == 63 - RLAmt) { SDValue Ops[] = { Base, V, getI32Imm(RLAmt), getI32Imm(InstMaskStart) }; return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); } // We cannot do this with a single instruction, so we'll use two. The // problem is that we're not free to choose both a rotation amount and mask // start and end independently. We can choose an arbitrary mask start and // end, but then the rotation amount is fixed. Rotation, however, can be // inverted, and so by applying an "inverse" rotation first, we can get the // desired result. if (InstCnt) *InstCnt += 1; // The rotation mask for the second instruction must be MaskStart. unsigned RLAmt2 = MaskStart; // The first instruction must rotate V so that the overall rotation amount // is RLAmt. unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; if (RLAmt1) V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); } void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) { if (BPermRewriterNoMasking) return; // The idea here is the same as in the 32-bit version, but with additional // complications from the fact that Repl32 might be true. Because we // aggressively convert bit groups to Repl32 form (which, for small // rotation factors, involves no other change), and then coalesce, it might // be the case that a single 64-bit masking operation could handle both // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 // form allowed coalescing, then we must use a 32-bit rotaton in order to // completely capture the new combined bit group. for (ValueRotInfo &VRI : ValueRotsVec) { uint64_t Mask = 0; // We need to add to the mask all bits from the associated bit groups. // If Repl32 is false, we need to add bits from bit groups that have // Repl32 true, but are trivially convertable to Repl32 false. Such a // group is trivially convertable if it overlaps only with the lower 32 // bits, and the group has not been coalesced. auto MatchingBG = [VRI](BitGroup &BG) { if (VRI.V != BG.V) return false; unsigned EffRLAmt = BG.RLAmt; if (!VRI.Repl32 && BG.Repl32) { if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && !BG.Repl32Coalesced) { if (BG.Repl32CR) EffRLAmt += 32; } else { return false; } } else if (VRI.Repl32 != BG.Repl32) { return false; } if (VRI.RLAmt != EffRLAmt) return false; return true; }; for (auto &BG : BitGroups) { if (!MatchingBG(BG)) continue; if (BG.StartIdx <= BG.EndIdx) { for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) Mask |= (UINT64_C(1) << i); } else { for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) Mask |= (UINT64_C(1) << i); for (unsigned i = 0; i <= BG.EndIdx; ++i) Mask |= (UINT64_C(1) << i); } } // We can use the 32-bit andi/andis technique if the mask does not // require any higher-order bits. This can save an instruction compared // to always using the general 64-bit technique. bool Use32BitInsts = isUInt<32>(Mask); // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = (Mask >> 16) & UINT16_MAX; bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); unsigned NumAndInsts = (unsigned) NeedsRotate + (unsigned) (bool) Res; if (Use32BitInsts) NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); else NumAndInsts += SelectInt64Count(Mask) + /* and */ 1; unsigned NumRLInsts = 0; bool FirstBG = true; for (auto &BG : BitGroups) { if (!MatchingBG(BG)) continue; NumRLInsts += SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, !FirstBG); FirstBG = false; } DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") << "\n\t\t\tisel using masking: " << NumAndInsts << " using rotates: " << NumRLInsts << "\n"); // When we'd use andi/andis, we bias toward using the rotates (andi only // has a record form, and is cracked on POWER cores). However, when using // general 64-bit constant formation, bias toward the constant form, // because that exposes more opportunities for CSE. if (NumAndInsts > NumRLInsts) continue; if (Use32BitInsts && NumAndInsts == NumRLInsts) continue; DEBUG(dbgs() << "\t\t\t\tusing masking\n"); if (InstCnt) *InstCnt += NumAndInsts; SDValue VRot; // We actually need to generate a rotation if we have a non-zero rotation // factor or, in the Repl32 case, if we care about any of the // higher-order replicated bits. In the latter case, we generate a mask // backward so that it actually includes the entire 64 bits. if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); else VRot = VRI.V; SDValue TotalVal; if (Use32BitInsts) { assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value"); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, VRot, getI32Imm(ANDIMask)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, VRot, getI32Imm(ANDISMask)), 0); if (!ANDIVal) TotalVal = ANDISVal; else if (!ANDISVal) TotalVal = ANDIVal; else TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, ANDIVal, ANDISVal), 0); } else { TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); TotalVal = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, VRot, TotalVal), 0); } if (!Res) Res = TotalVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, Res, TotalVal), 0); // Now, remove all groups with this underlying value and rotation // factor. for (auto I = BitGroups.begin(); I != BitGroups.end();) { if (MatchingBG(*I)) I = BitGroups.erase(I); else ++I; } } } // Instruction selection for the 64-bit case. SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { SDLoc dl(N); SDValue Res; if (InstCnt) *InstCnt = 0; // Take care of cases that should use andi/andis first. SelectAndParts64(dl, Res, InstCnt); // If we've not yet selected a 'starting' instruction, and we have no zeros // to fill in, select the (Value, RLAmt) with the highest priority (largest // number of groups), and start with this rotated value. if ((!HasZeros || LateMask) && !Res) { // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 // groups will come first, and so the VRI representing the largest number // of groups might not be first (it might be the first Repl32 groups). unsigned MaxGroupsIdx = 0; if (!ValueRotsVec[0].Repl32) { for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) if (ValueRotsVec[i].Repl32) { if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) MaxGroupsIdx = i; break; } } ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; bool NeedsRotate = false; if (VRI.RLAmt) { NeedsRotate = true; } else if (VRI.Repl32) { for (auto &BG : BitGroups) { if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || BG.Repl32 != VRI.Repl32) continue; // We don't need a rotate if the bit group is confined to the lower // 32 bits. if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) continue; NeedsRotate = true; break; } } if (NeedsRotate) Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, InstCnt); else Res = VRI.V; // Now, remove all groups with this underlying value and rotation factor. if (Res) for (auto I = BitGroups.begin(); I != BitGroups.end();) { if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32) I = BitGroups.erase(I); else ++I; } } // Because 64-bit rotates are more flexible than inserts, we might have a // preference regarding which one we do first (to save one instruction). if (!Res) for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, false) < SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, true)) { if (I != BitGroups.begin()) { BitGroup BG = *I; BitGroups.erase(I); BitGroups.insert(BitGroups.begin(), BG); } break; } } // Insert the other groups (one at a time). for (auto &BG : BitGroups) { if (!Res) Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, InstCnt); else Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, InstCnt); } if (LateMask) { uint64_t Mask = getZerosMask(); // We can use the 32-bit andi/andis technique if the mask does not // require any higher-order bits. This can save an instruction compared // to always using the general 64-bit technique. bool Use32BitInsts = isUInt<32>(Mask); // Compute the masks for andi/andis that would be necessary. unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = (Mask >> 16) & UINT16_MAX; if (Use32BitInsts) { assert((ANDIMask != 0 || ANDISMask != 0) && "No set bits in mask when using 32-bit ands for 64-bit value"); if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + (unsigned) (ANDIMask != 0 && ANDISMask != 0); SDValue ANDIVal, ANDISVal; if (ANDIMask != 0) ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64, Res, getI32Imm(ANDIMask)), 0); if (ANDISMask != 0) ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64, Res, getI32Imm(ANDISMask)), 0); if (!ANDIVal) Res = ANDISVal; else if (!ANDISVal) Res = ANDIVal; else Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, ANDIVal, ANDISVal), 0); } else { if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1; SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0); Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, Res, MaskVal), 0); } } return Res.getNode(); } SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { // Fill in BitGroups. collectBitGroups(LateMask); if (BitGroups.empty()) return nullptr; // For 64-bit values, figure out when we can use 32-bit instructions. if (Bits.size() == 64) assignRepl32BitGroups(); // Fill in ValueRotsVec. collectValueRotInfo(); if (Bits.size() == 32) { return Select32(N, LateMask, InstCnt); } else { assert(Bits.size() == 64 && "Not 64 bits here?"); return Select64(N, LateMask, InstCnt); } return nullptr; } SmallVector Bits; bool HasZeros; SmallVector RLAmt; SmallVector BitGroups; DenseMap, ValueRotInfo> ValueRots; SmallVector ValueRotsVec; SelectionDAG *CurDAG; public: BitPermutationSelector(SelectionDAG *DAG) : CurDAG(DAG) {} // Here we try to match complex bit permutations into a set of // rotate-and-shift/shift/and/or instructions, using a set of heuristics // known to produce optimial code for common cases (like i32 byte swapping). SDNode *Select(SDNode *N) { Bits.resize(N->getValueType(0).getSizeInBits()); if (!getValueBits(SDValue(N, 0), Bits)) return nullptr; DEBUG(dbgs() << "Considering bit-permutation-based instruction" " selection for: "); DEBUG(N->dump(CurDAG)); // Fill it RLAmt and set HasZeros. computeRotationAmounts(); if (!HasZeros) return Select(N, false); // We currently have two techniques for handling results with zeros: early // masking (the default) and late masking. Late masking is sometimes more // efficient, but because the structure of the bit groups is different, it // is hard to tell without generating both and comparing the results. With // late masking, we ignore zeros in the resulting value when inserting each // set of bit groups, and then mask in the zeros at the end. With early // masking, we only insert the non-zero parts of the result at every step. unsigned InstCnt, InstCntLateMask; DEBUG(dbgs() << "\tEarly masking:\n"); SDNode *RN = Select(N, false, &InstCnt); DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); DEBUG(dbgs() << "\tLate masking:\n"); SDNode *RNLM = Select(N, true, &InstCntLateMask); DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask << " instructions\n"); if (InstCnt <= InstCntLateMask) { DEBUG(dbgs() << "\tUsing early-masking for isel\n"); return RN; } DEBUG(dbgs() << "\tUsing late-masking for isel\n"); return RNLM; } }; } // anonymous namespace SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) { if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return nullptr; if (!UseBitPermRewriter) return nullptr; switch (N->getOpcode()) { default: break; case ISD::ROTL: case ISD::SHL: case ISD::SRL: case ISD::AND: case ISD::OR: { BitPermutationSelector BPS(CurDAG); return BPS.Select(N); } } return nullptr; } /// SelectCC - Select a comparison of the specified values with the specified /// condition code, returning the CR# of the expression. SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl) { // Always select the LHS. unsigned Opc; if (LHS.getValueType() == MVT::i32) { unsigned Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt32Immediate(RHS, Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>((int)Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpw cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmplwi cr0,r0,0x5678 // beq cr0,L6 SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, getI32Imm(Imm >> 16)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, getI32Imm(Imm & 0xFFFF)), 0); } Opc = PPC::CMPLW; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0); Opc = PPC::CMPLW; } else { short SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, getI32Imm((int)SImm & 0xFFFF)), 0); Opc = PPC::CMPW; } } else if (LHS.getValueType() == MVT::i64) { uint64_t Imm; if (CC == ISD::SETEQ || CC == ISD::SETNE) { if (isInt64Immediate(RHS.getNode(), Imm)) { // SETEQ/SETNE comparison with 16-bit immediate, fold it. if (isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF)), 0); // If this is a 16-bit signed immediate, fold it. if (isInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI32Imm(Imm & 0xFFFF)), 0); // For non-equality comparisons, the default code would materialize the // constant, then compare against it, like this: // lis r2, 4660 // ori r2, r2, 22136 // cmpd cr0, r3, r2 // Since we are just comparing for equality, we can emit this instead: // xoris r0,r3,0x1234 // cmpldi cr0,r0,0x5678 // beq cr0,L6 if (isUInt<32>(Imm)) { SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, getI64Imm(Imm >> 16)), 0); return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, getI64Imm(Imm & 0xFFFF)), 0); } } Opc = PPC::CMPLD; } else if (ISD::isUnsignedIntSetCC(CC)) { if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, getI64Imm(Imm & 0xFFFF)), 0); Opc = PPC::CMPLD; } else { short SImm; if (isIntS16Immediate(RHS, SImm)) return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, getI64Imm(SImm & 0xFFFF)), 0); Opc = PPC::CMPD; } } else if (LHS.getValueType() == MVT::f32) { Opc = PPC::FCMPUS; } else { assert(LHS.getValueType() == MVT::f64 && "Unknown vt!"); Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; } return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); } static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) { switch (CC) { case ISD::SETUEQ: case ISD::SETONE: case ISD::SETOLE: case ISD::SETOGE: llvm_unreachable("Should be lowered by legalize!"); default: llvm_unreachable("Unknown condition!"); case ISD::SETOEQ: case ISD::SETEQ: return PPC::PRED_EQ; case ISD::SETUNE: case ISD::SETNE: return PPC::PRED_NE; case ISD::SETOLT: case ISD::SETLT: return PPC::PRED_LT; case ISD::SETULE: case ISD::SETLE: return PPC::PRED_LE; case ISD::SETOGT: case ISD::SETGT: return PPC::PRED_GT; case ISD::SETUGE: case ISD::SETGE: return PPC::PRED_GE; case ISD::SETO: return PPC::PRED_NU; case ISD::SETUO: return PPC::PRED_UN; // These two are invalid for floating point. Assume we have int. case ISD::SETULT: return PPC::PRED_LT; case ISD::SETUGT: return PPC::PRED_GT; } } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { Invert = false; switch (CC) { default: llvm_unreachable("Unknown condition!"); case ISD::SETOLT: case ISD::SETLT: return 0; // Bit #0 = SETOLT case ISD::SETOGT: case ISD::SETGT: return 1; // Bit #1 = SETOGT case ISD::SETOEQ: case ISD::SETEQ: return 2; // Bit #2 = SETOEQ case ISD::SETUO: return 3; // Bit #3 = SETUO case ISD::SETUGE: case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE case ISD::SETULE: case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE case ISD::SETUNE: case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO case ISD::SETUEQ: case ISD::SETOGE: case ISD::SETOLE: case ISD::SETONE: llvm_unreachable("Invalid branch code: should be expanded by legalize"); // These are invalid for floating point. Assume integer. case ISD::SETULT: return 0; case ISD::SETUGT: return 1; } } // getVCmpInst: return the vector compare instruction for the specified // vector type and condition code. Since this is for altivec specific code, // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, bool HasVSX, bool &Swap, bool &Negate) { Swap = false; Negate = false; if (VecVT.isFloatingPoint()) { /* Handle some cases by swapping input operands. */ switch (CC) { case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; default: break; } /* Handle some cases by negating the result. */ switch (CC) { case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; default: break; } /* We have instructions implementing the remaining cases. */ switch (CC) { case ISD::SETEQ: case ISD::SETOEQ: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPEQDP; break; case ISD::SETGT: case ISD::SETOGT: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGTDP; break; case ISD::SETGE: case ISD::SETOGE: if (VecVT == MVT::v4f32) return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; else if (VecVT == MVT::v2f64) return PPC::XVCMPGEDP; break; default: break; } llvm_unreachable("Invalid floating-point vector compare condition"); } else { /* Handle some cases by swapping input operands. */ switch (CC) { case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; default: break; } /* Handle some cases by negating the result. */ switch (CC) { case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; default: break; } /* We have instructions implementing the remaining cases. */ switch (CC) { case ISD::SETEQ: case ISD::SETUEQ: if (VecVT == MVT::v16i8) return PPC::VCMPEQUB; else if (VecVT == MVT::v8i16) return PPC::VCMPEQUH; else if (VecVT == MVT::v4i32) return PPC::VCMPEQUW; else if (VecVT == MVT::v2i64) return PPC::VCMPEQUD; break; case ISD::SETGT: if (VecVT == MVT::v16i8) return PPC::VCMPGTSB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTSH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTSW; else if (VecVT == MVT::v2i64) return PPC::VCMPGTSD; break; case ISD::SETUGT: if (VecVT == MVT::v16i8) return PPC::VCMPGTUB; else if (VecVT == MVT::v8i16) return PPC::VCMPGTUH; else if (VecVT == MVT::v4i32) return PPC::VCMPGTUW; else if (VecVT == MVT::v2i64) return PPC::VCMPGTUD; break; default: break; } llvm_unreachable("Invalid integer vector compare condition"); } } SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) { SDLoc dl(N); unsigned Imm; ISD::CondCode CC = cast(N->getOperand(2))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); if (!PPCSubTarget->useCRBits() && isInt32Immediate(N->getOperand(1), Imm)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (Imm == 0) { SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: { Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETNE: { if (isPPC64) break; SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U)), 0); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); } case ISD::SETLT: { SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETGT: { SDValue T = SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } } } else if (Imm == ~0U) { // setcc op, -1 SDValue Op = N->getOperand(0); switch (CC) { default: break; case ISD::SETEQ: if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(1)), 0); return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(CurDAG->getMachineNode(PPC::LI, dl, MVT::i32, getI32Imm(0)), 0), Op.getValue(1)); case ISD::SETNE: { if (isPPC64) break; Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, Op, getI32Imm(~0U)); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, SDValue(AD, 1)); } case ISD::SETLT: { SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, getI32Imm(1)), 0); SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, Op), 0); SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } case ISD::SETGT: { SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) }; Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1)); } } } } SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // Altivec Vector compare instructions do not set any CR register by default and // vector compare operations return the same type as the operands. if (LHS.getValueType().isVector()) { if (PPCSubTarget->hasQPX()) return nullptr; EVT VecVT = LHS.getValueType(); bool Swap, Negate; unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC, PPCSubTarget->hasVSX(), Swap, Negate); if (Swap) std::swap(LHS, RHS); if (Negate) { SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0); return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, VecVT, VCmp, VCmp); } return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS); } if (PPCSubTarget->useCRBits()) return nullptr; bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); SDValue CCReg = SelectCC(LHS, RHS, CC, dl); SDValue IntCR; // Force the ccreg into CR7. SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); SDValue InFlag(nullptr, 0); // Null incoming flag value. CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, InFlag).getValue(1); IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, CCReg), 0); SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31), getI32Imm(31), getI32Imm(31) }; if (!Inv) return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); // Get the specified bit. SDValue Tmp = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1)); } SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { // Transfer memoperands. MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast(N)->getMemOperand(); cast(Result)->setMemRefs(MemOp, MemOp + 1); return Result; } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDNode *PPCDAGToDAGISel::Select(SDNode *N) { SDLoc dl(N); if (N->isMachineOpcode()) { N->setNodeId(-1); return nullptr; // Already selected. } // In case any misguided DAG-level optimizations form an ADD with a // TargetConstant operand, crash here instead of miscompiling (by selecting // an r+r add instead of some kind of r+i add). if (N->getOpcode() == ISD::ADD && N->getOperand(1).getOpcode() == ISD::TargetConstant) llvm_unreachable("Invalid ADD with TargetConstant operand"); // Try matching complex bit permutations before doing anything else. if (SDNode *NN = SelectBitPermutation(N)) return NN; switch (N->getOpcode()) { default: break; case ISD::Constant: { if (N->getValueType(0) == MVT::i64) return SelectInt64(CurDAG, N); break; } case ISD::SETCC: { SDNode *SN = SelectSETCC(N); if (SN) return SN; break; } case PPCISD::GlobalBaseReg: return getGlobalBaseReg(); case ISD::FrameIndex: return getFrameIndex(N, N); case PPCISD::MFOCRF: { SDValue InFlag = N->getOperand(1); return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, N->getOperand(0), InFlag); } case PPCISD::READ_TIME_BASE: { return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, MVT::Other, N->getOperand(0)); } case PPCISD::SRA_ADDZE: { SDValue N0 = N->getOperand(0); SDValue ShiftAmt = CurDAG->getTargetConstant(*cast(N->getOperand(1))-> getConstantIntValue(), N->getValueType(0)); if (N->getValueType(0) == MVT::i64) { SDNode *Op = CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, N0, ShiftAmt); return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), SDValue(Op, 1)); } else { assert(N->getValueType(0) == MVT::i32 && "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); SDNode *Op = CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, N0, ShiftAmt); return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), SDValue(Op, 1)); } } case ISD::LOAD: { // Handle preincrement loads. LoadSDNode *LD = cast(N); EVT LoadedVT = LD->getMemoryVT(); // Normal loads are handled by code generated from the .td file. if (LD->getAddressingMode() != ISD::PRE_INC) break; SDValue Offset = LD->getOffset(); if (Offset.getOpcode() == ISD::TargetConstant || Offset.getOpcode() == ISD::TargetGlobalAddress) { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::f64: Opcode = PPC::LFDU; break; case MVT::f32: Opcode = PPC::LFSU; break; case MVT::i32: Opcode = PPC::LWZU; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDU; break; case MVT::i32: Opcode = PPC::LWZU8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZU8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Offset, Base, Chain }; return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), PPCLowering->getPointerTy(), MVT::Other, Ops)); } else { unsigned Opcode; bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; if (LD->getValueType(0) != MVT::i64) { // Handle PPC32 integer and normal FP loads. assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX case MVT::f64: Opcode = PPC::LFDUX; break; case MVT::f32: Opcode = PPC::LFSUX; break; case MVT::i32: Opcode = PPC::LWZUX; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX; break; } } else { assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && "Invalid sext update load"); switch (LoadedVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Invalid PPC load type!"); case MVT::i64: Opcode = PPC::LDUX; break; case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break; case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; case MVT::i1: case MVT::i8: Opcode = PPC::LBZUX8; break; } } SDValue Chain = LD->getChain(); SDValue Base = LD->getBasePtr(); SDValue Ops[] = { Base, Offset, Chain }; return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0), PPCLowering->getPointerTy(), MVT::Other, Ops)); } } case ISD::AND: { unsigned Imm, Imm2, SH, MB, ME; uint64_t Imm64; // If this is an and of a value rotated between 0 and 31 bits and then and'd // with a mask, emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) { SDValue Val = N->getOperand(0).getOperand(0); SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // If this is just a masked value where the input is not handled above, and // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm if (isInt32Immediate(N->getOperand(1), Imm) && isRunOfOnes(Imm, MB, ME) && N->getOperand(0).getOpcode() != ISD::ROTL) { SDValue Val = N->getOperand(0); SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // If this is a 64-bit zero-extension mask, emit rldicl. if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) && isMask_64(Imm64)) { SDValue Val = N->getOperand(0); MB = 64 - countTrailingOnes(Imm64); SH = 0; // If the operand is a logical right shift, we can fold it into this // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) // for n <= mb. The right shift is really a left rotate followed by a // mask, and this mask is a more-restrictive sub-mask of the mask implied // by the shift. if (Val.getOpcode() == ISD::SRL && isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { assert(Imm < 64 && "Illegal shift amount"); Val = Val.getOperand(0); SH = 64 - Imm; } SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB) }; return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); } // AND X, 0 -> 0, not "rlwinm 32". if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) { ReplaceUses(SDValue(N, 0), N->getOperand(1)); return nullptr; } // ISD::OR doesn't get all the bitfield insertion fun. // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert if (isInt32Immediate(N->getOperand(1), Imm) && N->getOperand(0).getOpcode() == ISD::OR && isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) { unsigned MB, ME; Imm = ~(Imm^Imm2); if (isRunOfOnes(Imm, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), N->getOperand(0).getOperand(1), getI32Imm(0), getI32Imm(MB),getI32Imm(ME) }; return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops); } } // Other cases are autogenerated. break; } case ISD::OR: { if (N->getValueType(0) == MVT::i32) if (SDNode *I = SelectBitfieldInsert(N)) return I; short Imm; if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && isIntS16Immediate(N->getOperand(1), Imm)) { APInt LHSKnownZero, LHSKnownOne; CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne); // If this is equivalent to an add, then we can fold it with the // FrameIndex calculation. if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); } // Other cases are autogenerated. break; } case ISD::ADD: { short Imm; if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && isIntS16Immediate(N->getOperand(1), Imm)) return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); break; } case ISD::SHL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // Other cases are autogenerated. break; } case ISD::SRL: { unsigned Imm, SH, MB, ME; if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && isRotateAndMask(N, Imm, true, SH, MB, ME)) { SDValue Ops[] = { N->getOperand(0).getOperand(0), getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) }; return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); } // Other cases are autogenerated. break; } // FIXME: Remove this once the ANDI glue bug is fixed: case PPCISD::ANDIo_1_EQ_BIT: case PPCISD::ANDIo_1_GT_BIT: { if (!ANDIGlueBug) break; EVT InVT = N->getOperand(0).getValueType(); assert((InVT == MVT::i64 || InVT == MVT::i32) && "Invalid input type for ANDIo_1_EQ_BIT"); unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo; SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, N->getOperand(0), CurDAG->getTargetConstant(1, InVT)), 0); SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); SDValue SRIdxVal = CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, MVT::i32); return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); } case ISD::SELECT_CC: { ISD::CondCode CC = cast(N->getOperand(4))->get(); EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy(); bool isPPC64 = (PtrVT == MVT::i64); // If this is a select of i1 operands, we'll pattern match it. if (PPCSubTarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) break; // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc if (!isPPC64) if (ConstantSDNode *N1C = dyn_cast(N->getOperand(1))) if (ConstantSDNode *N2C = dyn_cast(N->getOperand(2))) if (ConstantSDNode *N3C = dyn_cast(N->getOperand(3))) if (N1C->isNullValue() && N3C->isNullValue() && N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && // FIXME: Implement this optzn for PPC64. N->getValueType(0) == MVT::i32) { SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, N->getOperand(0), getI32Imm(~0U)); return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), N->getOperand(0), SDValue(Tmp, 1)); } SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); if (N->getValueType(0) == MVT::i1) { // An i1 select is: (c & t) | (!c & f). bool Inv; unsigned Idx = getCRIdxForSetCC(CC, Inv); unsigned SRI; switch (Idx) { default: llvm_unreachable("Invalid CC index"); case 0: SRI = PPC::sub_lt; break; case 1: SRI = PPC::sub_gt; break; case 2: SRI = PPC::sub_eq; break; case 3: SRI = PPC::sub_un; break; } SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, CCBit, CCBit), 0); SDValue C = Inv ? NotCCBit : CCBit, NotC = Inv ? CCBit : NotCCBit; SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, C, N->getOperand(2)), 0); SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, NotC, N->getOperand(3)), 0); return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); } unsigned BROpc = getPredicateForSetCC(CC); unsigned SelectCCOp; if (N->getValueType(0) == MVT::i32) SelectCCOp = PPC::SELECT_CC_I4; else if (N->getValueType(0) == MVT::i64) SelectCCOp = PPC::SELECT_CC_I8; else if (N->getValueType(0) == MVT::f32) SelectCCOp = PPC::SELECT_CC_F4; else if (N->getValueType(0) == MVT::f64) if (PPCSubTarget->hasVSX()) SelectCCOp = PPC::SELECT_CC_VSFRC; else SelectCCOp = PPC::SELECT_CC_F8; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64) SelectCCOp = PPC::SELECT_CC_QFRC; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32) SelectCCOp = PPC::SELECT_CC_QSRC; else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1) SelectCCOp = PPC::SELECT_CC_QBRC; else if (N->getValueType(0) == MVT::v2f64 || N->getValueType(0) == MVT::v2i64) SelectCCOp = PPC::SELECT_CC_VSRC; else SelectCCOp = PPC::SELECT_CC_VRRC; SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), getI32Imm(BROpc) }; return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); } case ISD::VSELECT: if (PPCSubTarget->hasVSX()) { SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops); } break; case ISD::VECTOR_SHUFFLE: if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || N->getValueType(0) == MVT::v2i64)) { ShuffleVectorSDNode *SVN = cast(N); SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); unsigned DM[2]; for (int i = 0; i < 2; ++i) if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) DM[i] = 0; else DM[i] = 1; // For little endian, we must swap the input operands and adjust // the mask elements (reverse and invert them). if (PPCSubTarget->isLittleEndian()) { std::swap(Op1, Op2); unsigned tmp = DM[0]; DM[0] = 1 - DM[1]; DM[1] = 1 - tmp; } SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), MVT::i32); if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && isa(Op1.getOperand(0))) { LoadSDNode *LD = cast(Op1.getOperand(0)); SDValue Base, Offset; if (LD->isUnindexed() && SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { SDValue Chain = LD->getChain(); SDValue Ops[] = { Base, Offset, Chain }; return CurDAG->SelectNodeTo(N, PPC::LXVDSX, N->getValueType(0), Ops); } } SDValue Ops[] = { Op1, Op2, DMV }; return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); } break; case PPCISD::BDNZ: case PPCISD::BDZ: { bool IsPPC64 = PPCSubTarget->isPPC64(); SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), MVT::Other, Ops); } case PPCISD::COND_BRANCH: { // Op #0 is the Chain. // Op #1 is the PPC::PRED_* number. // Op #2 is the CR# // Op #3 is the Dest MBB // Op #4 is the Flag. // Prevent PPC::PRED_* from being selected into LI. SDValue Pred = getI32Imm(cast(N->getOperand(1))->getZExtValue()); SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), N->getOperand(0), N->getOperand(4) }; return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); } case ISD::BR_CC: { ISD::CondCode CC = cast(N->getOperand(1))->get(); unsigned PCC = getPredicateForSetCC(CC); if (N->getOperand(2).getValueType() == MVT::i1) { unsigned Opc; bool Swap; switch (PCC) { default: llvm_unreachable("Unexpected Boolean-operand predicate"); case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break; case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break; case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break; case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break; case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break; } SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, N->getOperand(Swap ? 3 : 2), N->getOperand(Swap ? 2 : 3)), 0); return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), N->getOperand(0)); } SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); SDValue Ops[] = { getI32Imm(PCC), CondCode, N->getOperand(4), N->getOperand(0) }; return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); } case ISD::BRIND: { // FIXME: Should custom lower this. SDValue Chain = N->getOperand(0); SDValue Target = N->getOperand(1); unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, Chain), 0); return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); } case PPCISD::TOC_ENTRY: { assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) && "Only supported for 64-bit ABI and 32-bit SVR4"); if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) { SDValue GA = N->getOperand(0); return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, N->getOperand(1))); } // For medium and large code model, we generate two instructions as // described below. Otherwise we allow SelectCodeCommon to handle this, // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. CodeModel::Model CModel = TM.getCodeModel(); if (CModel != CodeModel::Medium && CModel != CodeModel::Large) break; // The first source operand is a TargetGlobalAddress or a TargetJumpTable. // If it is an externally defined symbol, a symbol with common linkage, // a non-local function address, or a jump table address, or if we are // generating code for large code model, we generate: // LDtocL(, ADDIStocHA(%X2, )) // Otherwise we generate: // ADDItocL(ADDIStocHA(%X2, ), ) SDValue GA = N->getOperand(0); SDValue TOCbase = N->getOperand(1); SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64, TOCbase, GA); if (isa(GA) || isa(GA) || CModel == CodeModel::Large) return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, SDValue(Tmp, 0))); if (GlobalAddressSDNode *G = dyn_cast(GA)) { const GlobalValue *GValue = G->getGlobal(); if ((GValue->getType()->getElementType()->isFunctionTy() && (GValue->isDeclaration() || GValue->isWeakForLinker())) || GValue->isDeclaration() || GValue->hasCommonLinkage() || GValue->hasAvailableExternallyLinkage()) return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl, MVT::i64, GA, SDValue(Tmp, 0))); } return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, SDValue(Tmp, 0), GA); } case PPCISD::PPC32_PICGOT: { // Generate a PIC-safe GOT reference. assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() && "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(), MVT::i32); } case PPCISD::VADD_SPLAT: { // This expands into one of three sequences, depending on whether // the first operand is odd or even, positive or negative. assert(isa(N->getOperand(0)) && isa(N->getOperand(1)) && "Invalid operand on VADD_SPLAT!"); int Elt = N->getConstantOperandVal(0); int EltSize = N->getConstantOperandVal(1); unsigned Opc1, Opc2, Opc3; EVT VT; if (EltSize == 1) { Opc1 = PPC::VSPLTISB; Opc2 = PPC::VADDUBM; Opc3 = PPC::VSUBUBM; VT = MVT::v16i8; } else if (EltSize == 2) { Opc1 = PPC::VSPLTISH; Opc2 = PPC::VADDUHM; Opc3 = PPC::VSUBUHM; VT = MVT::v8i16; } else { assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); Opc1 = PPC::VSPLTISW; Opc2 = PPC::VADDUWM; Opc3 = PPC::VSUBUWM; VT = MVT::v4i32; } if ((Elt & 1) == 0) { // Elt is even, in the range [-32,-18] + [16,30]. // // Convert: VADD_SPLAT elt, size // Into: tmp = VSPLTIS[BHW] elt // VADDU[BHW]M tmp, tmp // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4 SDValue EltVal = getI32Imm(Elt >> 1); SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); SDValue TmpVal = SDValue(Tmp, 0); return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal); } else if (Elt > 0) { // Elt is odd and positive, in the range [17,31]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt-16 // tmp2 = VSPLTIS[BHW] -16 // VSUBU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt - 16); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0)); } else { // Elt is odd and negative, in the range [-31,-17]. // // Convert: VADD_SPLAT elt, size // Into: tmp1 = VSPLTIS[BHW] elt+16 // tmp2 = VSPLTIS[BHW] -16 // VADDU[BHW]M tmp1, tmp2 SDValue EltVal = getI32Imm(Elt + 16); SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); EltVal = getI32Imm(-16); SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), SDValue(Tmp2, 0)); } } } return SelectCode(N); } // If the target supports the cmpb instruction, do the idiom recognition here. // We don't do this as a DAG combine because we don't want to do it as nodes // are being combined (because we might miss part of the eventual idiom). We // don't want to do it during instruction selection because we want to reuse // the logic for lowering the masking operations already part of the // instruction selector. SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { SDLoc dl(N); assert(N->getOpcode() == ISD::OR && "Only OR nodes are supported for CMPB"); SDValue Res; if (!PPCSubTarget->hasCMPB()) return Res; if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return Res; EVT VT = N->getValueType(0); SDValue RHS, LHS; bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint64_t Mask = 0, Alt = 0; auto IsByteSelectCC = [this](SDValue O, unsigned &b, uint64_t &Mask, uint64_t &Alt, SDValue &LHS, SDValue &RHS) { if (O.getOpcode() != ISD::SELECT_CC) return false; ISD::CondCode CC = cast(O.getOperand(4))->get(); if (!isa(O.getOperand(2)) || !isa(O.getOperand(3))) return false; uint64_t PM = O.getConstantOperandVal(2); uint64_t PAlt = O.getConstantOperandVal(3); for (b = 0; b < 8; ++b) { uint64_t Mask = UINT64_C(0xFF) << (8*b); if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) break; } if (b == 8) return false; Mask |= PM; Alt |= PAlt; if (!isa(O.getOperand(1)) || O.getConstantOperandVal(1) != 0) { SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); if (Op0.getOpcode() == ISD::TRUNCATE) Op0 = Op0.getOperand(0); if (Op1.getOpcode() == ISD::TRUNCATE) Op1 = Op1.getOperand(0); if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && isa(Op0.getOperand(1))) { unsigned Bits = Op0.getValueType().getSizeInBits(); if (b != Bits/8-1) return false; if (Op0.getConstantOperandVal(1) != Bits-8) return false; LHS = Op0.getOperand(0); RHS = Op1.getOperand(0); return true; } // When we have small integers (i16 to be specific), the form present // post-legalization uses SETULT in the SELECT_CC for the // higher-order byte, depending on the fact that the // even-higher-order bytes are known to all be zero, for example: // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult // (so when the second byte is the same, because all higher-order // bits from bytes 3 and 4 are known to be zero, the result of the // xor can be at most 255) if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && isa(O.getOperand(1))) { uint64_t ULim = O.getConstantOperandVal(1); if (ULim != (UINT64_C(1) << b*8)) return false; // Now we need to make sure that the upper bytes are known to be // zero. unsigned Bits = Op0.getValueType().getSizeInBits(); if (!CurDAG->MaskedValueIsZero(Op0, APInt::getHighBitsSet(Bits, Bits - (b+1)*8))) return false; LHS = Op0.getOperand(0); RHS = Op0.getOperand(1); return true; } return false; } if (CC != ISD::SETEQ) return false; SDValue Op = O.getOperand(0); if (Op.getOpcode() == ISD::AND) { if (!isa(Op.getOperand(1))) return false; if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) return false; SDValue XOR = Op.getOperand(0); if (XOR.getOpcode() == ISD::TRUNCATE) XOR = XOR.getOperand(0); if (XOR.getOpcode() != ISD::XOR) return false; LHS = XOR.getOperand(0); RHS = XOR.getOperand(1); return true; } else if (Op.getOpcode() == ISD::SRL) { if (!isa(Op.getOperand(1))) return false; unsigned Bits = Op.getValueType().getSizeInBits(); if (b != Bits/8-1) return false; if (Op.getConstantOperandVal(1) != Bits-8) return false; SDValue XOR = Op.getOperand(0); if (XOR.getOpcode() == ISD::TRUNCATE) XOR = XOR.getOperand(0); if (XOR.getOpcode() != ISD::XOR) return false; LHS = XOR.getOperand(0); RHS = XOR.getOperand(1); return true; } return false; }; SmallVector Queue(1, SDValue(N, 0)); while (!Queue.empty()) { SDValue V = Queue.pop_back_val(); for (const SDValue &O : V.getNode()->ops()) { unsigned b; uint64_t M = 0, A = 0; SDValue OLHS, ORHS; if (O.getOpcode() == ISD::OR) { Queue.push_back(O); } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { if (!LHS) { LHS = OLHS; RHS = ORHS; BytesFound[b] = true; Mask |= M; Alt |= A; } else if ((LHS == ORHS && RHS == OLHS) || (RHS == ORHS && LHS == OLHS)) { BytesFound[b] = true; Mask |= M; Alt |= A; } else { return Res; } } else { return Res; } } } unsigned LastB = 0, BCnt = 0; for (unsigned i = 0; i < 8; ++i) if (BytesFound[LastB]) { ++BCnt; LastB = i; } if (!LastB || BCnt < 2) return Res; // Because we'll be zero-extending the output anyway if don't have a specific // value for each input byte (via the Mask), we can 'anyext' the inputs. if (LHS.getValueType() != VT) { LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); } Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); if (NonTrivialMask && !Alt) { // Res = Mask & CMPB Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask, VT)); } else if (Alt) { // Res = (CMPB & Mask) | (~CMPB & Alt) // Which, as suggested here: // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge // can be written as: // Res = Alt ^ ((Alt ^ Mask) & CMPB) // useful because the (Alt ^ Mask) can be pre-computed. Res = CurDAG->getNode(ISD::AND, dl, VT, Res, CurDAG->getConstant(Mask ^ Alt, VT)); Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, CurDAG->getConstant(Alt, VT)); } return Res; } // When CR bit registers are enabled, an extension of an i1 variable to a i32 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus // involves constant materialization of a 0 or a 1 or both. If the result of // the extension is then operated upon by some operator that can be constant // folded with a constant 0 or 1, and that constant can be materialized using // only one instruction (like a zero or one), then we should fold in those // operations with the select. void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { if (!PPCSubTarget->useCRBits()) return; if (N->getOpcode() != ISD::ZERO_EXTEND && N->getOpcode() != ISD::SIGN_EXTEND && N->getOpcode() != ISD::ANY_EXTEND) return; if (N->getOperand(0).getValueType() != MVT::i1) return; if (!N->hasOneUse()) return; SDLoc dl(N); EVT VT = N->getValueType(0); SDValue Cond = N->getOperand(0); SDValue ConstTrue = CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, VT); SDValue ConstFalse = CurDAG->getConstant(0, VT); do { SDNode *User = *N->use_begin(); if (User->getNumOperands() != 2) break; auto TryFold = [this, N, User](SDValue Val) { SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); SDValue O0 = UserO0.getNode() == N ? Val : UserO0; SDValue O1 = UserO1.getNode() == N ? Val : UserO1; return CurDAG->FoldConstantArithmetic(User->getOpcode(), User->getValueType(0), O0.getNode(), O1.getNode()); }; SDValue TrueRes = TryFold(ConstTrue); if (!TrueRes) break; SDValue FalseRes = TryFold(ConstFalse); if (!FalseRes) break; // For us to materialize these using one instruction, we must be able to // represent them as signed 16-bit integers. uint64_t True = cast(TrueRes)->getZExtValue(), False = cast(FalseRes)->getZExtValue(); if (!isInt<16>(True) || !isInt<16>(False)) break; // We can replace User with a new SELECT node, and try again to see if we // can fold the select with its user. Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); N = User; ConstTrue = TrueRes; ConstFalse = FalseRes; } while (N->hasOneUse()); } void PPCDAGToDAGISel::PreprocessISelDAG() { SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; bool MadeChange = false; while (Position != CurDAG->allnodes_begin()) { SDNode *N = --Position; if (N->use_empty()) continue; SDValue Res; switch (N->getOpcode()) { default: break; case ISD::OR: Res = combineToCMPB(N); break; } if (!Res) foldBoolExts(Res, N); if (Res) { DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: "); DEBUG(N->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(Res.getNode()->dump(CurDAG)); DEBUG(dbgs() << "\n"); CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); MadeChange = true; } } if (MadeChange) CurDAG->RemoveDeadNodes(); } /// PostprocessISelDAG - Perform some late peephole optimizations /// on the DAG representation. void PPCDAGToDAGISel::PostprocessISelDAG() { // Skip peepholes at -O0. if (TM.getOptLevel() == CodeGenOpt::None) return; PeepholePPC64(); PeepholeCROps(); PeepholePPC64ZExt(); } // Check if all users of this node will become isel where the second operand // is the constant zero. If this is so, and if we can negate the condition, // then we can flip the true and false operands. This will allow the zero to // be folded with the isel so that we don't need to materialize a register // containing zero. bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { // If we're not using isel, then this does not matter. if (!PPCSubTarget->hasISEL()) return false; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (!User->isMachineOpcode()) return false; if (User->getMachineOpcode() != PPC::SELECT_I4 && User->getMachineOpcode() != PPC::SELECT_I8) return false; SDNode *Op2 = User->getOperand(2).getNode(); if (!Op2->isMachineOpcode()) return false; if (Op2->getMachineOpcode() != PPC::LI && Op2->getMachineOpcode() != PPC::LI8) return false; ConstantSDNode *C = dyn_cast(Op2->getOperand(0)); if (!C) return false; if (!C->isNullValue()) return false; } return true; } void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { SmallVector ToReplace; for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); UI != UE; ++UI) { SDNode *User = *UI; assert((User->getMachineOpcode() == PPC::SELECT_I4 || User->getMachineOpcode() == PPC::SELECT_I8) && "Must have all select users"); ToReplace.push_back(User); } for (SmallVector::iterator UI = ToReplace.begin(), UE = ToReplace.end(); UI != UE; ++UI) { SDNode *User = *UI; SDNode *ResNode = CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), User->getValueType(0), User->getOperand(0), User->getOperand(2), User->getOperand(1)); DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); DEBUG(User->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(ResNode->dump(CurDAG)); DEBUG(dbgs() << "\n"); ReplaceUses(User, ResNode); } } void PPCDAGToDAGISel::PeepholeCROps() { bool IsModified; do { IsModified = false; for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { MachineSDNode *MachineNode = dyn_cast(I); if (!MachineNode || MachineNode->use_empty()) continue; SDNode *ResNode = MachineNode; bool Op1Set = false, Op1Unset = false, Op1Not = false, Op2Set = false, Op2Unset = false, Op2Not = false; unsigned Opcode = MachineNode->getMachineOpcode(); switch (Opcode) { default: break; case PPC::CRAND: case PPC::CRNAND: case PPC::CROR: case PPC::CRXOR: case PPC::CRNOR: case PPC::CREQV: case PPC::CRANDC: case PPC::CRORC: { SDValue Op = MachineNode->getOperand(1); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op2Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op2Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op2Not = true; } } // fallthrough case PPC::BC: case PPC::BCn: case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_QFRC: case PPC::SELECT_QSRC: case PPC::SELECT_QBRC: case PPC::SELECT_VRRC: case PPC::SELECT_VSFRC: case PPC::SELECT_VSRC: { SDValue Op = MachineNode->getOperand(0); if (Op.isMachineOpcode()) { if (Op.getMachineOpcode() == PPC::CRSET) Op1Set = true; else if (Op.getMachineOpcode() == PPC::CRUNSET) Op1Unset = true; else if (Op.getMachineOpcode() == PPC::CRNOR && Op.getOperand(0) == Op.getOperand(1)) Op1Not = true; } } break; } bool SelectSwap = false; switch (Opcode) { default: break; case PPC::CRAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x & x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set) // 1 & y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // x & 1 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset || Op2Unset) // x & 0 = 0 & y = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // ~x & y = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x & ~y = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRNAND: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // nand(x, x) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Set) // nand(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // nand(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset || Op2Unset) // nand(x, 0) = nand(0, y) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Not) // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nand(x, ~y) = ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CROR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // x | x = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Set || Op2Set) // x | 1 = 1 | y = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // 0 | y = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // x | 0 = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // ~x | y = orc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0). getOperand(0)); else if (Op2Not) // x | ~y = orc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRXOR: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // xor(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // xor(1, y) -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Set) // xor(x, 1) -> nor(x, x) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Unset) // xor(0, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Unset) // xor(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // xor(~x, y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // xor(x, ~y) = eqv(x, y) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRNOR: if (Op1Set || Op2Set) // nor(1, y) -> 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Unset) // nor(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // nor(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // nor(~x, y) = andc(x, y) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // nor(x, ~y) = andc(y, x) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1). getOperand(0), MachineNode->getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CREQV: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // eqv(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // eqv(1, y) = y ResNode = MachineNode->getOperand(1).getNode(); else if (Op2Set) // eqv(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // eqv(0, y) = ~y -> nor(y, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op2Unset) // eqv(x, 0) = ~x ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(0)); else if (Op1Not) // eqv(~x, y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // eqv(x, ~y) = xor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1)), SelectSwap = true; break; case PPC::CRANDC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // andc(x, x) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set) // andc(1, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Unset || Op2Set) // andc(0, y) = andc(x, 1) = 0 ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), MVT::i1); else if (Op2Unset) // andc(x, 0) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Not) // andc(~x, y) = ~(x | y) = nor(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // andc(x, ~y) = x & y ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)), SelectSwap = true; break; case PPC::CRORC: if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) // orc(x, x) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op1Set || Op2Unset) // orc(1, y) = orc(x, 0) = 1 ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), MVT::i1); else if (Op2Set) // orc(x, 1) = x ResNode = MachineNode->getOperand(0).getNode(); else if (Op1Unset) // orc(0, y) = ~y ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(1)); else if (Op1Not) // orc(~x, y) = ~(x & y) = nand(x, y) ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1)); else if (Op2Not) // orc(x, ~y) = x | y ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(0), MachineNode->getOperand(1). getOperand(0)); else if (AllUsersSelectZero(MachineNode)) ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), MVT::i1, MachineNode->getOperand(1), MachineNode->getOperand(0)), SelectSwap = true; break; case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_QFRC: case PPC::SELECT_QSRC: case PPC::SELECT_QBRC: case PPC::SELECT_VRRC: case PPC::SELECT_VSFRC: case PPC::SELECT_VSRC: if (Op1Set) ResNode = MachineNode->getOperand(1).getNode(); else if (Op1Unset) ResNode = MachineNode->getOperand(2).getNode(); else if (Op1Not) ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), SDLoc(MachineNode), MachineNode->getValueType(0), MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(2), MachineNode->getOperand(1)); break; case PPC::BC: case PPC::BCn: if (Op1Not) ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : PPC::BC, SDLoc(MachineNode), MVT::Other, MachineNode->getOperand(0). getOperand(0), MachineNode->getOperand(1), MachineNode->getOperand(2)); // FIXME: Handle Op1Set, Op1Unset here too. break; } // If we're inverting this node because it is used only by selects that // we'd like to swap, then swap the selects before the node replacement. if (SelectSwap) SwapAllSelectUsers(MachineNode); if (ResNode != MachineNode) { DEBUG(dbgs() << "CR Peephole replacing:\nOld: "); DEBUG(MachineNode->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(ResNode->dump(CurDAG)); DEBUG(dbgs() << "\n"); ReplaceUses(MachineNode, ResNode); IsModified = true; } } if (IsModified) CurDAG->RemoveDeadNodes(); } while (IsModified); } // Gather the set of 32-bit operations that are known to have their // higher-order 32 bits zero, where ToPromote contains all such operations. static bool PeepholePPC64ZExtGather(SDValue Op32, SmallPtrSetImpl &ToPromote) { if (!Op32.isMachineOpcode()) return false; // First, check for the "frontier" instructions (those that will clear the // higher-order 32 bits. // For RLWINM and RLWNM, we need to make sure that the mask does not wrap // around. If it does not, then these instructions will clear the // higher-order bits. if ((Op32.getMachineOpcode() == PPC::RLWINM || Op32.getMachineOpcode() == PPC::RLWNM) && Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { ToPromote.insert(Op32.getNode()); return true; } // SLW and SRW always clear the higher-order bits. if (Op32.getMachineOpcode() == PPC::SLW || Op32.getMachineOpcode() == PPC::SRW) { ToPromote.insert(Op32.getNode()); return true; } // For LI and LIS, we need the immediate to be positive (so that it is not // sign extended). if (Op32.getMachineOpcode() == PPC::LI || Op32.getMachineOpcode() == PPC::LIS) { if (!isUInt<15>(Op32.getConstantOperandVal(0))) return false; ToPromote.insert(Op32.getNode()); return true; } // LHBRX and LWBRX always clear the higher-order bits. if (Op32.getMachineOpcode() == PPC::LHBRX || Op32.getMachineOpcode() == PPC::LWBRX) { ToPromote.insert(Op32.getNode()); return true; } // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended. if (Op32.getMachineOpcode() == PPC::CNTLZW) { ToPromote.insert(Op32.getNode()); return true; } // Next, check for those instructions we can look through. // Assuming the mask does not wrap around, then the higher-order bits are // taken directly from the first operand. if (Op32.getMachineOpcode() == PPC::RLWIMI && Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // For OR, the higher-order bits are zero if that is true for both operands. // For SELECT_I4, the same is true (but the relevant operand numbers are // shifted by 1). if (Op32.getMachineOpcode() == PPC::OR || Op32.getMachineOpcode() == PPC::SELECT_I4) { unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) return false; if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // For ORI and ORIS, we need the higher-order bits of the first operand to be // zero, and also for the constant to be positive (so that it is not sign // extended). if (Op32.getMachineOpcode() == PPC::ORI || Op32.getMachineOpcode() == PPC::ORIS) { SmallPtrSet ToPromote1; if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) return false; if (!isUInt<15>(Op32.getConstantOperandVal(1))) return false; ToPromote.insert(Op32.getNode()); ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } // The higher-order bits of AND are zero if that is true for at least one of // the operands. if (Op32.getMachineOpcode() == PPC::AND) { SmallPtrSet ToPromote1, ToPromote2; bool Op0OK = PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); bool Op1OK = PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); if (!Op0OK && !Op1OK) return false; ToPromote.insert(Op32.getNode()); if (Op0OK) ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); if (Op1OK) ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); return true; } // For ANDI and ANDIS, the higher-order bits are zero if either that is true // of the first operand, or if the second operand is positive (so that it is // not sign extended). if (Op32.getMachineOpcode() == PPC::ANDIo || Op32.getMachineOpcode() == PPC::ANDISo) { SmallPtrSet ToPromote1; bool Op0OK = PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); if (!Op0OK && !Op1OK) return false; ToPromote.insert(Op32.getNode()); if (Op0OK) ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); return true; } return false; } void PPCDAGToDAGISel::PeepholePPC64ZExt() { if (!PPCSubTarget->isPPC64()) return; // When we zero-extend from i32 to i64, we use a pattern like this: // def : Pat<(i64 (zext i32:$in)), // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), // 0, 32)>; // There are several 32-bit shift/rotate instructions, however, that will // clear the higher-order bits of their output, rendering the RLDICL // unnecessary. When that happens, we remove it here, and redefine the // relevant 32-bit operation to be a 64-bit operation. SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; bool MadeChange = false; while (Position != CurDAG->allnodes_begin()) { SDNode *N = --Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; if (N->getMachineOpcode() != PPC::RLDICL) continue; if (N->getConstantOperandVal(1) != 0 || N->getConstantOperandVal(2) != 32) continue; SDValue ISR = N->getOperand(0); if (!ISR.isMachineOpcode() || ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) continue; if (!ISR.hasOneUse()) continue; if (ISR.getConstantOperandVal(2) != PPC::sub_32) continue; SDValue IDef = ISR.getOperand(0); if (!IDef.isMachineOpcode() || IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) continue; // We now know that we're looking at a canonical i32 -> i64 zext. See if we // can get rid of it. SDValue Op32 = ISR->getOperand(1); if (!Op32.isMachineOpcode()) continue; // There are some 32-bit instructions that always clear the high-order 32 // bits, there are also some instructions (like AND) that we can look // through. SmallPtrSet ToPromote; if (!PeepholePPC64ZExtGather(Op32, ToPromote)) continue; // If the ToPromote set contains nodes that have uses outside of the set // (except for the original INSERT_SUBREG), then abort the transformation. bool OutsideUse = false; for (SDNode *PN : ToPromote) { for (SDNode *UN : PN->uses()) { if (!ToPromote.count(UN) && UN != ISR.getNode()) { OutsideUse = true; break; } } if (OutsideUse) break; } if (OutsideUse) continue; MadeChange = true; // We now know that this zero extension can be removed by promoting to // nodes in ToPromote to 64-bit operations, where for operations in the // frontier of the set, we need to insert INSERT_SUBREGs for their // operands. for (SDNode *PN : ToPromote) { unsigned NewOpcode; switch (PN->getMachineOpcode()) { default: llvm_unreachable("Don't know the 64-bit variant of this instruction"); case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break; case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break; case PPC::SLW: NewOpcode = PPC::SLW8; break; case PPC::SRW: NewOpcode = PPC::SRW8; break; case PPC::LI: NewOpcode = PPC::LI8; break; case PPC::LIS: NewOpcode = PPC::LIS8; break; case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break; case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break; case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break; case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break; case PPC::OR: NewOpcode = PPC::OR8; break; case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; case PPC::ORI: NewOpcode = PPC::ORI8; break; case PPC::ORIS: NewOpcode = PPC::ORIS8; break; case PPC::AND: NewOpcode = PPC::AND8; break; case PPC::ANDIo: NewOpcode = PPC::ANDIo8; break; case PPC::ANDISo: NewOpcode = PPC::ANDISo8; break; } // Note: During the replacement process, the nodes will be in an // inconsistent state (some instructions will have operands with values // of the wrong type). Once done, however, everything should be right // again. SmallVector Ops; for (const SDValue &V : PN->ops()) { if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && !isa(V)) { SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; SDNode *ReplOp = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), ISR.getNode()->getVTList(), ReplOpOps); Ops.push_back(SDValue(ReplOp, 0)); } else { Ops.push_back(V); } } // Because all to-be-promoted nodes only have users that are other // promoted nodes (or the original INSERT_SUBREG), we can safely replace // the i32 result value type with i64. SmallVector NewVTs; SDVTList VTs = PN->getVTList(); for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) if (VTs.VTs[i] == MVT::i32) NewVTs.push_back(MVT::i64); else NewVTs.push_back(VTs.VTs[i]); DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: "); DEBUG(PN->dump(CurDAG)); CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); DEBUG(dbgs() << "\nNew: "); DEBUG(PN->dump(CurDAG)); DEBUG(dbgs() << "\n"); } // Now we replace the original zero extend and its associated INSERT_SUBREG // with the value feeding the INSERT_SUBREG (which has now been promoted to // return an i64). DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: "); DEBUG(N->dump(CurDAG)); DEBUG(dbgs() << "\nNew: "); DEBUG(Op32.getNode()->dump(CurDAG)); DEBUG(dbgs() << "\n"); ReplaceUses(N, Op32.getNode()); } if (MadeChange) CurDAG->RemoveDeadNodes(); } void PPCDAGToDAGISel::PeepholePPC64() { // These optimizations are currently supported only for 64-bit SVR4. if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64()) return; SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode()); ++Position; while (Position != CurDAG->allnodes_begin()) { SDNode *N = --Position; // Skip dead nodes and any non-machine opcodes. if (N->use_empty() || !N->isMachineOpcode()) continue; unsigned FirstOp; unsigned StorageOpcode = N->getMachineOpcode(); switch (StorageOpcode) { default: continue; case PPC::LBZ: case PPC::LBZ8: case PPC::LD: case PPC::LFD: case PPC::LFS: case PPC::LHA: case PPC::LHA8: case PPC::LHZ: case PPC::LHZ8: case PPC::LWA: case PPC::LWZ: case PPC::LWZ8: FirstOp = 0; break; case PPC::STB: case PPC::STB8: case PPC::STD: case PPC::STFD: case PPC::STFS: case PPC::STH: case PPC::STH8: case PPC::STW: case PPC::STW8: FirstOp = 1; break; } // If this is a load or store with a zero offset, we may be able to // fold an add-immediate into the memory operation. if (!isa(N->getOperand(FirstOp)) || N->getConstantOperandVal(FirstOp) != 0) continue; SDValue Base = N->getOperand(FirstOp + 1); if (!Base.isMachineOpcode()) continue; unsigned Flags = 0; bool ReplaceFlags = true; // When the feeding operation is an add-immediate of some sort, // determine whether we need to add relocation information to the // target flags on the immediate operand when we fold it into the // load instruction. // // For something like ADDItocL, the relocation information is // inferred from the opcode; when we process it in the AsmPrinter, // we add the necessary relocation there. A load, though, can receive // relocation from various flavors of ADDIxxx, so we need to carry // the relocation information in the target flags. switch (Base.getMachineOpcode()) { default: continue; case PPC::ADDI8: case PPC::ADDI: // In some cases (such as TLS) the relocation information // is already in place on the operand, so copying the operand // is sufficient. ReplaceFlags = false; // For these cases, the immediate may not be divisible by 4, in // which case the fold is illegal for DS-form instructions. (The // other cases provide aligned addresses and are always safe.) if ((StorageOpcode == PPC::LWA || StorageOpcode == PPC::LD || StorageOpcode == PPC::STD) && (!isa(Base.getOperand(1)) || Base.getConstantOperandVal(1) % 4 != 0)) continue; break; case PPC::ADDIdtprelL: Flags = PPCII::MO_DTPREL_LO; break; case PPC::ADDItlsldL: Flags = PPCII::MO_TLSLD_LO; break; case PPC::ADDItocL: Flags = PPCII::MO_TOC_LO; break; } // We found an opportunity. Reverse the operands from the add // immediate and substitute them into the load or store. If // needed, update the target flags for the immediate operand to // reflect the necessary relocation information. DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: "); DEBUG(Base->dump(CurDAG)); DEBUG(dbgs() << "\nN: "); DEBUG(N->dump(CurDAG)); DEBUG(dbgs() << "\n"); SDValue ImmOpnd = Base.getOperand(1); // If the relocation information isn't already present on the // immediate operand, add it now. if (ReplaceFlags) { if (GlobalAddressSDNode *GA = dyn_cast(ImmOpnd)) { SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); // We can't perform this optimization for data whose alignment // is insufficient for the instruction encoding. if (GV->getAlignment() < 4 && (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD || StorageOpcode == PPC::LWA)) { DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); continue; } ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags); } else if (ConstantPoolSDNode *CP = dyn_cast(ImmOpnd)) { const Constant *C = CP->getConstVal(); ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlignment(), 0, Flags); } } if (FirstOp == 1) // Store (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, Base.getOperand(0), N->getOperand(3)); else // Load (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), N->getOperand(2)); // The add-immediate may now be dead, in which case remove it. if (Base.getNode()->use_empty()) CurDAG->RemoveDeadNode(Base.getNode()); } } /// createPPCISelDag - This pass converts a legalized DAG into a /// PowerPC-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) { return new PPCDAGToDAGISel(TM); } static void initializePassOnce(PassRegistry &Registry) { const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection"; PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID, nullptr, false, false); Registry.registerPass(*PI, true); } void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) { CALL_ONCE_INITIALIZATION(initializePassOnce); }