//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPC specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "PPCSubtarget.h" #include "PPC.h" #include "PPCRegisterInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineScheduler.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/Host.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include using namespace llvm; #define DEBUG_TYPE "ppc-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "PPCGenSubtargetInfo.inc" /// Return the datalayout string of a subtarget. static std::string getDataLayoutString(const Triple &T) { bool is64Bit = T.getArch() == Triple::ppc64 || T.getArch() == Triple::ppc64le; std::string Ret; // Most PPC* platforms are big endian, PPC64LE is little endian. if (T.getArch() == Triple::ppc64le) Ret = "e"; else Ret = "E"; Ret += DataLayout::getManglingComponent(T); // PPC32 has 32 bit pointers. The PS3 (OS Lv2) is a PPC64 machine with 32 bit // pointers. if (!is64Bit || T.getOS() == Triple::Lv2) Ret += "-p:32:32"; // Note, the alignment values for f64 and i64 on ppc64 in Darwin // documentation are wrong; these are correct (i.e. "what gcc does"). if (is64Bit || !T.isOSDarwin()) Ret += "-i64:64"; else Ret += "-f64:32:64"; // PPC64 has 32 and 64 bit registers, PPC32 has only 32 bit ones. if (is64Bit) Ret += "-n32:64"; else Ret += "-n32"; return Ret; } PPCSubtarget &PPCSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { initializeEnvironment(); initSubtargetFeatures(CPU, FS); return *this; } PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, const PPCTargetMachine &TM) : PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT), DL(getDataLayoutString(TargetTriple)), IsPPC64(TargetTriple.getArch() == Triple::ppc64 || TargetTriple.getArch() == Triple::ppc64le), TargetABI(PPC_ABI_UNKNOWN), FrameLowering(initializeSubtargetDependencies(CPU, FS)), InstrInfo(*this), TLInfo(TM), TSInfo(&DL) {} void PPCSubtarget::initializeEnvironment() { StackAlignment = 16; DarwinDirective = PPC::DIR_NONE; HasMFOCRF = false; Has64BitSupport = false; Use64BitRegs = false; UseCRBits = false; HasAltivec = false; HasSPE = false; HasQPX = false; HasVSX = false; HasP8Vector = false; HasFCPSGN = false; HasFSQRT = false; HasFRE = false; HasFRES = false; HasFRSQRTE = false; HasFRSQRTES = false; HasRecipPrec = false; HasSTFIWX = false; HasLFIWAX = false; HasFPRND = false; HasFPCVT = false; HasISEL = false; HasPOPCNTD = false; HasLDBRX = false; IsBookE = false; HasOnlyMSYNC = false; IsPPC4xx = false; IsPPC6xx = false; IsE500 = false; DeprecatedMFTB = false; DeprecatedDST = false; HasLazyResolverStubs = false; } void PPCSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) { // Determine default and user specified characteristics std::string CPUName = CPU; if (CPUName.empty()) CPUName = "generic"; #if (defined(__APPLE__) || defined(__linux__)) && \ (defined(__ppc__) || defined(__powerpc__)) if (CPUName == "generic") CPUName = sys::getHostCPUName(); #endif // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUName); // Parse features string. ParseSubtargetFeatures(CPUName, FS); // If the user requested use of 64-bit regs, but the cpu selected doesn't // support it, ignore. if (IsPPC64 && has64BitSupport()) Use64BitRegs = true; // Set up darwin-specific properties. if (isDarwin()) HasLazyResolverStubs = true; // QPX requires a 32-byte aligned stack. Note that we need to do this if // we're compiling for a BG/Q system regardless of whether or not QPX // is enabled because external functions will assume this alignment. if (hasQPX() || isBGQ()) StackAlignment = 32; // Determine endianness. IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le); // FIXME: For now, we disable VSX in little-endian mode until endian // issues in those instructions can be addressed. if (IsLittleEndian) { HasVSX = false; HasP8Vector = false; } // Determine default ABI. if (TargetABI == PPC_ABI_UNKNOWN) { if (!isDarwin() && IsPPC64) { if (IsLittleEndian) TargetABI = PPC_ABI_ELFv2; else TargetABI = PPC_ABI_ELFv1; } } } /// hasLazyResolverStub - Return true if accesses to the specified global have /// to go through a dyld lazy resolution stub. This means that an extra load /// is required to get the address of the global. bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV, const TargetMachine &TM) const { // We never have stubs if HasLazyResolverStubs=false or if in static mode. if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static) return false; bool isDecl = GV->isDeclaration(); if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage()) return false; return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || GV->hasCommonLinkage() || isDecl; } // Embedded cores need aggressive scheduling (and some others also benefit). static bool needsAggressiveScheduling(unsigned Directive) { switch (Directive) { default: return false; case PPC::DIR_440: case PPC::DIR_A2: case PPC::DIR_E500mc: case PPC::DIR_E5500: case PPC::DIR_PWR7: case PPC::DIR_PWR8: return true; } } bool PPCSubtarget::enableMachineScheduler() const { // Enable MI scheduling for the embedded cores. // FIXME: Enable this for all cores (some additional modeling // may be necessary). return needsAggressiveScheduling(DarwinDirective); } // This overrides the PostRAScheduler bit in the SchedModel for each CPU. bool PPCSubtarget::enablePostMachineScheduler() const { return true; } PPCGenSubtargetInfo::AntiDepBreakMode PPCSubtarget::getAntiDepBreakMode() const { return TargetSubtargetInfo::ANTIDEP_ALL; } void PPCSubtarget::getCriticalPathRCs(RegClassVector &CriticalPathRCs) const { CriticalPathRCs.clear(); CriticalPathRCs.push_back(isPPC64() ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); } void PPCSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, MachineInstr *begin, MachineInstr *end, unsigned NumRegionInstrs) const { if (needsAggressiveScheduling(DarwinDirective)) { Policy.OnlyTopDown = false; Policy.OnlyBottomUp = false; } // Spilling is generally expensive on all PPC cores, so always enable // register-pressure tracking. Policy.ShouldTrackPressure = true; } bool PPCSubtarget::useAA() const { // Use AA during code generation for the embedded cores. return needsAggressiveScheduling(DarwinDirective); }