//===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "PPCTargetTransformInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; #define DEBUG_TYPE "ppctti" static cl::opt DisablePPCConstHoist("disable-ppc-constant-hoisting", cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); //===----------------------------------------------------------------------===// // // PPC cost model. // //===----------------------------------------------------------------------===// TargetTransformInfo::PopcntSupportKind PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); if (ST->hasPOPCNTD() && TyWidth <= 64) return TTI::PSK_FastHardware; return TTI::PSK_Software; } unsigned PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { if (DisablePPCConstHoist) return BaseT::getIntImmCost(Imm, Ty); assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; if (Imm == 0) return TTI::TCC_Free; if (Imm.getBitWidth() <= 64) { if (isInt<16>(Imm.getSExtValue())) return TTI::TCC_Basic; if (isInt<32>(Imm.getSExtValue())) { // A constant that can be materialized using lis. if ((Imm.getZExtValue() & 0xFFFF) == 0) return TTI::TCC_Basic; return 2 * TTI::TCC_Basic; } } return 4 * TTI::TCC_Basic; } unsigned PPCTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty) { if (DisablePPCConstHoist) return BaseT::getIntImmCost(IID, Idx, Imm, Ty); assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; switch (IID) { default: return TTI::TCC_Free; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) return TTI::TCC_Free; break; case Intrinsic::experimental_stackmap: if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint_i64: if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; } return PPCTTIImpl::getIntImmCost(Imm, Ty); } unsigned PPCTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { if (DisablePPCConstHoist) return BaseT::getIntImmCost(Opcode, Idx, Imm, Ty); assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; unsigned ImmIdx = ~0U; bool ShiftedFree = false, RunFree = false, UnsignedFree = false, ZeroFree = false; switch (Opcode) { default: return TTI::TCC_Free; case Instruction::GetElementPtr: // Always hoist the base address of a GetElementPtr. This prevents the // creation of new constants for every base constant that gets constant // folded with the offset. if (Idx == 0) return 2 * TTI::TCC_Basic; return TTI::TCC_Free; case Instruction::And: RunFree = true; // (for the rotate-and-mask instructions) // Fallthrough... case Instruction::Add: case Instruction::Or: case Instruction::Xor: ShiftedFree = true; // Fallthrough... case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: ImmIdx = 1; break; case Instruction::ICmp: UnsignedFree = true; ImmIdx = 1; // Fallthrough... (zero comparisons can use record-form instructions) case Instruction::Select: ZeroFree = true; break; case Instruction::PHI: case Instruction::Call: case Instruction::Ret: case Instruction::Load: case Instruction::Store: break; } if (ZeroFree && Imm == 0) return TTI::TCC_Free; if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { if (isInt<16>(Imm.getSExtValue())) return TTI::TCC_Free; if (RunFree) { if (Imm.getBitWidth() <= 32 && (isShiftedMask_32(Imm.getZExtValue()) || isShiftedMask_32(~Imm.getZExtValue()))) return TTI::TCC_Free; if (ST->isPPC64() && (isShiftedMask_64(Imm.getZExtValue()) || isShiftedMask_64(~Imm.getZExtValue()))) return TTI::TCC_Free; } if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) return TTI::TCC_Free; if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) return TTI::TCC_Free; } return PPCTTIImpl::getIntImmCost(Imm, Ty); } void PPCTTIImpl::getUnrollingPreferences(Loop *L, TTI::UnrollingPreferences &UP) { if (ST->getDarwinDirective() == PPC::DIR_A2) { // The A2 is in-order with a deep pipeline, and concatenation unrolling // helps expose latency-hiding opportunities to the instruction scheduler. UP.Partial = UP.Runtime = true; } BaseT::getUnrollingPreferences(L, UP); } unsigned PPCTTIImpl::getNumberOfRegisters(bool Vector) { if (Vector && !ST->hasAltivec() && !ST->hasQPX()) return 0; return ST->hasVSX() ? 64 : 32; } unsigned PPCTTIImpl::getRegisterBitWidth(bool Vector) { if (Vector) { if (ST->hasQPX()) return 256; if (ST->hasAltivec()) return 128; return 0; } if (ST->isPPC64()) return 64; return 32; } unsigned PPCTTIImpl::getMaxInterleaveFactor() { unsigned Directive = ST->getDarwinDirective(); // The 440 has no SIMD support, but floating-point instructions // have a 5-cycle latency, so unroll by 5x for latency hiding. if (Directive == PPC::DIR_440) return 5; // The A2 has no SIMD support, but floating-point instructions // have a 6-cycle latency, so unroll by 6x for latency hiding. if (Directive == PPC::DIR_A2) return 6; // FIXME: For lack of any better information, do no harm... if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) return 1; // For P7 and P8, floating-point instructions have a 6-cycle latency and // there are two execution units, so unroll by 12x for latency hiding. if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) return 12; // For most things, modern systems have two execution units (and // out-of-order execution). return 2; } unsigned PPCTTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo) { assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); // Fallback to the default implementation. return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); } unsigned PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, Type *SubTp) { return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } unsigned PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); return BaseT::getCastInstrCost(Opcode, Dst, Src); } unsigned PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); } unsigned PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { assert(Val->isVectorTy() && "This must be a vector type"); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { // Double-precision scalars are already located in index #0. if (Index == 0) return 0; return BaseT::getVectorInstrCost(Opcode, Val, Index); } else if (ST->hasQPX() && Val->getScalarType()->isFloatingPointTy()) { // Floating point scalars are already located in index #0. if (Index == 0) return 0; return BaseT::getVectorInstrCost(Opcode, Val, Index); } // Estimated cost of a load-hit-store delay. This was obtained // experimentally as a minimum needed to prevent unprofitable // vectorization for the paq8p benchmark. It may need to be // raised further if other unprofitable cases remain. unsigned LHSPenalty = 2; if (ISD == ISD::INSERT_VECTOR_ELT) LHSPenalty += 7; // Vector element insert/extract with Altivec is very expensive, // because they require store and reload with the attendant // processor stall for load-hit-store. Until VSX is available, // these need to be estimated as very costly. if (ISD == ISD::EXTRACT_VECTOR_ELT || ISD == ISD::INSERT_VECTOR_ELT) return LHSPenalty + BaseT::getVectorInstrCost(Opcode, Val, Index); return BaseT::getVectorInstrCost(Opcode, Val, Index); } unsigned PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, unsigned AddressSpace) { // Legalize the type. std::pair LT = TLI->getTypeLegalizationCost(Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); unsigned Cost = BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); // VSX loads/stores support unaligned access. if (ST->hasVSX()) { if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64) return Cost; } bool UnalignedAltivec = Src->isVectorTy() && Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() && LT.second.getSizeInBits() == 128 && Opcode == Instruction::Load; // PPC in general does not support unaligned loads and stores. They'll need // to be decomposed based on the alignment factor. unsigned SrcBytes = LT.second.getStoreSize(); if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) { Cost += LT.first*(SrcBytes/Alignment-1); // For a vector type, there is also scalarization overhead (only for // stores, loads are expanded using the vector-load + permutation sequence, // which is much less expensive). if (Src->isVectorTy() && Opcode == Instruction::Store) for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i) Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); } return Cost; }