//===-- SIMCCodeEmitter.cpp - SI Code Emitter -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief The SI code emitter produces machine code that can be executed /// directly on the GPU device. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "MCTargetDesc/AMDGPUFixupKinds.h" #include "MCTargetDesc/AMDGPUMCCodeEmitter.h" #include "MCTargetDesc/AMDGPUMCTargetDesc.h" #include "SIDefines.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCFixup.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class SIMCCodeEmitter : public AMDGPUMCCodeEmitter { SIMCCodeEmitter(const SIMCCodeEmitter &) = delete; void operator=(const SIMCCodeEmitter &) = delete; const MCInstrInfo &MCII; const MCRegisterInfo &MRI; MCContext &Ctx; /// \brief Can this operand also contain immediate values? bool isSrcOperand(const MCInstrDesc &Desc, unsigned OpNo) const; /// \brief Encode an fp or int literal uint32_t getLitEncoding(const MCOperand &MO, unsigned OpSize) const; public: SIMCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri, MCContext &ctx) : MCII(mcii), MRI(mri), Ctx(ctx) { } ~SIMCCodeEmitter() override {} /// \brief Encode the instruction and write it to the OS. void EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; /// \returns the encoding for an MCOperand. uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; /// \brief Use a fixup to encode the simm16 field for SOPP branch /// instructions. unsigned getSOPPBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; }; } // End anonymous namespace MCCodeEmitter *llvm::createSIMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new SIMCCodeEmitter(MCII, MRI, Ctx); } bool SIMCCodeEmitter::isSrcOperand(const MCInstrDesc &Desc, unsigned OpNo) const { unsigned OpType = Desc.OpInfo[OpNo].OperandType; return OpType == AMDGPU::OPERAND_REG_IMM32 || OpType == AMDGPU::OPERAND_REG_INLINE_C; } // Returns the encoding value to use if the given integer is an integer inline // immediate value, or 0 if it is not. template static uint32_t getIntInlineImmEncoding(IntTy Imm) { if (Imm >= 0 && Imm <= 64) return 128 + Imm; if (Imm >= -16 && Imm <= -1) return 192 + std::abs(Imm); return 0; } static uint32_t getLit32Encoding(uint32_t Val) { uint32_t IntImm = getIntInlineImmEncoding(static_cast(Val)); if (IntImm != 0) return IntImm; if (Val == FloatToBits(0.5f)) return 240; if (Val == FloatToBits(-0.5f)) return 241; if (Val == FloatToBits(1.0f)) return 242; if (Val == FloatToBits(-1.0f)) return 243; if (Val == FloatToBits(2.0f)) return 244; if (Val == FloatToBits(-2.0f)) return 245; if (Val == FloatToBits(4.0f)) return 246; if (Val == FloatToBits(-4.0f)) return 247; return 255; } static uint32_t getLit64Encoding(uint64_t Val) { uint32_t IntImm = getIntInlineImmEncoding(static_cast(Val)); if (IntImm != 0) return IntImm; if (Val == DoubleToBits(0.5)) return 240; if (Val == DoubleToBits(-0.5)) return 241; if (Val == DoubleToBits(1.0)) return 242; if (Val == DoubleToBits(-1.0)) return 243; if (Val == DoubleToBits(2.0)) return 244; if (Val == DoubleToBits(-2.0)) return 245; if (Val == DoubleToBits(4.0)) return 246; if (Val == DoubleToBits(-4.0)) return 247; return 255; } uint32_t SIMCCodeEmitter::getLitEncoding(const MCOperand &MO, unsigned OpSize) const { if (MO.isExpr()) return 255; assert(!MO.isFPImm()); if (!MO.isImm()) return ~0; if (OpSize == 4) return getLit32Encoding(static_cast(MO.getImm())); assert(OpSize == 8); return getLit64Encoding(static_cast(MO.getImm())); } void SIMCCodeEmitter::EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { uint64_t Encoding = getBinaryCodeForInstr(MI, Fixups, STI); const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); unsigned bytes = Desc.getSize(); for (unsigned i = 0; i < bytes; i++) { OS.write((uint8_t) ((Encoding >> (8 * i)) & 0xff)); } if (bytes > 4) return; // Check for additional literals in SRC0/1/2 (Op 1/2/3) for (unsigned i = 0, e = MI.getNumOperands(); i < e; ++i) { // Check if this operand should be encoded as [SV]Src if (!isSrcOperand(Desc, i)) continue; int RCID = Desc.OpInfo[i].RegClass; const MCRegisterClass &RC = MRI.getRegClass(RCID); // Is this operand a literal immediate? const MCOperand &Op = MI.getOperand(i); if (getLitEncoding(Op, RC.getSize()) != 255) continue; // Yes! Encode it int64_t Imm = 0; if (Op.isImm()) Imm = Op.getImm(); else if (!Op.isExpr()) // Exprs will be replaced with a fixup value. llvm_unreachable("Must be immediate or expr"); for (unsigned j = 0; j < 4; j++) { OS.write((uint8_t) ((Imm >> (8 * j)) & 0xff)); } // Only one literal value allowed break; } } unsigned SIMCCodeEmitter::getSOPPBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isExpr()) { const MCExpr *Expr = MO.getExpr(); MCFixupKind Kind = (MCFixupKind)AMDGPU::fixup_si_sopp_br; Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); return 0; } return getMachineOpValue(MI, MO, Fixups, STI); } uint64_t SIMCCodeEmitter::getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) return MRI.getEncodingValue(MO.getReg()); if (MO.isExpr()) { const MCSymbolRefExpr *Expr = cast(MO.getExpr()); MCFixupKind Kind; const MCSymbol *Sym = Ctx.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME)); if (&Expr->getSymbol() == Sym) { // Add the offset to the beginning of the constant values. Kind = (MCFixupKind)AMDGPU::fixup_si_end_of_text; } else { // This is used for constant data stored in .rodata. Kind = (MCFixupKind)AMDGPU::fixup_si_rodata; } Fixups.push_back(MCFixup::Create(4, Expr, Kind, MI.getLoc())); } // Figure out the operand number, needed for isSrcOperand check unsigned OpNo = 0; for (unsigned e = MI.getNumOperands(); OpNo < e; ++OpNo) { if (&MO == &MI.getOperand(OpNo)) break; } const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); if (isSrcOperand(Desc, OpNo)) { int RCID = Desc.OpInfo[OpNo].RegClass; const MCRegisterClass &RC = MRI.getRegClass(RCID); uint32_t Enc = getLitEncoding(MO, RC.getSize()); if (Enc != ~0U && (Enc != 255 || Desc.getSize() == 4)) return Enc; } else if (MO.isImm()) return MO.getImm(); llvm_unreachable("Encoding of this operand type is not supported yet."); return 0; }