//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Basic SystemZ instruction definition //===----------------------------------------------------------------------===// class InstSystemZ pattern> : Instruction { let Namespace = "SystemZ"; dag OutOperandList = outs; dag InOperandList = ins; let Size = size; let Pattern = pattern; let AsmString = asmstr; // Some instructions come in pairs, one having a 12-bit displacement // and the other having a 20-bit displacement. Both instructions in // the pair have the same DispKey and their DispSizes are "12" and "20" // respectively. string DispKey = ""; string DispSize = "none"; // Many register-based R instructions have a memory-based // counterpart. OpKey uniquely identifies , while OpType is // "reg" for R and "mem" for . string OpKey = ""; string OpType = "none"; // Many distinct-operands instructions have older 2-operand equivalents. // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs, // with NumOpsValue being "2" or "3" as appropriate. string NumOpsKey = ""; string NumOpsValue = "none"; // True if this instruction is a simple D(X,B) load of a register // (with no sign or zero extension). bit SimpleBDXLoad = 0; // True if this instruction is a simple D(X,B) store of a register // (with no truncation). bit SimpleBDXStore = 0; // True if this instruction has a 20-bit displacement field. bit Has20BitOffset = 0; // True if addresses in this instruction have an index register. bit HasIndex = 0; // True if this is a 128-bit pseudo instruction that combines two 64-bit // operations. bit Is128Bit = 0; // The access size of all memory operands in bytes, or 0 if not known. bits<5> AccessBytes = 0; // If the instruction sets CC to a useful value, this gives the mask // of all possible CC results. The mask has the same form as // SystemZ::CCMASK_*. bits<4> CCValues = 0; // The subset of CCValues that have the same meaning as they would after // a comparison of the first operand against zero. bits<4> CompareZeroCCMask = 0; // True if the instruction is conditional and if the CC mask operand // comes first (as for BRC, etc.). bit CCMaskFirst = 0; // Similar, but true if the CC mask operand comes last (as for LOC, etc.). bit CCMaskLast = 0; // True if the instruction is the "logical" rather than "arithmetic" form, // in cases where a distinction exists. bit IsLogical = 0; let TSFlags{0} = SimpleBDXLoad; let TSFlags{1} = SimpleBDXStore; let TSFlags{2} = Has20BitOffset; let TSFlags{3} = HasIndex; let TSFlags{4} = Is128Bit; let TSFlags{9-5} = AccessBytes; let TSFlags{13-10} = CCValues; let TSFlags{17-14} = CompareZeroCCMask; let TSFlags{18} = CCMaskFirst; let TSFlags{19} = CCMaskLast; let TSFlags{20} = IsLogical; } //===----------------------------------------------------------------------===// // Mappings between instructions //===----------------------------------------------------------------------===// // Return the version of an instruction that has an unsigned 12-bit // displacement. def getDisp12Opcode : InstrMapping { let FilterClass = "InstSystemZ"; let RowFields = ["DispKey"]; let ColFields = ["DispSize"]; let KeyCol = ["20"]; let ValueCols = [["12"]]; } // Return the version of an instruction that has a signed 20-bit displacement. def getDisp20Opcode : InstrMapping { let FilterClass = "InstSystemZ"; let RowFields = ["DispKey"]; let ColFields = ["DispSize"]; let KeyCol = ["12"]; let ValueCols = [["20"]]; } // Return the memory form of a register instruction. def getMemOpcode : InstrMapping { let FilterClass = "InstSystemZ"; let RowFields = ["OpKey"]; let ColFields = ["OpType"]; let KeyCol = ["reg"]; let ValueCols = [["mem"]]; } // Return the 3-operand form of a 2-operand instruction. def getThreeOperandOpcode : InstrMapping { let FilterClass = "InstSystemZ"; let RowFields = ["NumOpsKey"]; let ColFields = ["NumOpsValue"]; let KeyCol = ["2"]; let ValueCols = [["3"]]; } //===----------------------------------------------------------------------===// // Instruction formats //===----------------------------------------------------------------------===// // // Formats are specified using operand field declarations of the form: // // bits<4> Rn : register input or output for operand n // bits In : immediate value of width m for operand n // bits<4> BDn : address operand n, which has a base and a displacement // bits XBDn : address operand n, which has an index, a base and a // displacement // bits<4> Xn : index register for address operand n // bits<4> Mn : mode value for operand n // // The operand numbers ("n" in the list above) follow the architecture manual. // Assembly operands sometimes have a different order; in particular, R3 often // is often written between operands 1 and 2. // //===----------------------------------------------------------------------===// class InstRI op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<16> I2; let Inst{31-24} = op{11-4}; let Inst{23-20} = R1; let Inst{19-16} = op{3-0}; let Inst{15-0} = I2; } class InstRIEb op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<4> R2; bits<4> M3; bits<16> RI4; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-32} = R2; let Inst{31-16} = RI4; let Inst{15-12} = M3; let Inst{11-8} = 0; let Inst{7-0} = op{7-0}; } class InstRIEc op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<8> I2; bits<4> M3; bits<16> RI4; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-32} = M3; let Inst{31-16} = RI4; let Inst{15-8} = I2; let Inst{7-0} = op{7-0}; } class InstRIEd op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<4> R3; bits<16> I2; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-32} = R3; let Inst{31-16} = I2; let Inst{15-8} = 0; let Inst{7-0} = op{7-0}; } class InstRIEf op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<4> R2; bits<8> I3; bits<8> I4; bits<8> I5; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-32} = R2; let Inst{31-24} = I3; let Inst{23-16} = I4; let Inst{15-8} = I5; let Inst{7-0} = op{7-0}; } class InstRIL op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<32> I2; let Inst{47-40} = op{11-4}; let Inst{39-36} = R1; let Inst{35-32} = op{3-0}; let Inst{31-0} = I2; } class InstRR op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<2, outs, ins, asmstr, pattern> { field bits<16> Inst; field bits<16> SoftFail = 0; bits<4> R1; bits<4> R2; let Inst{15-8} = op; let Inst{7-4} = R1; let Inst{3-0} = R2; } class InstRRD op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<4> R3; bits<4> R2; let Inst{31-16} = op; let Inst{15-12} = R1; let Inst{11-8} = 0; let Inst{7-4} = R3; let Inst{3-0} = R2; } class InstRRE op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<4> R2; let Inst{31-16} = op; let Inst{15-8} = 0; let Inst{7-4} = R1; let Inst{3-0} = R2; } class InstRRF op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<4> R2; bits<4> R3; bits<4> R4; let Inst{31-16} = op; let Inst{15-12} = R3; let Inst{11-8} = R4; let Inst{7-4} = R1; let Inst{3-0} = R2; } class InstRX op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<20> XBD2; let Inst{31-24} = op; let Inst{23-20} = R1; let Inst{19-0} = XBD2; let HasIndex = 1; } class InstRXE op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<20> XBD2; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-16} = XBD2; let Inst{15-8} = 0; let Inst{7-0} = op{7-0}; let HasIndex = 1; } class InstRXF op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<4> R3; bits<20> XBD2; let Inst{47-40} = op{15-8}; let Inst{39-36} = R3; let Inst{35-16} = XBD2; let Inst{15-12} = R1; let Inst{11-8} = 0; let Inst{7-0} = op{7-0}; let HasIndex = 1; } class InstRXY op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<28> XBD2; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-8} = XBD2; let Inst{7-0} = op{7-0}; let Has20BitOffset = 1; let HasIndex = 1; } class InstRS op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<4> R1; bits<4> R3; bits<16> BD2; let Inst{31-24} = op; let Inst{23-20} = R1; let Inst{19-16} = R3; let Inst{15-0} = BD2; } class InstRSY op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<4> R1; bits<4> R3; bits<24> BD2; let Inst{47-40} = op{15-8}; let Inst{39-36} = R1; let Inst{35-32} = R3; let Inst{31-8} = BD2; let Inst{7-0} = op{7-0}; let Has20BitOffset = 1; } class InstSI op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<4, outs, ins, asmstr, pattern> { field bits<32> Inst; field bits<32> SoftFail = 0; bits<16> BD1; bits<8> I2; let Inst{31-24} = op; let Inst{23-16} = I2; let Inst{15-0} = BD1; } class InstSIL op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<16> BD1; bits<16> I2; let Inst{47-32} = op; let Inst{31-16} = BD1; let Inst{15-0} = I2; } class InstSIY op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<24> BD1; bits<8> I2; let Inst{47-40} = op{15-8}; let Inst{39-32} = I2; let Inst{31-8} = BD1; let Inst{7-0} = op{7-0}; let Has20BitOffset = 1; } class InstSS op, dag outs, dag ins, string asmstr, list pattern> : InstSystemZ<6, outs, ins, asmstr, pattern> { field bits<48> Inst; field bits<48> SoftFail = 0; bits<24> BDL1; bits<16> BD2; let Inst{47-40} = op; let Inst{39-16} = BDL1; let Inst{15-0} = BD2; } //===----------------------------------------------------------------------===// // Instruction definitions with semantics //===----------------------------------------------------------------------===// // // These classes have the form [Cond], where is one // of the formats defined above and where describes the inputs // and outputs. "Cond" is used if the instruction is conditional, // in which case the 4-bit condition-code mask is added as a final operand. // can be one of: // // Inherent: // One register output operand and no input operands. // // BranchUnary: // One register output operand, one register input operand and // one branch displacement. The instructions stores a modified // form of the source register in the destination register and // branches on the result. // // Store: // One register or immediate input operand and one address input operand. // The instruction stores the first operand to the address. // // This category is used for both pure and truncating stores. // // LoadMultiple: // One address input operand and two explicit output operands. // The instruction loads a range of registers from the address, // with the explicit operands giving the first and last register // to load. Other loaded registers are added as implicit definitions. // // StoreMultiple: // Two explicit input register operands and an address operand. // The instruction stores a range of registers to the address, // with the explicit operands giving the first and last register // to store. Other stored registers are added as implicit uses. // // Unary: // One register output operand and one input operand. The input // operand may be a register, immediate or memory. // // Binary: // One register output operand and two input operands. The first // input operand is always a register and he second may be a register, // immediate or memory. // // Shift: // One register output operand and two input operands. The first // input operand is a register and the second has the same form as // an address (although it isn't actually used to address memory). // // Compare: // Two input operands. The first operand is always a register, // the second may be a register, immediate or memory. // // Ternary: // One register output operand and three register input operands. // // CmpSwap: // One output operand and three input operands. The first two // operands are registers and the third is an address. The instruction // both reads from and writes to the address. // // RotateSelect: // One output operand and five input operands. The first two operands // are registers and the other three are immediates. // // The format determines which input operands are tied to output operands, // and also determines the shape of any address operand. // // Multiclasses of the form Pair define two instructions, // one with and one with Y. The name // of the first instruction has no suffix, the name of the second has // an extra "y". // //===----------------------------------------------------------------------===// class InherentRRE opcode, RegisterOperand cls, dag src> : InstRRE { let R2 = 0; } class BranchUnaryRI opcode, RegisterOperand cls> : InstRI { let isBranch = 1; let isTerminator = 1; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class LoadMultipleRSY opcode, RegisterOperand cls> : InstRSY { let mayLoad = 1; } class StoreRILPC opcode, SDPatternOperator operator, RegisterOperand cls> : InstRIL { let mayStore = 1; // We want PC-relative addresses to be tried ahead of BD and BDX addresses. // However, BDXs have two extra operands and are therefore 6 units more // complex. let AddedComplexity = 7; } class StoreRX opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdxaddr12only> : InstRX { let OpKey = mnemonic ## cls; let OpType = "mem"; let mayStore = 1; let AccessBytes = bytes; } class StoreRXY opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdxaddr20only> : InstRXY { let OpKey = mnemonic ## cls; let OpType = "mem"; let mayStore = 1; let AccessBytes = bytes; } multiclass StoreRXPair rxOpcode, bits<16> rxyOpcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : StoreRX; let DispSize = "20" in def Y : StoreRXY; } } class StoreMultipleRSY opcode, RegisterOperand cls> : InstRSY { let mayStore = 1; } // StoreSI* instructions are used to store an integer to memory, but the // addresses are more restricted than for normal stores. If we are in the // situation of having to force either the address into a register or the // constant into a register, it's usually better to do the latter. // We therefore match the address in the same way as a normal store and // only use the StoreSI* instruction if the matched address is suitable. class StoreSI opcode, SDPatternOperator operator, Immediate imm> : InstSI { let mayStore = 1; } class StoreSIY opcode, SDPatternOperator operator, Immediate imm> : InstSIY { let mayStore = 1; } class StoreSIL opcode, SDPatternOperator operator, Immediate imm> : InstSIL { let mayStore = 1; } multiclass StoreSIPair siOpcode, bits<16> siyOpcode, SDPatternOperator operator, Immediate imm> { let DispKey = mnemonic in { let DispSize = "12" in def "" : StoreSI; let DispSize = "20" in def Y : StoreSIY; } } class CondStoreRSY opcode, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let mayStore = 1; let AccessBytes = bytes; let CCMaskLast = 1; } // Like CondStoreRSY, but used for the raw assembly form. The condition-code // mask is the third operand rather than being part of the mnemonic. class AsmCondStoreRSY opcode, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let mayStore = 1; let AccessBytes = bytes; } // Like CondStoreRSY, but with a fixed CC mask. class FixedCondStoreRSY opcode, RegisterOperand cls, bits<4> ccmask, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let mayStore = 1; let AccessBytes = bytes; let R3 = ccmask; } class UnaryRR opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRR { let OpKey = mnemonic ## cls1; let OpType = "reg"; } class UnaryRRE opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRRE { let OpKey = mnemonic ## cls1; let OpType = "reg"; } class UnaryRRF opcode, RegisterOperand cls1, RegisterOperand cls2> : InstRRF { let OpKey = mnemonic ## cls1; let OpType = "reg"; let R4 = 0; } class UnaryRRF4 opcode, RegisterOperand cls1, RegisterOperand cls2> : InstRRF; // These instructions are generated by if conversion. The old value of R1 // is added as an implicit use. class CondUnaryRRF opcode, RegisterOperand cls1, RegisterOperand cls2> : InstRRF, Requires<[FeatureLoadStoreOnCond]> { let CCMaskLast = 1; let R4 = 0; } // Like CondUnaryRRF, but used for the raw assembly form. The condition-code // mask is the third operand rather than being part of the mnemonic. class AsmCondUnaryRRF opcode, RegisterOperand cls1, RegisterOperand cls2> : InstRRF, Requires<[FeatureLoadStoreOnCond]> { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let R4 = 0; } // Like CondUnaryRRF, but with a fixed CC mask. class FixedCondUnaryRRF opcode, RegisterOperand cls1, RegisterOperand cls2, bits<4> ccmask> : InstRRF, Requires<[FeatureLoadStoreOnCond]> { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let R3 = ccmask; let R4 = 0; } class UnaryRI opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRI; class UnaryRIL opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRIL; class UnaryRILPC opcode, SDPatternOperator operator, RegisterOperand cls> : InstRIL { let mayLoad = 1; // We want PC-relative addresses to be tried ahead of BD and BDX addresses. // However, BDXs have two extra operands and are therefore 6 units more // complex. let AddedComplexity = 7; } class CondUnaryRSY opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let AccessBytes = bytes; let CCMaskLast = 1; } // Like CondUnaryRSY, but used for the raw assembly form. The condition-code // mask is the third operand rather than being part of the mnemonic. class AsmCondUnaryRSY opcode, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let mayLoad = 1; let AccessBytes = bytes; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } // Like CondUnaryRSY, but with a fixed CC mask. class FixedCondUnaryRSY opcode, RegisterOperand cls, bits<4> ccmask, bits<5> bytes, AddressingMode mode = bdaddr20only> : InstRSY, Requires<[FeatureLoadStoreOnCond]> { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let R3 = ccmask; let mayLoad = 1; let AccessBytes = bytes; } class UnaryRX opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdxaddr12only> : InstRX { let OpKey = mnemonic ## cls; let OpType = "mem"; let mayLoad = 1; let AccessBytes = bytes; } class UnaryRXE opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes> : InstRXE { let OpKey = mnemonic ## cls; let OpType = "mem"; let mayLoad = 1; let AccessBytes = bytes; } class UnaryRXY opcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes, AddressingMode mode = bdxaddr20only> : InstRXY { let OpKey = mnemonic ## cls; let OpType = "mem"; let mayLoad = 1; let AccessBytes = bytes; } multiclass UnaryRXPair rxOpcode, bits<16> rxyOpcode, SDPatternOperator operator, RegisterOperand cls, bits<5> bytes> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : UnaryRX; let DispSize = "20" in def Y : UnaryRXY; } } class BinaryRR opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRR { let OpKey = mnemonic ## cls1; let OpType = "reg"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class BinaryRRE opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRRE { let OpKey = mnemonic ## cls1; let OpType = "reg"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class BinaryRRF opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRRF { let OpKey = mnemonic ## cls1; let OpType = "reg"; let R4 = 0; } class BinaryRRFK opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRRF { let R4 = 0; } multiclass BinaryRRAndK opcode1, bits<16> opcode2, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> { let NumOpsKey = mnemonic in { let NumOpsValue = "3" in def K : BinaryRRFK, Requires<[FeatureDistinctOps]>; let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in def "" : BinaryRR; } } multiclass BinaryRREAndK opcode1, bits<16> opcode2, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> { let NumOpsKey = mnemonic in { let NumOpsValue = "3" in def K : BinaryRRFK, Requires<[FeatureDistinctOps]>; let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in def "" : BinaryRRE; } } class BinaryRI opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRI { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class BinaryRIE opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRIEd; multiclass BinaryRIAndK opcode1, bits<16> opcode2, SDPatternOperator operator, RegisterOperand cls, Immediate imm> { let NumOpsKey = mnemonic in { let NumOpsValue = "3" in def K : BinaryRIE, Requires<[FeatureDistinctOps]>; let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in def "" : BinaryRI; } } class BinaryRIL opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRIL { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class BinaryRX opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes, AddressingMode mode = bdxaddr12only> : InstRX { let OpKey = mnemonic ## cls; let OpType = "mem"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let AccessBytes = bytes; } class BinaryRXE opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes> : InstRXE { let OpKey = mnemonic ## cls; let OpType = "mem"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let AccessBytes = bytes; } class BinaryRXY opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes, AddressingMode mode = bdxaddr20only> : InstRXY { let OpKey = mnemonic ## cls; let OpType = "mem"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let AccessBytes = bytes; } multiclass BinaryRXPair rxOpcode, bits<16> rxyOpcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : BinaryRX; let DispSize = "20" in def Y : BinaryRXY; } } class BinarySI opcode, SDPatternOperator operator, Operand imm, AddressingMode mode = bdaddr12only> : InstSI { let mayLoad = 1; let mayStore = 1; } class BinarySIY opcode, SDPatternOperator operator, Operand imm, AddressingMode mode = bdaddr20only> : InstSIY { let mayLoad = 1; let mayStore = 1; } multiclass BinarySIPair siOpcode, bits<16> siyOpcode, SDPatternOperator operator, Operand imm> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : BinarySI; let DispSize = "20" in def Y : BinarySIY; } } class ShiftRS opcode, SDPatternOperator operator, RegisterOperand cls> : InstRS { let R3 = 0; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class ShiftRSY opcode, SDPatternOperator operator, RegisterOperand cls> : InstRSY; multiclass ShiftRSAndK opcode1, bits<16> opcode2, SDPatternOperator operator, RegisterOperand cls> { let NumOpsKey = mnemonic in { let NumOpsValue = "3" in def K : ShiftRSY, Requires<[FeatureDistinctOps]>; let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in def "" : ShiftRS; } } class CompareRR opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRR { let OpKey = mnemonic ## cls1; let OpType = "reg"; let isCompare = 1; } class CompareRRE opcode, SDPatternOperator operator, RegisterOperand cls1, RegisterOperand cls2> : InstRRE { let OpKey = mnemonic ## cls1; let OpType = "reg"; let isCompare = 1; } class CompareRI opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRI { let isCompare = 1; } class CompareRIL opcode, SDPatternOperator operator, RegisterOperand cls, Immediate imm> : InstRIL { let isCompare = 1; } class CompareRILPC opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load> : InstRIL { let isCompare = 1; let mayLoad = 1; // We want PC-relative addresses to be tried ahead of BD and BDX addresses. // However, BDXs have two extra operands and are therefore 6 units more // complex. let AddedComplexity = 7; } class CompareRX opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes, AddressingMode mode = bdxaddr12only> : InstRX { let OpKey = mnemonic ## cls; let OpType = "mem"; let isCompare = 1; let mayLoad = 1; let AccessBytes = bytes; } class CompareRXE opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes> : InstRXE { let OpKey = mnemonic ## cls; let OpType = "mem"; let isCompare = 1; let mayLoad = 1; let AccessBytes = bytes; } class CompareRXY opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes, AddressingMode mode = bdxaddr20only> : InstRXY { let OpKey = mnemonic ## cls; let OpType = "mem"; let isCompare = 1; let mayLoad = 1; let AccessBytes = bytes; } multiclass CompareRXPair rxOpcode, bits<16> rxyOpcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : CompareRX; let DispSize = "20" in def Y : CompareRXY; } } class CompareSI opcode, SDPatternOperator operator, SDPatternOperator load, Immediate imm, AddressingMode mode = bdaddr12only> : InstSI { let isCompare = 1; let mayLoad = 1; } class CompareSIL opcode, SDPatternOperator operator, SDPatternOperator load, Immediate imm> : InstSIL { let isCompare = 1; let mayLoad = 1; } class CompareSIY opcode, SDPatternOperator operator, SDPatternOperator load, Immediate imm, AddressingMode mode = bdaddr20only> : InstSIY { let isCompare = 1; let mayLoad = 1; } multiclass CompareSIPair siOpcode, bits<16> siyOpcode, SDPatternOperator operator, SDPatternOperator load, Immediate imm> { let DispKey = mnemonic in { let DispSize = "12" in def "" : CompareSI; let DispSize = "20" in def Y : CompareSIY; } } class TernaryRRD opcode, SDPatternOperator operator, RegisterOperand cls> : InstRRD { let OpKey = mnemonic ## cls; let OpType = "reg"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } class TernaryRXF opcode, SDPatternOperator operator, RegisterOperand cls, SDPatternOperator load, bits<5> bytes> : InstRXF { let OpKey = mnemonic ## cls; let OpType = "mem"; let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let AccessBytes = bytes; } class CmpSwapRS opcode, SDPatternOperator operator, RegisterOperand cls, AddressingMode mode = bdaddr12only> : InstRS { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let mayStore = 1; } class CmpSwapRSY opcode, SDPatternOperator operator, RegisterOperand cls, AddressingMode mode = bdaddr20only> : InstRSY { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; let mayLoad = 1; let mayStore = 1; } multiclass CmpSwapRSPair rsOpcode, bits<16> rsyOpcode, SDPatternOperator operator, RegisterOperand cls> { let DispKey = mnemonic ## #cls in { let DispSize = "12" in def "" : CmpSwapRS; let DispSize = "20" in def Y : CmpSwapRSY; } } class RotateSelectRIEf opcode, RegisterOperand cls1, RegisterOperand cls2> : InstRIEf { let Constraints = "$R1 = $R1src"; let DisableEncoding = "$R1src"; } // A floating-point load-and test operation. Create both a normal unary // operation and one that acts as a comparison against zero. multiclass LoadAndTestRRE opcode, RegisterOperand cls> { def "" : UnaryRRE; let isCodeGenOnly = 1 in def Compare : CompareRRE; } //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// // // Convenience instructions that get lowered to real instructions // by either SystemZTargetLowering::EmitInstrWithCustomInserter() // or SystemZInstrInfo::expandPostRAPseudo(). // //===----------------------------------------------------------------------===// class Pseudo pattern> : InstSystemZ<0, outs, ins, "", pattern> { let isPseudo = 1; let isCodeGenOnly = 1; } // Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is // the value of the PSW's 2-bit condition code field. class SelectWrapper : Pseudo<(outs cls:$dst), (ins cls:$src1, cls:$src2, uimm8zx4:$valid, uimm8zx4:$cc), [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2, uimm8zx4:$valid, uimm8zx4:$cc))]> { let usesCustomInserter = 1; // Although the instructions used by these nodes do not in themselves // change CC, the insertion requires new blocks, and CC cannot be live // across them. let Defs = [CC]; let Uses = [CC]; } // Stores $new to $addr if $cc is true ("" case) or false (Inv case). multiclass CondStores { let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in { def "" : Pseudo<(outs), (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc), [(store (z_select_ccmask cls:$new, (load mode:$addr), uimm8zx4:$valid, uimm8zx4:$cc), mode:$addr)]>; def Inv : Pseudo<(outs), (ins cls:$new, mode:$addr, uimm8zx4:$valid, uimm8zx4:$cc), [(store (z_select_ccmask (load mode:$addr), cls:$new, uimm8zx4:$valid, uimm8zx4:$cc), mode:$addr)]>; } } // OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND // describe the second (non-memory) operand. class AtomicLoadBinary : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2), [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> { let Defs = [CC]; let Has20BitOffset = 1; let mayLoad = 1; let mayStore = 1; let usesCustomInserter = 1; } // Specializations of AtomicLoadWBinary. class AtomicLoadBinaryReg32 : AtomicLoadBinary; class AtomicLoadBinaryImm32 : AtomicLoadBinary; class AtomicLoadBinaryReg64 : AtomicLoadBinary; class AtomicLoadBinaryImm64 : AtomicLoadBinary; // OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND // describe the second (non-memory) operand. class AtomicLoadWBinary : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize), [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift, ADDR32:$negbitshift, uimm32:$bitsize))]> { let Defs = [CC]; let Has20BitOffset = 1; let mayLoad = 1; let mayStore = 1; let usesCustomInserter = 1; } // Specializations of AtomicLoadWBinary. class AtomicLoadWBinaryReg : AtomicLoadWBinary; class AtomicLoadWBinaryImm : AtomicLoadWBinary; // Define an instruction that operates on two fixed-length blocks of memory. // The real instruction uses a bdladdr12onlylen8 for the first operand and a // bdaddr12only for the second, with the length of the second operand being // implicitly the same as the first. This arrangement matches the underlying // assembly syntax. However, for instruction selection it's easier to have // two normal bdaddr12onlys and a separate length operand, so define a pseudo // instruction for that too. multiclass MemorySS opcode, SDPatternOperator operator> { def "" : InstSS; let usesCustomInserter = 1 in def Wrapper : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src, imm32len8:$length), [(operator bdaddr12only:$dest, bdaddr12only:$src, imm32len8:$length)]>; } // Define an instruction that operates on two strings, both terminated // by the character in R0. The instruction processes a CPU-determinated // number of bytes at a time and sets CC to 3 if the instruction needs // to be repeated. Also define a pseudo instruction that represents // the full loop (the main instruction plus the branch on CC==3). multiclass StringRRE opcode, SDPatternOperator operator> { def "" : InstRRE { let Constraints = "$R1 = $R1src, $R2 = $R2src"; let DisableEncoding = "$R1src, $R2src"; } let usesCustomInserter = 1 in def Loop : Pseudo<(outs GR64:$end), (ins GR64:$start1, GR64:$start2, GR32:$char), [(set GR64:$end, (operator GR64:$start1, GR64:$start2, GR32:$char))]>; }