//===-- TargetData.cpp - Data size & alignment routines --------------------==// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines target properties related to datatype size/offset/alignment // information. // // This structure should be created once, filled in if the defaults are not // correct and then passed around by const&. None of the members functions // require modification to the object. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetData.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Constants.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/MathExtras.h" #include <algorithm> using namespace llvm; // Handle the Pass registration stuff necessary to use TargetData's. namespace { // Register the default SparcV9 implementation... RegisterPass<TargetData> X("targetdata", "Target Data Layout"); } static inline void getTypeInfo(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment); //===----------------------------------------------------------------------===// // Support for StructLayout //===----------------------------------------------------------------------===// StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { StructAlignment = 0; StructSize = 0; // Loop over each of the elements, placing them in memory... for (StructType::element_iterator TI = ST->element_begin(), TE = ST->element_end(); TI != TE; ++TI) { const Type *Ty = *TI; unsigned char A; unsigned TyAlign; uint64_t TySize; getTypeInfo(Ty, &TD, TySize, A); TyAlign = A; // Add padding if necessary to make the data element aligned properly... if (StructSize % TyAlign != 0) StructSize = (StructSize/TyAlign + 1) * TyAlign; // Add padding... // Keep track of maximum alignment constraint StructAlignment = std::max(TyAlign, StructAlignment); MemberOffsets.push_back(StructSize); StructSize += TySize; // Consume space for this data item } // Empty structures have alignment of 1 byte. if (StructAlignment == 0) StructAlignment = 1; // Add padding to the end of the struct so that it could be put in an array // and all array elements would be aligned correctly. if (StructSize % StructAlignment != 0) StructSize = (StructSize/StructAlignment + 1) * StructAlignment; } /// getElementContainingOffset - Given a valid offset into the structure, /// return the structure index that contains it. unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { std::vector<uint64_t>::const_iterator SI = std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset); assert(SI != MemberOffsets.begin() && "Offset not in structure type!"); --SI; assert(*SI <= Offset && "upper_bound didn't work"); assert((SI == MemberOffsets.begin() || *(SI-1) < Offset) && (SI+1 == MemberOffsets.end() || *(SI+1) > Offset) && "Upper bound didn't work!"); return SI-MemberOffsets.begin(); } //===----------------------------------------------------------------------===// // TargetData Class Implementation //===----------------------------------------------------------------------===// TargetData::TargetData(const std::string &TargetName, bool isLittleEndian, unsigned char PtrSize, unsigned char PtrAl, unsigned char DoubleAl, unsigned char FloatAl, unsigned char LongAl, unsigned char IntAl, unsigned char ShortAl, unsigned char ByteAl, unsigned char BoolAl) { // If this assert triggers, a pass "required" TargetData information, but the // top level tool did not provide one for it. We do not want to default // construct, or else we might end up using a bad endianness or pointer size! // assert(!TargetName.empty() && "ERROR: Tool did not specify a target data to use!"); LittleEndian = isLittleEndian; PointerSize = PtrSize; PointerAlignment = PtrAl; DoubleAlignment = DoubleAl; FloatAlignment = FloatAl; LongAlignment = LongAl; IntAlignment = IntAl; ShortAlignment = ShortAl; ByteAlignment = ByteAl; BoolAlignment = BoolAl; } TargetData::TargetData(const std::string &ToolName, const Module *M) { LittleEndian = M->getEndianness() != Module::BigEndian; PointerSize = M->getPointerSize() != Module::Pointer64 ? 4 : 8; PointerAlignment = PointerSize; DoubleAlignment = PointerSize; FloatAlignment = 4; LongAlignment = PointerSize; IntAlignment = 4; ShortAlignment = 2; ByteAlignment = 1; BoolAlignment = 1; } static std::map<std::pair<const TargetData*,const StructType*>, StructLayout> *Layouts = 0; TargetData::~TargetData() { if (Layouts) { // Remove any layouts for this TD. std::map<std::pair<const TargetData*, const StructType*>, StructLayout>::iterator I = Layouts->lower_bound(std::make_pair(this, (const StructType*)0)); while (I != Layouts->end() && I->first.first == this) Layouts->erase(I++); if (Layouts->empty()) { delete Layouts; Layouts = 0; } } } const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { if (Layouts == 0) Layouts = new std::map<std::pair<const TargetData*,const StructType*>, StructLayout>(); std::map<std::pair<const TargetData*,const StructType*>, StructLayout>::iterator I = Layouts->lower_bound(std::make_pair(this, Ty)); if (I != Layouts->end() && I->first.first == this && I->first.second == Ty) return &I->second; else { return &Layouts->insert(I, std::make_pair(std::make_pair(this, Ty), StructLayout(Ty, *this)))->second; } } static inline void getTypeInfo(const Type *Ty, const TargetData *TD, uint64_t &Size, unsigned char &Alignment) { assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); switch (Ty->getTypeID()) { case Type::BoolTyID: Size = 1; Alignment = TD->getBoolAlignment(); return; case Type::VoidTyID: case Type::UByteTyID: case Type::SByteTyID: Size = 1; Alignment = TD->getByteAlignment(); return; case Type::UShortTyID: case Type::ShortTyID: Size = 2; Alignment = TD->getShortAlignment(); return; case Type::UIntTyID: case Type::IntTyID: Size = 4; Alignment = TD->getIntAlignment(); return; case Type::ULongTyID: case Type::LongTyID: Size = 8; Alignment = TD->getLongAlignment(); return; case Type::FloatTyID: Size = 4; Alignment = TD->getFloatAlignment(); return; case Type::DoubleTyID: Size = 8; Alignment = TD->getDoubleAlignment(); return; case Type::LabelTyID: case Type::PointerTyID: Size = TD->getPointerSize(); Alignment = TD->getPointerAlignment(); return; case Type::ArrayTyID: { const ArrayType *ATy = cast<ArrayType>(Ty); getTypeInfo(ATy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*ATy->getNumElements(); return; } case Type::PackedTyID: { const PackedType *PTy = cast<PackedType>(Ty); getTypeInfo(PTy->getElementType(), TD, Size, Alignment); unsigned AlignedSize = (Size + Alignment - 1)/Alignment*Alignment; Size = AlignedSize*PTy->getNumElements(); return; } case Type::StructTyID: { // Get the layout annotation... which is lazily created on demand. const StructLayout *Layout = TD->getStructLayout(cast<StructType>(Ty)); Size = Layout->StructSize; Alignment = Layout->StructAlignment; return; } default: assert(0 && "Bad type for getTypeInfo!!!"); return; } } uint64_t TargetData::getTypeSize(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfo(Ty, this, Size, Align); return Size; } unsigned char TargetData::getTypeAlignment(const Type *Ty) const { uint64_t Size; unsigned char Align; getTypeInfo(Ty, this, Size, Align); return Align; } unsigned char TargetData::getTypeAlignmentShift(const Type *Ty) const { unsigned Align = getTypeAlignment(Ty); assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); return Log2_32(Align); } /// getIntPtrType - Return an unsigned integer type that is the same size or /// greater to the host pointer size. const Type *TargetData::getIntPtrType() const { switch (getPointerSize()) { default: assert(0 && "Unknown pointer size!"); case 2: return Type::UShortTy; case 4: return Type::UIntTy; case 8: return Type::ULongTy; } } uint64_t TargetData::getIndexedOffset(const Type *ptrTy, const std::vector<Value*> &Idx) const { const Type *Ty = ptrTy; assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()"); uint64_t Result = 0; generic_gep_type_iterator<std::vector<Value*>::const_iterator> TI = gep_type_begin(ptrTy, Idx.begin(), Idx.end()); for (unsigned CurIDX = 0; CurIDX != Idx.size(); ++CurIDX, ++TI) { if (const StructType *STy = dyn_cast<StructType>(*TI)) { assert(Idx[CurIDX]->getType() == Type::UIntTy && "Illegal struct idx"); unsigned FieldNo = cast<ConstantUInt>(Idx[CurIDX])->getValue(); // Get structure layout information... const StructLayout *Layout = getStructLayout(STy); // Add in the offset, as calculated by the structure layout info... assert(FieldNo < Layout->MemberOffsets.size() &&"FieldNo out of range!"); Result += Layout->MemberOffsets[FieldNo]; // Update Ty to refer to current element Ty = STy->getElementType(FieldNo); } else { // Update Ty to refer to current element Ty = cast<SequentialType>(Ty)->getElementType(); // Get the array index and the size of each array element. int64_t arrayIdx = cast<ConstantInt>(Idx[CurIDX])->getRawValue(); Result += arrayIdx * (int64_t)getTypeSize(Ty); } } return Result; }