//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to AT&T format assembly // language. This printer is the output mechanism used by `llc'. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "X86ATTAsmPrinter.h" #include "X86.h" #include "X86COFF.h" #include "X86MachineFunctionInfo.h" #include "X86TargetMachine.h" #include "X86TargetAsmInfo.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/MDNode.h" #include "llvm/Type.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCStreamer.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); static cl::opt NewAsmPrinter("experimental-asm-printer", cl::Hidden); //===----------------------------------------------------------------------===// // Primitive Helper Functions. //===----------------------------------------------------------------------===// void X86ATTAsmPrinter::PrintPICBaseSymbol() const { if (Subtarget->isTargetDarwin()) O << "\"L" << getFunctionNumber() << "$pb\""; else if (Subtarget->isTargetELF()) O << ".Lllvm$" << getFunctionNumber() << ".$piclabel"; else LLVM_UNREACHABLE("Don't know how to print PIC label!"); } /// PrintUnmangledNameSafely - Print out the printable characters in the name. /// Don't print things like \\n or \\0. static void PrintUnmangledNameSafely(const Value *V, raw_ostream &OS) { for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen(); Name != E; ++Name) if (isprint(*Name)) OS << *Name; } static X86MachineFunctionInfo calculateFunctionInfo(const Function *F, const TargetData *TD) { X86MachineFunctionInfo Info; uint64_t Size = 0; switch (F->getCallingConv()) { case CallingConv::X86_StdCall: Info.setDecorationStyle(StdCall); break; case CallingConv::X86_FastCall: Info.setDecorationStyle(FastCall); break; default: return Info; } unsigned argNum = 1; for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); AI != AE; ++AI, ++argNum) { const Type* Ty = AI->getType(); // 'Dereference' type in case of byval parameter attribute if (F->paramHasAttr(argNum, Attribute::ByVal)) Ty = cast(Ty)->getElementType(); // Size should be aligned to DWORD boundary Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4; } // We're not supporting tooooo huge arguments :) Info.setBytesToPopOnReturn((unsigned int)Size); return Info; } /// decorateName - Query FunctionInfoMap and use this information for various /// name decoration. void X86ATTAsmPrinter::decorateName(std::string &Name, const GlobalValue *GV) { const Function *F = dyn_cast(GV); if (!F) return; // Save function name for later type emission. if (Subtarget->isTargetCygMing() && F->isDeclaration()) CygMingStubs.insert(Name); // We don't want to decorate non-stdcall or non-fastcall functions right now unsigned CC = F->getCallingConv(); if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall) return; // Decorate names only when we're targeting Cygwin/Mingw32 targets if (!Subtarget->isTargetCygMing()) return; FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F); const X86MachineFunctionInfo *Info; if (info_item == FunctionInfoMap.end()) { // Calculate apropriate function info and populate map FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData()); Info = &FunctionInfoMap[F]; } else { Info = &info_item->second; } const FunctionType *FT = F->getFunctionType(); switch (Info->getDecorationStyle()) { case None: break; case StdCall: // "Pure" variadic functions do not receive @0 suffix. if (!FT->isVarArg() || (FT->getNumParams() == 0) || (FT->getNumParams() == 1 && F->hasStructRetAttr())) Name += '@' + utostr_32(Info->getBytesToPopOnReturn()); break; case FastCall: // "Pure" variadic functions do not receive @0 suffix. if (!FT->isVarArg() || (FT->getNumParams() == 0) || (FT->getNumParams() == 1 && F->hasStructRetAttr())) Name += '@' + utostr_32(Info->getBytesToPopOnReturn()); if (Name[0] == '_') { Name[0] = '@'; } else { Name = '@' + Name; } break; default: LLVM_UNREACHABLE("Unsupported DecorationStyle"); } } void X86ATTAsmPrinter::emitFunctionHeader(const MachineFunction &MF) { unsigned FnAlign = MF.getAlignment(); const Function *F = MF.getFunction(); decorateName(CurrentFnName, F); SwitchToSection(TAI->SectionForGlobal(F)); switch (F->getLinkage()) { default: LLVM_UNREACHABLE("Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. case Function::PrivateLinkage: EmitAlignment(FnAlign, F); break; case Function::DLLExportLinkage: case Function::ExternalLinkage: EmitAlignment(FnAlign, F); O << "\t.globl\t" << CurrentFnName << '\n'; break; case Function::LinkOnceAnyLinkage: case Function::LinkOnceODRLinkage: case Function::WeakAnyLinkage: case Function::WeakODRLinkage: EmitAlignment(FnAlign, F); if (Subtarget->isTargetDarwin()) { O << "\t.globl\t" << CurrentFnName << '\n'; O << TAI->getWeakDefDirective() << CurrentFnName << '\n'; } else if (Subtarget->isTargetCygMing()) { O << "\t.globl\t" << CurrentFnName << "\n" "\t.linkonce discard\n"; } else { O << "\t.weak\t" << CurrentFnName << '\n'; } break; } printVisibility(CurrentFnName, F->getVisibility()); if (Subtarget->isTargetELF()) O << "\t.type\t" << CurrentFnName << ",@function\n"; else if (Subtarget->isTargetCygMing()) { O << "\t.def\t " << CurrentFnName << ";\t.scl\t" << (F->hasInternalLinkage() ? COFF::C_STAT : COFF::C_EXT) << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT) << ";\t.endef\n"; } O << CurrentFnName << ":\n"; // Add some workaround for linkonce linkage on Cygwin\MinGW if (Subtarget->isTargetCygMing() && (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n"; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) { const Function *F = MF.getFunction(); this->MF = &MF; unsigned CC = F->getCallingConv(); SetupMachineFunction(MF); O << "\n\n"; // Populate function information map. Actually, We don't want to populate // non-stdcall or non-fastcall functions' information right now. if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall) FunctionInfoMap[F] = *MF.getInfo(); // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); if (F->hasDLLExportLinkage()) DLLExportedFns.insert(Mang->getValueName(F)); // Print the 'header' of function emitFunctionHeader(MF); // Emit pre-function debug and/or EH information. if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) DW->BeginFunction(&MF); // Print out code for the function. bool hasAnyRealCode = false; for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (!VerboseAsm && (I->pred_empty() || I->isOnlyReachableByFallthrough())) { // This is an entry block or a block that's only reachable via a // fallthrough edge. In non-VerboseAsm mode, don't print the label. } else { printBasicBlockLabel(I, true, true, VerboseAsm); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { // Print the assembly for the instruction. if (!II->isLabel()) hasAnyRealCode = true; printMachineInstruction(II); } } if (Subtarget->isTargetDarwin() && !hasAnyRealCode) { // If the function is empty, then we need to emit *something*. Otherwise, // the function's label might be associated with something that it wasn't // meant to be associated with. We emit a noop in this situation. // We are assuming inline asms are code. O << "\tnop\n"; } if (TAI->hasDotTypeDotSizeDirective()) O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n'; // Emit post-function debug information. if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling()) DW->EndFunction(&MF); // Print out jump tables referenced by the function. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); O.flush(); // We didn't modify anything. return false; } /// printSymbolOperand - Print a raw symbol reference operand. This handles /// jump tables, constant pools, global address and external symbols, all of /// which print to a label with various suffixes for relocation types etc. void X86ATTAsmPrinter::printSymbolOperand(const MachineOperand &MO) { switch (MO.getType()) { default: LLVM_UNREACHABLE("unknown symbol type!"); case MachineOperand::MO_JumpTableIndex: O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); break; case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); printOffset(MO.getOffset()); break; case MachineOperand::MO_GlobalAddress: { const GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); decorateName(Name, GV); bool needCloseParen = false; if (Name[0] == '$') { // The name begins with a dollar-sign. In order to avoid having it look // like an integer immediate to the assembler, enclose it in parens. O << '('; needCloseParen = true; } // Handle dllimport linkage. if (MO.getTargetFlags() == X86II::MO_DLLIMPORT) { O << "__imp_" << Name; } else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE) { GVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); } else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY || MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE){ HiddenGVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); } else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) { FnStubs.insert(Name); printSuffixedName(Name, "$stub"); } else { O << Name; } if (needCloseParen) O << ')'; printOffset(MO.getOffset()); break; } case MachineOperand::MO_ExternalSymbol: { bool needCloseParen = false; std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); if (Name[0] == '$') { // The name begins with a dollar-sign. In order to avoid having it look // like an integer immediate to the assembler, enclose it in parens. O << '('; needCloseParen = true; } if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) { FnStubs.insert(Name); printSuffixedName(Name, "$stub"); } else { O << Name; } if (needCloseParen) O << ')'; break; } } switch (MO.getTargetFlags()) { default: LLVM_UNREACHABLE("Unknown target flag on GV operand"); case X86II::MO_NO_FLAG: // No flag. break; case X86II::MO_DARWIN_NONLAZY: case X86II::MO_DARWIN_HIDDEN_NONLAZY: case X86II::MO_DLLIMPORT: case X86II::MO_DARWIN_STUB: // These affect the name of the symbol, not any suffix. break; case X86II::MO_GOT_ABSOLUTE_ADDRESS: O << " + [.-"; PrintPICBaseSymbol(); O << ']'; break; case X86II::MO_PIC_BASE_OFFSET: case X86II::MO_DARWIN_NONLAZY_PIC_BASE: case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: O << '-'; PrintPICBaseSymbol(); break; case X86II::MO_TLSGD: O << "@TLSGD"; break; case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break; case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break; case X86II::MO_TPOFF: O << "@TPOFF"; break; case X86II::MO_NTPOFF: O << "@NTPOFF"; break; case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break; case X86II::MO_GOT: O << "@GOT"; break; case X86II::MO_GOTOFF: O << "@GOTOFF"; break; case X86II::MO_PLT: O << "@PLT"; break; } } /// print_pcrel_imm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value. These print slightly differently, for /// example, a $ is not emitted. void X86ATTAsmPrinter::print_pcrel_imm(const MachineInstr *MI, unsigned OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { default: LLVM_UNREACHABLE("Unknown pcrel immediate operand"); case MachineOperand::MO_Immediate: O << MO.getImm(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMBB(), false, false, VerboseAsm); return; case MachineOperand::MO_GlobalAddress: printSymbolOperand(MO); return; case MachineOperand::MO_ExternalSymbol: printSymbolOperand(MO); return; } } void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo, const char *Modifier) { const MachineOperand &MO = MI->getOperand(OpNo); switch (MO.getType()) { default: LLVM_UNREACHABLE("unknown operand type!"); case MachineOperand::MO_Register: { assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && "Virtual registers should not make it this far!"); O << '%'; unsigned Reg = MO.getReg(); if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) { MVT VT = (strcmp(Modifier+6,"64") == 0) ? MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 : ((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8)); Reg = getX86SubSuperRegister(Reg, VT); } O << TRI->getAsmName(Reg); return; } case MachineOperand::MO_Immediate: O << '$' << MO.getImm(); return; case MachineOperand::MO_JumpTableIndex: case MachineOperand::MO_ConstantPoolIndex: case MachineOperand::MO_GlobalAddress: case MachineOperand::MO_ExternalSymbol: { O << '$'; printSymbolOperand(MO); break; } } } void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) { unsigned char value = MI->getOperand(Op).getImm(); assert(value <= 7 && "Invalid ssecc argument!"); switch (value) { case 0: O << "eq"; break; case 1: O << "lt"; break; case 2: O << "le"; break; case 3: O << "unord"; break; case 4: O << "neq"; break; case 5: O << "nlt"; break; case 6: O << "nle"; break; case 7: O << "ord"; break; } } void X86ATTAsmPrinter::printLeaMemReference(const MachineInstr *MI, unsigned Op, const char *Modifier) { const MachineOperand &BaseReg = MI->getOperand(Op); const MachineOperand &IndexReg = MI->getOperand(Op+2); const MachineOperand &DispSpec = MI->getOperand(Op+3); // If we really don't want to print out (rip), don't. bool HasBaseReg = BaseReg.getReg() != 0; if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") && BaseReg.getReg() == X86::RIP) HasBaseReg = false; // HasParenPart - True if we will print out the () part of the mem ref. bool HasParenPart = IndexReg.getReg() || HasBaseReg; if (DispSpec.isImm()) { int DispVal = DispSpec.getImm(); if (DispVal || !HasParenPart) O << DispVal; } else { assert(DispSpec.isGlobal() || DispSpec.isCPI() || DispSpec.isJTI() || DispSpec.isSymbol()); printSymbolOperand(MI->getOperand(Op+3)); } if (HasParenPart) { assert(IndexReg.getReg() != X86::ESP && "X86 doesn't allow scaling by ESP"); O << '('; if (HasBaseReg) printOperand(MI, Op, Modifier); if (IndexReg.getReg()) { O << ','; printOperand(MI, Op+2, Modifier); unsigned ScaleVal = MI->getOperand(Op+1).getImm(); if (ScaleVal != 1) O << ',' << ScaleVal; } O << ')'; } } void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op, const char *Modifier) { assert(isMem(MI, Op) && "Invalid memory reference!"); const MachineOperand &Segment = MI->getOperand(Op+4); if (Segment.getReg()) { printOperand(MI, Op+4, Modifier); O << ':'; } printLeaMemReference(MI, Op, Modifier); } void X86ATTAsmPrinter::printPICJumpTableSetLabel(unsigned uid, const MachineBasicBlock *MBB) const { if (!TAI->getSetDirective()) return; // We don't need .set machinery if we have GOT-style relocations if (Subtarget->isPICStyleGOT()) return; O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ','; printBasicBlockLabel(MBB, false, false, false); if (Subtarget->isPICStyleRIPRel()) O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << uid << '\n'; else { O << '-'; PrintPICBaseSymbol(); O << '\n'; } } void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) { PrintPICBaseSymbol(); O << '\n'; PrintPICBaseSymbol(); O << ':'; } void X86ATTAsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid) const { const char *JTEntryDirective = MJTI->getEntrySize() == 4 ? TAI->getData32bitsDirective() : TAI->getData64bitsDirective(); O << JTEntryDirective << ' '; if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStubPIC()) { O << TAI->getPrivateGlobalPrefix() << getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber(); } else if (Subtarget->isPICStyleGOT()) { printBasicBlockLabel(MBB, false, false, false); O << "@GOTOFF"; } else printBasicBlockLabel(MBB, false, false, false); } bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode) { unsigned Reg = MO.getReg(); switch (Mode) { default: return true; // Unknown mode. case 'b': // Print QImode register Reg = getX86SubSuperRegister(Reg, MVT::i8); break; case 'h': // Print QImode high register Reg = getX86SubSuperRegister(Reg, MVT::i8, true); break; case 'w': // Print HImode register Reg = getX86SubSuperRegister(Reg, MVT::i16); break; case 'k': // Print SImode register Reg = getX86SubSuperRegister(Reg, MVT::i32); break; case 'q': // Print DImode register Reg = getX86SubSuperRegister(Reg, MVT::i64); break; } O << '%'<< TRI->getAsmName(Reg); return false; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. const MachineOperand &MO = MI->getOperand(OpNo); switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'c': // Don't print "$" before a global var name or constant. if (MO.isImm()) O << MO.getImm(); else if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol()) printSymbolOperand(MO); else printOperand(MI, OpNo); return false; case 'A': // Print '*' before a register (it must be a register) if (MO.isReg()) { O << '*'; printOperand(MI, OpNo); return false; } return true; case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print DImode register if (MO.isReg()) return printAsmMRegister(MO, ExtraCode[0]); printOperand(MI, OpNo); return false; case 'P': // This is the operand of a call, treat specially. print_pcrel_imm(MI, OpNo); return false; case 'n': // Negate the immediate or print a '-' before the operand. // Note: this is a temporary solution. It should be handled target // independently as part of the 'MC' work. if (MO.isImm()) { O << -MO.getImm(); return false; } O << '-'; } } printOperand(MI, OpNo); return false; } bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'b': // Print QImode register case 'h': // Print QImode high register case 'w': // Print HImode register case 'k': // Print SImode register case 'q': // Print SImode register // These only apply to registers, ignore on mem. break; case 'P': // Don't print @PLT, but do print as memory. printMemReference(MI, OpNo, "no-rip"); return false; } } printMemReference(MI, OpNo); return false; } static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) { // Convert registers in the addr mode according to subreg64. for (unsigned i = 0; i != 4; ++i) { if (!MI->getOperand(i).isReg()) continue; unsigned Reg = MI->getOperand(i).getReg(); if (Reg == 0) continue; MI->getOperand(i).setReg(getX86SubSuperRegister(Reg, MVT::i64)); } } /// printMachineInstruction -- Print out a single X86 LLVM instruction MI in /// AT&T syntax to the current output stream. /// void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; if (NewAsmPrinter) { if (MI->getOpcode() == TargetInstrInfo::INLINEASM) { O << "\t"; printInlineAsm(MI); return; } else if (MI->isLabel()) { printLabel(MI); return; } else if (MI->getOpcode() == TargetInstrInfo::DECLARE) { printDeclare(MI); return; } else if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) { printImplicitDef(MI); return; } O << "NEW: "; MCInst TmpInst; TmpInst.setOpcode(MI->getOpcode()); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); MCOperand MCOp; if (MO.isReg()) { MCOp.MakeReg(MO.getReg()); } else if (MO.isImm()) { MCOp.MakeImm(MO.getImm()); } else if (MO.isMBB()) { MCOp.MakeMBBLabel(getFunctionNumber(), MO.getMBB()->getNumber()); } else { LLVM_UNREACHABLE("Unimp"); } TmpInst.addOperand(MCOp); } switch (TmpInst.getOpcode()) { case X86::LEA64_32r: // Handle the 'subreg rewriting' for the lea64_32mem operand. lower_lea64_32mem(&TmpInst, 1); break; } // FIXME: Convert TmpInst. printInstruction(&TmpInst); O << "OLD: "; } // Call the autogenerated instruction printer routines. printInstruction(MI); } /// doInitialization bool X86ATTAsmPrinter::doInitialization(Module &M) { if (NewAsmPrinter) { Context = new MCContext(); // FIXME: Send this to "O" instead of outs(). For now, we force it to // stdout to make it easy to compare. Streamer = createAsmStreamer(*Context, outs()); } return AsmPrinter::doInitialization(M); } void X86ATTAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) return; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) { if (Subtarget->isTargetDarwin() && TM.getRelocationModel() == Reloc::Static) { if (GVar->getName() == "llvm.global_ctors") O << ".reference .constructors_used\n"; else if (GVar->getName() == "llvm.global_dtors") O << ".reference .destructors_used\n"; } return; } std::string name = Mang->getValueName(GVar); Constant *C = GVar->getInitializer(); if (isa(C) || isa(C)) return; const Type *Type = C->getType(); unsigned Size = TD->getTypeAllocSize(Type); unsigned Align = TD->getPreferredAlignmentLog(GVar); printVisibility(name, GVar->getVisibility()); if (Subtarget->isTargetELF()) O << "\t.type\t" << name << ",@object\n"; SwitchToSection(TAI->SectionForGlobal(GVar)); if (C->isNullValue() && !GVar->hasSection() && !(Subtarget->isTargetDarwin() && TAI->SectionKindForGlobal(GVar) == SectionKind::RODataMergeStr)) { // FIXME: This seems to be pretty darwin-specific if (GVar->hasExternalLinkage()) { if (const char *Directive = TAI->getZeroFillDirective()) { O << "\t.globl " << name << '\n'; O << Directive << "__DATA, __common, " << name << ", " << Size << ", " << Align << '\n'; return; } } if (!GVar->isThreadLocal() && (GVar->hasLocalLinkage() || GVar->isWeakForLinker())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (TAI->getLCOMMDirective() != NULL) { if (GVar->hasLocalLinkage()) { O << TAI->getLCOMMDirective() << name << ',' << Size; if (Subtarget->isTargetDarwin()) O << ',' << Align; } else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) { O << "\t.globl " << name << '\n' << TAI->getWeakDefDirective() << name << '\n'; EmitAlignment(Align, GVar); O << name << ":"; if (VerboseAsm) { O << "\t\t\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); } O << '\n'; EmitGlobalConstant(C); return; } else { O << TAI->getCOMMDirective() << name << ',' << Size; if (TAI->getCOMMDirectiveTakesAlignment()) O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align); } } else { if (!Subtarget->isTargetCygMing()) { if (GVar->hasLocalLinkage()) O << "\t.local\t" << name << '\n'; } O << TAI->getCOMMDirective() << name << ',' << Size; if (TAI->getCOMMDirectiveTakesAlignment()) O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align); } if (VerboseAsm) { O << "\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); } O << '\n'; return; } } switch (GVar->getLinkage()) { case GlobalValue::CommonLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: if (Subtarget->isTargetDarwin()) { O << "\t.globl " << name << '\n' << TAI->getWeakDefDirective() << name << '\n'; } else if (Subtarget->isTargetCygMing()) { O << "\t.globl\t" << name << "\n" "\t.linkonce same_size\n"; } else { O << "\t.weak\t" << name << '\n'; } break; case GlobalValue::DLLExportLinkage: case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << '\n'; // FALL THROUGH case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: break; default: LLVM_UNREACHABLE("Unknown linkage type!"); } EmitAlignment(Align, GVar); O << name << ":"; if (VerboseAsm){ O << "\t\t\t\t" << TAI->getCommentString() << ' '; PrintUnmangledNameSafely(GVar, O); } O << '\n'; if (TAI->hasDotTypeDotSizeDirective()) O << "\t.size\t" << name << ", " << Size << '\n'; EmitGlobalConstant(C); } bool X86ATTAsmPrinter::doFinalization(Module &M) { // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { printModuleLevelGV(I); if (I->hasDLLExportLinkage()) DLLExportedGVs.insert(Mang->getValueName(I)); } if (Subtarget->isTargetDarwin()) { SwitchToDataSection(""); // Add the (possibly multiple) personalities to the set of global value // stubs. Only referenced functions get into the Personalities list. if (TAI->doesSupportExceptionHandling() && MMI && !Subtarget->is64Bit()) { const std::vector &Personalities = MMI->getPersonalities(); for (unsigned i = 0, e = Personalities.size(); i != e; ++i) { if (Personalities[i] == 0) continue; std::string Name = Mang->getValueName(Personalities[i]); decorateName(Name, Personalities[i]); GVStubs.insert(Name); } } // Output stubs for dynamically-linked functions if (!FnStubs.empty()) { for (StringSet<>::iterator I = FnStubs.begin(), E = FnStubs.end(); I != E; ++I) { SwitchToDataSection("\t.section __IMPORT,__jump_table,symbol_stubs," "self_modifying_code+pure_instructions,5", 0); const char *Name = I->getKeyData(); printSuffixedName(Name, "$stub"); O << ":\n" "\t.indirect_symbol " << Name << "\n" "\thlt ; hlt ; hlt ; hlt ; hlt\n"; } O << '\n'; } // Output stubs for external and common global variables. if (!GVStubs.empty()) { SwitchToDataSection( "\t.section __IMPORT,__pointers,non_lazy_symbol_pointers"); for (StringSet<>::iterator I = GVStubs.begin(), E = GVStubs.end(); I != E; ++I) { const char *Name = I->getKeyData(); printSuffixedName(Name, "$non_lazy_ptr"); O << ":\n\t.indirect_symbol " << Name << "\n\t.long\t0\n"; } } if (!HiddenGVStubs.empty()) { SwitchToSection(TAI->getDataSection()); EmitAlignment(2); for (StringSet<>::iterator I = HiddenGVStubs.begin(), E = HiddenGVStubs.end(); I != E; ++I) { const char *Name = I->getKeyData(); printSuffixedName(Name, "$non_lazy_ptr"); O << ":\n" << TAI->getData32bitsDirective() << Name << '\n'; } } // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never // generates code that does this, it is always safe to set. O << "\t.subsections_via_symbols\n"; } else if (Subtarget->isTargetCygMing()) { // Emit type information for external functions for (StringSet<>::iterator i = CygMingStubs.begin(), e = CygMingStubs.end(); i != e; ++i) { O << "\t.def\t " << i->getKeyData() << ";\t.scl\t" << COFF::C_EXT << ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT) << ";\t.endef\n"; } } // Output linker support code for dllexported globals on windows. if (!DLLExportedGVs.empty()) { SwitchToDataSection(".section .drectve"); for (StringSet<>::iterator i = DLLExportedGVs.begin(), e = DLLExportedGVs.end(); i != e; ++i) O << "\t.ascii \" -export:" << i->getKeyData() << ",data\"\n"; } if (!DLLExportedFns.empty()) { SwitchToDataSection(".section .drectve"); for (StringSet<>::iterator i = DLLExportedFns.begin(), e = DLLExportedFns.end(); i != e; ++i) O << "\t.ascii \" -export:" << i->getKeyData() << "\"\n"; } // Do common shutdown. bool Changed = AsmPrinter::doFinalization(M); if (NewAsmPrinter) { Streamer->Finish(); delete Streamer; delete Context; Streamer = 0; Context = 0; } return Changed; } // Include the auto-generated portion of the assembly writer. #include "X86GenAsmWriter.inc"