//===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler. // It contains the public interface of the instruction decoder. // Documentation for the disassembler can be found in X86Disassembler.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H #define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H #include "X86DisassemblerDecoderCommon.h" #include "llvm/ADT/ArrayRef.h" namespace llvm { namespace X86Disassembler { // Accessor functions for various fields of an Intel instruction #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) #define regFromModRM(modRM) (((modRM) & 0x38) >> 3) #define rmFromModRM(modRM) ((modRM) & 0x7) #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) #define indexFromSIB(sib) (((sib) & 0x38) >> 3) #define baseFromSIB(sib) ((sib) & 0x7) #define wFromREX(rex) (((rex) & 0x8) >> 3) #define rFromREX(rex) (((rex) & 0x4) >> 2) #define xFromREX(rex) (((rex) & 0x2) >> 1) #define bFromREX(rex) ((rex) & 0x1) #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7) #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6) #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5) #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4) #define mmFromEVEX2of4(evex) ((evex) & 0x3) #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7) #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3) #define ppFromEVEX3of4(evex) ((evex) & 0x3) #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7) #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6) #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5) #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4) #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3) #define aaaFromEVEX4of4(evex) ((evex) & 0x7) #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) #define ppFromVEX3of3(vex) ((vex) & 0x3) #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) #define ppFromVEX2of2(vex) ((vex) & 0x3) #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7) #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6) #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5) #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f) #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7) #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3) #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2) #define ppFromXOP3of3(xop) ((xop) & 0x3) // These enums represent Intel registers for use by the decoder. #define REGS_8BIT \ ENTRY(AL) \ ENTRY(CL) \ ENTRY(DL) \ ENTRY(BL) \ ENTRY(AH) \ ENTRY(CH) \ ENTRY(DH) \ ENTRY(BH) \ ENTRY(R8B) \ ENTRY(R9B) \ ENTRY(R10B) \ ENTRY(R11B) \ ENTRY(R12B) \ ENTRY(R13B) \ ENTRY(R14B) \ ENTRY(R15B) \ ENTRY(SPL) \ ENTRY(BPL) \ ENTRY(SIL) \ ENTRY(DIL) #define EA_BASES_16BIT \ ENTRY(BX_SI) \ ENTRY(BX_DI) \ ENTRY(BP_SI) \ ENTRY(BP_DI) \ ENTRY(SI) \ ENTRY(DI) \ ENTRY(BP) \ ENTRY(BX) \ ENTRY(R8W) \ ENTRY(R9W) \ ENTRY(R10W) \ ENTRY(R11W) \ ENTRY(R12W) \ ENTRY(R13W) \ ENTRY(R14W) \ ENTRY(R15W) #define REGS_16BIT \ ENTRY(AX) \ ENTRY(CX) \ ENTRY(DX) \ ENTRY(BX) \ ENTRY(SP) \ ENTRY(BP) \ ENTRY(SI) \ ENTRY(DI) \ ENTRY(R8W) \ ENTRY(R9W) \ ENTRY(R10W) \ ENTRY(R11W) \ ENTRY(R12W) \ ENTRY(R13W) \ ENTRY(R14W) \ ENTRY(R15W) #define EA_BASES_32BIT \ ENTRY(EAX) \ ENTRY(ECX) \ ENTRY(EDX) \ ENTRY(EBX) \ ENTRY(sib) \ ENTRY(EBP) \ ENTRY(ESI) \ ENTRY(EDI) \ ENTRY(R8D) \ ENTRY(R9D) \ ENTRY(R10D) \ ENTRY(R11D) \ ENTRY(R12D) \ ENTRY(R13D) \ ENTRY(R14D) \ ENTRY(R15D) #define REGS_32BIT \ ENTRY(EAX) \ ENTRY(ECX) \ ENTRY(EDX) \ ENTRY(EBX) \ ENTRY(ESP) \ ENTRY(EBP) \ ENTRY(ESI) \ ENTRY(EDI) \ ENTRY(R8D) \ ENTRY(R9D) \ ENTRY(R10D) \ ENTRY(R11D) \ ENTRY(R12D) \ ENTRY(R13D) \ ENTRY(R14D) \ ENTRY(R15D) #define EA_BASES_64BIT \ ENTRY(RAX) \ ENTRY(RCX) \ ENTRY(RDX) \ ENTRY(RBX) \ ENTRY(sib64) \ ENTRY(RBP) \ ENTRY(RSI) \ ENTRY(RDI) \ ENTRY(R8) \ ENTRY(R9) \ ENTRY(R10) \ ENTRY(R11) \ ENTRY(R12) \ ENTRY(R13) \ ENTRY(R14) \ ENTRY(R15) #define REGS_64BIT \ ENTRY(RAX) \ ENTRY(RCX) \ ENTRY(RDX) \ ENTRY(RBX) \ ENTRY(RSP) \ ENTRY(RBP) \ ENTRY(RSI) \ ENTRY(RDI) \ ENTRY(R8) \ ENTRY(R9) \ ENTRY(R10) \ ENTRY(R11) \ ENTRY(R12) \ ENTRY(R13) \ ENTRY(R14) \ ENTRY(R15) #define REGS_MMX \ ENTRY(MM0) \ ENTRY(MM1) \ ENTRY(MM2) \ ENTRY(MM3) \ ENTRY(MM4) \ ENTRY(MM5) \ ENTRY(MM6) \ ENTRY(MM7) #define REGS_XMM \ ENTRY(XMM0) \ ENTRY(XMM1) \ ENTRY(XMM2) \ ENTRY(XMM3) \ ENTRY(XMM4) \ ENTRY(XMM5) \ ENTRY(XMM6) \ ENTRY(XMM7) \ ENTRY(XMM8) \ ENTRY(XMM9) \ ENTRY(XMM10) \ ENTRY(XMM11) \ ENTRY(XMM12) \ ENTRY(XMM13) \ ENTRY(XMM14) \ ENTRY(XMM15) \ ENTRY(XMM16) \ ENTRY(XMM17) \ ENTRY(XMM18) \ ENTRY(XMM19) \ ENTRY(XMM20) \ ENTRY(XMM21) \ ENTRY(XMM22) \ ENTRY(XMM23) \ ENTRY(XMM24) \ ENTRY(XMM25) \ ENTRY(XMM26) \ ENTRY(XMM27) \ ENTRY(XMM28) \ ENTRY(XMM29) \ ENTRY(XMM30) \ ENTRY(XMM31) #define REGS_YMM \ ENTRY(YMM0) \ ENTRY(YMM1) \ ENTRY(YMM2) \ ENTRY(YMM3) \ ENTRY(YMM4) \ ENTRY(YMM5) \ ENTRY(YMM6) \ ENTRY(YMM7) \ ENTRY(YMM8) \ ENTRY(YMM9) \ ENTRY(YMM10) \ ENTRY(YMM11) \ ENTRY(YMM12) \ ENTRY(YMM13) \ ENTRY(YMM14) \ ENTRY(YMM15) \ ENTRY(YMM16) \ ENTRY(YMM17) \ ENTRY(YMM18) \ ENTRY(YMM19) \ ENTRY(YMM20) \ ENTRY(YMM21) \ ENTRY(YMM22) \ ENTRY(YMM23) \ ENTRY(YMM24) \ ENTRY(YMM25) \ ENTRY(YMM26) \ ENTRY(YMM27) \ ENTRY(YMM28) \ ENTRY(YMM29) \ ENTRY(YMM30) \ ENTRY(YMM31) #define REGS_ZMM \ ENTRY(ZMM0) \ ENTRY(ZMM1) \ ENTRY(ZMM2) \ ENTRY(ZMM3) \ ENTRY(ZMM4) \ ENTRY(ZMM5) \ ENTRY(ZMM6) \ ENTRY(ZMM7) \ ENTRY(ZMM8) \ ENTRY(ZMM9) \ ENTRY(ZMM10) \ ENTRY(ZMM11) \ ENTRY(ZMM12) \ ENTRY(ZMM13) \ ENTRY(ZMM14) \ ENTRY(ZMM15) \ ENTRY(ZMM16) \ ENTRY(ZMM17) \ ENTRY(ZMM18) \ ENTRY(ZMM19) \ ENTRY(ZMM20) \ ENTRY(ZMM21) \ ENTRY(ZMM22) \ ENTRY(ZMM23) \ ENTRY(ZMM24) \ ENTRY(ZMM25) \ ENTRY(ZMM26) \ ENTRY(ZMM27) \ ENTRY(ZMM28) \ ENTRY(ZMM29) \ ENTRY(ZMM30) \ ENTRY(ZMM31) #define REGS_MASKS \ ENTRY(K0) \ ENTRY(K1) \ ENTRY(K2) \ ENTRY(K3) \ ENTRY(K4) \ ENTRY(K5) \ ENTRY(K6) \ ENTRY(K7) #define REGS_SEGMENT \ ENTRY(ES) \ ENTRY(CS) \ ENTRY(SS) \ ENTRY(DS) \ ENTRY(FS) \ ENTRY(GS) #define REGS_DEBUG \ ENTRY(DR0) \ ENTRY(DR1) \ ENTRY(DR2) \ ENTRY(DR3) \ ENTRY(DR4) \ ENTRY(DR5) \ ENTRY(DR6) \ ENTRY(DR7) \ ENTRY(DR8) \ ENTRY(DR9) \ ENTRY(DR10) \ ENTRY(DR11) \ ENTRY(DR12) \ ENTRY(DR13) \ ENTRY(DR14) \ ENTRY(DR15) #define REGS_CONTROL \ ENTRY(CR0) \ ENTRY(CR1) \ ENTRY(CR2) \ ENTRY(CR3) \ ENTRY(CR4) \ ENTRY(CR5) \ ENTRY(CR6) \ ENTRY(CR7) \ ENTRY(CR8) \ ENTRY(CR9) \ ENTRY(CR10) \ ENTRY(CR11) \ ENTRY(CR12) \ ENTRY(CR13) \ ENTRY(CR14) \ ENTRY(CR15) #define ALL_EA_BASES \ EA_BASES_16BIT \ EA_BASES_32BIT \ EA_BASES_64BIT #define ALL_SIB_BASES \ REGS_32BIT \ REGS_64BIT #define ALL_REGS \ REGS_8BIT \ REGS_16BIT \ REGS_32BIT \ REGS_64BIT \ REGS_MMX \ REGS_XMM \ REGS_YMM \ REGS_ZMM \ REGS_MASKS \ REGS_SEGMENT \ REGS_DEBUG \ REGS_CONTROL \ ENTRY(RIP) /// \brief All possible values of the base field for effective-address /// computations, a.k.a. the Mod and R/M fields of the ModR/M byte. /// We distinguish between bases (EA_BASE_*) and registers that just happen /// to be referred to when Mod == 0b11 (EA_REG_*). enum EABase { EA_BASE_NONE, #define ENTRY(x) EA_BASE_##x, ALL_EA_BASES #undef ENTRY #define ENTRY(x) EA_REG_##x, ALL_REGS #undef ENTRY EA_max }; /// \brief All possible values of the SIB index field. /// borrows entries from ALL_EA_BASES with the special case that /// sib is synonymous with NONE. /// Vector SIB: index can be XMM or YMM. enum SIBIndex { SIB_INDEX_NONE, #define ENTRY(x) SIB_INDEX_##x, ALL_EA_BASES REGS_XMM REGS_YMM REGS_ZMM #undef ENTRY SIB_INDEX_max }; /// \brief All possible values of the SIB base field. enum SIBBase { SIB_BASE_NONE, #define ENTRY(x) SIB_BASE_##x, ALL_SIB_BASES #undef ENTRY SIB_BASE_max }; /// \brief Possible displacement types for effective-address computations. typedef enum { EA_DISP_NONE, EA_DISP_8, EA_DISP_16, EA_DISP_32 } EADisplacement; /// \brief All possible values of the reg field in the ModR/M byte. enum Reg { #define ENTRY(x) MODRM_REG_##x, ALL_REGS #undef ENTRY MODRM_REG_max }; /// \brief All possible segment overrides. enum SegmentOverride { SEG_OVERRIDE_NONE, SEG_OVERRIDE_CS, SEG_OVERRIDE_SS, SEG_OVERRIDE_DS, SEG_OVERRIDE_ES, SEG_OVERRIDE_FS, SEG_OVERRIDE_GS, SEG_OVERRIDE_max }; /// \brief Possible values for the VEX.m-mmmm field enum VEXLeadingOpcodeByte { VEX_LOB_0F = 0x1, VEX_LOB_0F38 = 0x2, VEX_LOB_0F3A = 0x3 }; enum XOPMapSelect { XOP_MAP_SELECT_8 = 0x8, XOP_MAP_SELECT_9 = 0x9, XOP_MAP_SELECT_A = 0xA }; /// \brief Possible values for the VEX.pp/EVEX.pp field enum VEXPrefixCode { VEX_PREFIX_NONE = 0x0, VEX_PREFIX_66 = 0x1, VEX_PREFIX_F3 = 0x2, VEX_PREFIX_F2 = 0x3 }; enum VectorExtensionType { TYPE_NO_VEX_XOP = 0x0, TYPE_VEX_2B = 0x1, TYPE_VEX_3B = 0x2, TYPE_EVEX = 0x3, TYPE_XOP = 0x4 }; /// \brief Type for the byte reader that the consumer must provide to /// the decoder. Reads a single byte from the instruction's address space. /// \param arg A baton that the consumer can associate with any internal /// state that it needs. /// \param byte A pointer to a single byte in memory that should be set to /// contain the value at address. /// \param address The address in the instruction's address space that should /// be read from. /// \return -1 if the byte cannot be read for any reason; 0 otherwise. typedef int (*byteReader_t)(const void *arg, uint8_t *byte, uint64_t address); /// \brief Type for the logging function that the consumer can provide to /// get debugging output from the decoder. /// \param arg A baton that the consumer can associate with any internal /// state that it needs. /// \param log A string that contains the message. Will be reused after /// the logger returns. typedef void (*dlog_t)(void *arg, const char *log); /// The specification for how to extract and interpret a full instruction and /// its operands. struct InstructionSpecifier { uint16_t operands; }; /// The x86 internal instruction, which is produced by the decoder. struct InternalInstruction { // Reader interface (C) byteReader_t reader; // Opaque value passed to the reader const void* readerArg; // The address of the next byte to read via the reader uint64_t readerCursor; // Logger interface (C) dlog_t dlog; // Opaque value passed to the logger void* dlogArg; // General instruction information // The mode to disassemble for (64-bit, protected, real) DisassemblerMode mode; // The start of the instruction, usable with the reader uint64_t startLocation; // The length of the instruction, in bytes size_t length; // Prefix state // 1 if the prefix byte corresponding to the entry is present; 0 if not uint8_t prefixPresent[0x100]; // contains the location (for use with the reader) of the prefix byte uint64_t prefixLocations[0x100]; // The value of the vector extension prefix(EVEX/VEX/XOP), if present uint8_t vectorExtensionPrefix[4]; // The type of the vector extension prefix VectorExtensionType vectorExtensionType; // The value of the REX prefix, if present uint8_t rexPrefix; // The location where a mandatory prefix would have to be (i.e., right before // the opcode, or right before the REX prefix if one is present). uint64_t necessaryPrefixLocation; // The segment override type SegmentOverride segmentOverride; // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease bool xAcquireRelease; // Sizes of various critical pieces of data, in bytes uint8_t registerSize; uint8_t addressSize; uint8_t displacementSize; uint8_t immediateSize; // Offsets from the start of the instruction to the pieces of data, which is // needed to find relocation entries for adding symbolic operands. uint8_t displacementOffset; uint8_t immediateOffset; // opcode state // The last byte of the opcode, not counting any ModR/M extension uint8_t opcode; // The ModR/M byte of the instruction, if it is an opcode extension uint8_t modRMExtension; // decode state // The type of opcode, used for indexing into the array of decode tables OpcodeType opcodeType; // The instruction ID, extracted from the decode table uint16_t instructionID; // The specifier for the instruction, from the instruction info table const InstructionSpecifier *spec; // state for additional bytes, consumed during operand decode. Pattern: // consumed___ indicates that the byte was already consumed and does not // need to be consumed again. // The VEX.vvvv field, which contains a third register operand for some AVX // instructions. Reg vvvv; // The writemask for AVX-512 instructions which is contained in EVEX.aaa Reg writemask; // The ModR/M byte, which contains most register operands and some portion of // all memory operands. bool consumedModRM; uint8_t modRM; // The SIB byte, used for more complex 32- or 64-bit memory operands bool consumedSIB; uint8_t sib; // The displacement, used for memory operands bool consumedDisplacement; int32_t displacement; // Immediates. There can be two in some cases uint8_t numImmediatesConsumed; uint8_t numImmediatesTranslated; uint64_t immediates[2]; // A register or immediate operand encoded into the opcode Reg opcodeRegister; // Portions of the ModR/M byte // These fields determine the allowable values for the ModR/M fields, which // depend on operand and address widths. EABase eaBaseBase; EABase eaRegBase; Reg regBase; // The Mod and R/M fields can encode a base for an effective address, or a // register. These are separated into two fields here. EABase eaBase; EADisplacement eaDisplacement; // The reg field always encodes a register Reg reg; // SIB state SIBIndex sibIndex; uint8_t sibScale; SIBBase sibBase; ArrayRef operands; }; /// \brief Decode one instruction and store the decoding results in /// a buffer provided by the consumer. /// \param insn The buffer to store the instruction in. Allocated by the /// consumer. /// \param reader The byteReader_t for the bytes to be read. /// \param readerArg An argument to pass to the reader for storing context /// specific to the consumer. May be NULL. /// \param logger The dlog_t to be used in printing status messages from the /// disassembler. May be NULL. /// \param loggerArg An argument to pass to the logger for storing context /// specific to the logger. May be NULL. /// \param startLoc The address (in the reader's address space) of the first /// byte in the instruction. /// \param mode The mode (16-bit, 32-bit, 64-bit) to decode in. /// \return Nonzero if there was an error during decode, 0 otherwise. int decodeInstruction(InternalInstruction *insn, byteReader_t reader, const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg, uint64_t startLoc, DisassemblerMode mode); /// \brief Print a message to debugs() /// \param file The name of the file printing the debug message. /// \param line The line number that printed the debug message. /// \param s The message to print. void Debug(const char *file, unsigned line, const char *s); const char *GetInstrName(unsigned Opcode, const void *mii); } // namespace X86Disassembler } // namespace llvm #endif