//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into // actual executable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "X86TargetMachine.h" #include "X86.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Function.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Config/alloca.h" namespace llvm { namespace { Statistic<> NumEmitted("x86-emitter", "Number of machine instructions emitted"); class JITResolver { MachineCodeEmitter &MCE; // LazyCodeGenMap - Keep track of call sites for functions that are to be // lazily resolved. std::map LazyCodeGenMap; // LazyResolverMap - Keep track of the lazy resolver created for a // particular function so that we can reuse them if necessary. std::map LazyResolverMap; public: JITResolver(MachineCodeEmitter &mce) : MCE(mce) {} unsigned getLazyResolver(Function *F); unsigned addFunctionReference(unsigned Address, Function *F); private: unsigned emitStubForFunction(Function *F); static void CompilationCallback(); unsigned resolveFunctionReference(unsigned RetAddr); }; JITResolver *TheJITResolver; } /// addFunctionReference - This method is called when we need to emit the /// address of a function that has not yet been emitted, so we don't know the /// address. Instead, we emit a call to the CompilationCallback method, and /// keep track of where we are. /// unsigned JITResolver::addFunctionReference(unsigned Address, Function *F) { LazyCodeGenMap[Address] = F; return (intptr_t)&JITResolver::CompilationCallback; } unsigned JITResolver::resolveFunctionReference(unsigned RetAddr) { std::map::iterator I = LazyCodeGenMap.find(RetAddr); assert(I != LazyCodeGenMap.end() && "Not in map!"); Function *F = I->second; LazyCodeGenMap.erase(I); return MCE.forceCompilationOf(F); } unsigned JITResolver::getLazyResolver(Function *F) { std::map::iterator I = LazyResolverMap.lower_bound(F); if (I != LazyResolverMap.end() && I->first == F) return I->second; //std::cerr << "Getting lazy resolver for : " << ((Value*)F)->getName() << "\n"; unsigned Stub = emitStubForFunction(F); LazyResolverMap.insert(I, std::make_pair(F, Stub)); return Stub; } void JITResolver::CompilationCallback() { unsigned *StackPtr = (unsigned*)__builtin_frame_address(0); unsigned RetAddr = (unsigned)(intptr_t)__builtin_return_address(0); assert(StackPtr[1] == RetAddr && "Could not find return address on the stack!"); // It's a stub if there is an interrupt marker after the call... bool isStub = ((unsigned char*)(intptr_t)RetAddr)[0] == 0xCD; // FIXME FIXME FIXME FIXME: __builtin_frame_address doesn't work if frame // pointer elimination has been performed. Having a variable sized alloca // disables frame pointer elimination currently, even if it's dead. This is a // gross hack. alloca(10+isStub); // FIXME FIXME FIXME FIXME // The call instruction should have pushed the return value onto the stack... RetAddr -= 4; // Backtrack to the reference itself... #if 0 DEBUG(std::cerr << "In callback! Addr=0x" << std::hex << RetAddr << " ESP=0x" << (unsigned)StackPtr << std::dec << ": Resolving call to function: " << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"); #endif // Sanity check to make sure this really is a call instruction... assert(((unsigned char*)(intptr_t)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); unsigned NewVal = TheJITResolver->resolveFunctionReference(RetAddr); // Rewrite the call target... so that we don't fault every time we execute // the call. *(unsigned*)(intptr_t)RetAddr = NewVal-RetAddr-4; if (isStub) { // If this is a stub, rewrite the call into an unconditional branch // instruction so that two return addresses are not pushed onto the stack // when the requested function finally gets called. This also makes the // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. ((unsigned char*)(intptr_t)RetAddr)[-1] = 0xE9; } // Change the return address to reexecute the call instruction... StackPtr[1] -= 5; } /// emitStubForFunction - This method is used by the JIT when it needs to emit /// the address of a function for a function whose code has not yet been /// generated. In order to do this, it generates a stub which jumps to the lazy /// function compiler, which will eventually get fixed to call the function /// directly. /// unsigned JITResolver::emitStubForFunction(Function *F) { MCE.startFunctionStub(*F, 6); MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... unsigned Address = addFunctionReference(MCE.getCurrentPCValue(), F); MCE.emitWord(Address-MCE.getCurrentPCValue()-4); MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! return (intptr_t)MCE.finishFunctionStub(*F); } namespace { class Emitter : public MachineFunctionPass { const X86InstrInfo *II; MachineCodeEmitter &MCE; std::map BasicBlockAddrs; std::vector > BBRefs; public: Emitter(MachineCodeEmitter &mce) : II(0), MCE(mce) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Machine Code Emitter"; } private: void emitBasicBlock(MachineBasicBlock &MBB); void emitInstruction(MachineInstr &MI); void emitPCRelativeBlockAddress(BasicBlock *BB); void emitMaybePCRelativeValue(unsigned Address, bool isPCRelative); void emitGlobalAddressForCall(GlobalValue *GV); void emitGlobalAddressForPtr(GlobalValue *GV); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); void emitConstant(unsigned Val, unsigned Size); void emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField); }; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to get /// machine code emitted. This uses a MachineCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should returns true if machine code emission is /// not supported. /// bool X86TargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM, MachineCodeEmitter &MCE) { PM.add(new Emitter(MCE)); return false; } bool Emitter::runOnMachineFunction(MachineFunction &MF) { II = &((X86TargetMachine&)MF.getTarget()).getInstrInfo(); MCE.startFunction(MF); MCE.emitConstantPool(MF.getConstantPool()); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) emitBasicBlock(*I); MCE.finishFunction(MF); // Resolve all forward branches now... for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) { unsigned Location = BasicBlockAddrs[BBRefs[i].first]; unsigned Ref = BBRefs[i].second; *(unsigned*)(intptr_t)Ref = Location-Ref-4; } BBRefs.clear(); BasicBlockAddrs.clear(); return false; } void Emitter::emitBasicBlock(MachineBasicBlock &MBB) { if (uint64_t Addr = MCE.getCurrentPCValue()) BasicBlockAddrs[MBB.getBasicBlock()] = Addr; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; ++I) emitInstruction(**I); } /// emitPCRelativeBlockAddress - This method emits the PC relative address of /// the specified basic block, or if the basic block hasn't been emitted yet /// (because this is a forward branch), it keeps track of the information /// necessary to resolve this address later (and emits a dummy value). /// void Emitter::emitPCRelativeBlockAddress(BasicBlock *BB) { // FIXME: Emit backward branches directly BBRefs.push_back(std::make_pair(BB, MCE.getCurrentPCValue())); MCE.emitWord(0); // Emit a dummy value } /// emitMaybePCRelativeValue - Emit a 32-bit address which may be PC relative. /// void Emitter::emitMaybePCRelativeValue(unsigned Address, bool isPCRelative) { if (isPCRelative) MCE.emitWord(Address-MCE.getCurrentPCValue()-4); else MCE.emitWord(Address); } /// emitGlobalAddressForCall - Emit the specified address to the code stream /// assuming this is part of a function call, which is PC relative. /// void Emitter::emitGlobalAddressForCall(GlobalValue *GV) { // Get the address from the backend... unsigned Address = MCE.getGlobalValueAddress(GV); if (Address == 0) { // FIXME: this is JIT specific! if (TheJITResolver == 0) TheJITResolver = new JITResolver(MCE); Address = TheJITResolver->addFunctionReference(MCE.getCurrentPCValue(), cast(GV)); } emitMaybePCRelativeValue(Address, true); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction, which is not /// PC relative. /// void Emitter::emitGlobalAddressForPtr(GlobalValue *GV) { // Get the address from the backend... unsigned Address = MCE.getGlobalValueAddress(GV); // If the machine code emitter doesn't know what the address IS yet, we have // to take special measures. // if (Address == 0) { // FIXME: this is JIT specific! if (TheJITResolver == 0) TheJITResolver = new JITResolver(MCE); Address = TheJITResolver->getLazyResolver((Function*)GV); } emitMaybePCRelativeValue(Address, false); } /// N86 namespace - Native X86 Register numbers... used by X86 backend. /// namespace N86 { enum { EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 }; } // getX86RegNum - This function maps LLVM register identifiers to their X86 // specific numbering, which is used in various places encoding instructions. // static unsigned getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; case X86::ESP: case X86::SP: case X86::AH: return N86::ESP; case X86::EBP: case X86::BP: case X86::CH: return N86::EBP; case X86::ESI: case X86::SI: case X86::DH: return N86::ESI; case X86::EDI: case X86::DI: case X86::BH: return N86::EDI; case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; default: assert(RegNo >= MRegisterInfo::FirstVirtualRegister && "Unknown physical register!"); assert(0 && "Register allocator hasn't allocated reg correctly yet!"); return 0; } } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); } void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... MCE.emitByte(ModRMByte(SS, Index, Base)); } void Emitter::emitConstant(unsigned Val, unsigned Size) { // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { MCE.emitByte(Val & 255); Val >>= 8; } } static bool isDisp8(int Value) { return Value == (signed char)Value; } void Emitter::emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField) { const MachineOperand &Disp = MI.getOperand(Op+3); if (MI.getOperand(Op).isConstantPoolIndex()) { // Emit a direct address reference [disp32] where the displacement of the // constant pool entry is controlled by the MCE. MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); unsigned Index = MI.getOperand(Op).getConstantPoolIndex(); unsigned Address = MCE.getConstantPoolEntryAddress(Index); MCE.emitWord(Address+Disp.getImmedValue()); return; } const MachineOperand &BaseReg = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); // Is a SIB byte needed? if (IndexReg.getReg() == 0 && BaseReg.getReg() != X86::ESP) { if (BaseReg.getReg() == 0) { // Just a displacement? // Emit special case [disp32] encoding MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitConstant(Disp.getImmedValue(), 4); } else { unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); if (Disp.getImmedValue() == 0 && BaseRegNo != N86::EBP) { // Emit simple indirect register encoding... [EAX] f.e. MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); } else if (isDisp8(Disp.getImmedValue())) { // Emit the disp8 encoding... [REG+disp8] MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(Disp.getImmedValue(), 1); } else { // Emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitConstant(Disp.getImmedValue(), 4); } } } else { // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg.getReg() == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; } else if (Disp.getImmedValue() == 0 && BaseReg.getReg() != X86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(Disp.getImmedValue())) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding... MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImmedValue()]; if (BaseReg.getReg() == 0) { // Handle the SIB byte for the case where there is no base. The // displacement has already been output. assert(IndexReg.getReg() && "Index register must be specified!"); emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); } else { unsigned BaseRegNo = getX86RegNum(BaseReg.getReg()); unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = getX86RegNum(IndexReg.getReg()); else IndexRegNo = 4; // For example [ESP+1*+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? if (Disp.getImmedValue() != 0 || ForceDisp32 || ForceDisp8) { if (!ForceDisp32 && isDisp8(Disp.getImmedValue())) emitConstant(Disp.getImmedValue(), 1); else emitConstant(Disp.getImmedValue(), 4); } } } static unsigned sizeOfPtr(const TargetInstrDescriptor &Desc) { switch (Desc.TSFlags & X86II::ArgMask) { case X86II::Arg8: return 1; case X86II::Arg16: return 2; case X86II::Arg32: return 4; case X86II::ArgF32: return 4; case X86II::ArgF64: return 8; case X86II::ArgF80: return 10; default: assert(0 && "Memory size not set!"); return 0; } } void Emitter::emitInstruction(MachineInstr &MI) { NumEmitted++; // Keep track of the # of mi's emitted unsigned Opcode = MI.getOpcode(); const TargetInstrDescriptor &Desc = II->get(Opcode); // Emit instruction prefixes if necessary if (Desc.TSFlags & X86II::OpSize) MCE.emitByte(0x66);// Operand size... switch (Desc.TSFlags & X86II::Op0Mask) { case X86II::TB: MCE.emitByte(0x0F); // Two-byte opcode prefix break; case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ (((Desc.TSFlags & X86II::Op0Mask)-X86II::D8) >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: assert(0 && "Invalid prefix!"); case 0: break; // No prefix! } unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode); switch (Desc.TSFlags & X86II::FormMask) { default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: if (Opcode != X86::IMPLICIT_USE && Opcode != X86::IMPLICIT_DEF) std::cerr << "X86 Machine Code Emitter: No 'form', not emitting: " << MI; break; case X86II::RawFrm: MCE.emitByte(BaseOpcode); if (MI.getNumOperands() == 1) { MachineOperand &MO = MI.getOperand(0); if (MO.isPCRelativeDisp()) { // Conditional branch... FIXME: this should use an MBB destination! emitPCRelativeBlockAddress(cast(MO.getVRegValue())); } else if (MO.isGlobalAddress()) { assert(MO.isPCRelative() && "Call target is not PC Relative?"); emitGlobalAddressForCall(MO.getGlobal()); } else if (MO.isExternalSymbol()) { unsigned Address = MCE.getGlobalValueAddress(MO.getSymbolName()); assert(Address && "Unknown external symbol!"); emitMaybePCRelativeValue(Address, MO.isPCRelative()); } else { assert(0 && "Unknown RawFrm operand!"); } } break; case X86II::AddRegFrm: MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(0).getReg())); if (MI.getNumOperands() == 2) { MachineOperand &MO1 = MI.getOperand(1); if (MO1.isImmediate() || MO1.getVRegValueOrNull() || MO1.isGlobalAddress() || MO1.isExternalSymbol()) { unsigned Size = sizeOfPtr(Desc); if (Value *V = MO1.getVRegValueOrNull()) { assert(Size == 4 && "Don't know how to emit non-pointer values!"); emitGlobalAddressForPtr(cast(V)); } else if (MO1.isGlobalAddress()) { assert(Size == 4 && "Don't know how to emit non-pointer values!"); assert(!MO1.isPCRelative() && "Function pointer ref is PC relative?"); emitGlobalAddressForPtr(MO1.getGlobal()); } else if (MO1.isExternalSymbol()) { assert(Size == 4 && "Don't know how to emit non-pointer values!"); unsigned Address = MCE.getGlobalValueAddress(MO1.getSymbolName()); assert(Address && "Unknown external symbol!"); emitMaybePCRelativeValue(Address, MO1.isPCRelative()); } else { emitConstant(MO1.getImmedValue(), Size); } } } break; case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); MachineOperand &SrcOp = MI.getOperand(1+II->isTwoAddrInstr(Opcode)); emitRegModRMByte(MI.getOperand(0).getReg(), getX86RegNum(SrcOp.getReg())); if (MI.getNumOperands() == 4) emitConstant(MI.getOperand(3).getImmedValue(), sizeOfPtr(Desc)); break; } case X86II::MRMDestMem: MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, 0, getX86RegNum(MI.getOperand(4).getReg())); break; case X86II::MRMSrcReg: MCE.emitByte(BaseOpcode); if (MI.getNumOperands() == 2) { emitRegModRMByte(MI.getOperand(MI.getNumOperands()-1).getReg(), getX86RegNum(MI.getOperand(0).getReg())); } else if (MI.getOperand(2).isImmediate()) { emitRegModRMByte(MI.getOperand(1).getReg(), getX86RegNum(MI.getOperand(0).getReg())); emitConstant(MI.getOperand(2).getImmedValue(), sizeOfPtr(Desc)); } else { emitRegModRMByte(MI.getOperand(2).getReg(), getX86RegNum(MI.getOperand(0).getReg())); } break; case X86II::MRMSrcMem: MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, MI.getNumOperands()-4, getX86RegNum(MI.getOperand(0).getReg())); break; case X86II::MRMS0r: case X86II::MRMS1r: case X86II::MRMS2r: case X86II::MRMS3r: case X86II::MRMS4r: case X86II::MRMS5r: case X86II::MRMS6r: case X86II::MRMS7r: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(0).getReg(), (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0r); if (MI.getOperand(MI.getNumOperands()-1).isImmediate()) { unsigned Size = sizeOfPtr(Desc); emitConstant(MI.getOperand(MI.getNumOperands()-1).getImmedValue(), Size); } break; case X86II::MRMS0m: case X86II::MRMS1m: case X86II::MRMS2m: case X86II::MRMS3m: case X86II::MRMS4m: case X86II::MRMS5m: case X86II::MRMS6m: case X86II::MRMS7m: MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, 0, (Desc.TSFlags & X86II::FormMask)-X86II::MRMS0m); if (MI.getNumOperands() == 5) { unsigned Size = sizeOfPtr(Desc); emitConstant(MI.getOperand(4).getImmedValue(), Size); } break; } } } // End llvm namespace