//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that X86 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetOptions.h" namespace llvm { class X86Subtarget; class X86TargetMachine; namespace X86ISD { // X86 Specific DAG Nodes enum NodeType { // Start the numbering where the builtin ops leave off. FIRST_NUMBER = ISD::BUILTIN_OP_END, /// BSF - Bit scan forward. /// BSR - Bit scan reverse. BSF, BSR, /// SHLD, SHRD - Double shift instructions. These correspond to /// X86::SHLDxx and X86::SHRDxx instructions. SHLD, SHRD, /// FAND - Bitwise logical AND of floating point values. This corresponds /// to X86::ANDPS or X86::ANDPD. FAND, /// FOR - Bitwise logical OR of floating point values. This corresponds /// to X86::ORPS or X86::ORPD. FOR, /// FXOR - Bitwise logical XOR of floating point values. This corresponds /// to X86::XORPS or X86::XORPD. FXOR, /// FANDN - Bitwise logical ANDNOT of floating point values. This /// corresponds to X86::ANDNPS or X86::ANDNPD. FANDN, /// FSRL - Bitwise logical right shift of floating point values. These /// corresponds to X86::PSRLDQ. FSRL, /// CALL - These operations represent an abstract X86 call /// instruction, which includes a bunch of information. In particular the /// operands of these node are: /// /// #0 - The incoming token chain /// #1 - The callee /// #2 - The number of arg bytes the caller pushes on the stack. /// #3 - The number of arg bytes the callee pops off the stack. /// #4 - The value to pass in AL/AX/EAX (optional) /// #5 - The value to pass in DL/DX/EDX (optional) /// /// The result values of these nodes are: /// /// #0 - The outgoing token chain /// #1 - The first register result value (optional) /// #2 - The second register result value (optional) /// CALL, /// RDTSC_DAG - This operation implements the lowering for /// readcyclecounter RDTSC_DAG, /// X86 Read Time-Stamp Counter and Processor ID. RDTSCP_DAG, /// X86 Read Performance Monitoring Counters. RDPMC_DAG, /// X86 compare and logical compare instructions. CMP, COMI, UCOMI, /// X86 bit-test instructions. BT, /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS /// operand, usually produced by a CMP instruction. SETCC, /// X86 Select SELECT, // Same as SETCC except it's materialized with a sbb and the value is all // one's or all zero's. SETCC_CARRY, // R = carry_bit ? ~0 : 0 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD. /// Operands are two FP values to compare; result is a mask of /// 0s or 1s. Generally DTRT for C/C++ with NaNs. FSETCC, /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values, /// result in an integer GPR. Needs masking for scalar result. FGETSIGNx86, /// X86 conditional moves. Operand 0 and operand 1 are the two values /// to select from. Operand 2 is the condition code, and operand 3 is the /// flag operand produced by a CMP or TEST instruction. It also writes a /// flag result. CMOV, /// X86 conditional branches. Operand 0 is the chain operand, operand 1 /// is the block to branch if condition is true, operand 2 is the /// condition code, and operand 3 is the flag operand produced by a CMP /// or TEST instruction. BRCOND, /// Return with a flag operand. Operand 0 is the chain operand, operand /// 1 is the number of bytes of stack to pop. RET_FLAG, /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx. REP_STOS, /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx. REP_MOVS, /// GlobalBaseReg - On Darwin, this node represents the result of the popl /// at function entry, used for PIC code. GlobalBaseReg, /// Wrapper - A wrapper node for TargetConstantPool, /// TargetExternalSymbol, and TargetGlobalAddress. Wrapper, /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP /// relative displacements. WrapperRIP, /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector /// to an MMX vector. If you think this is too close to the previous /// mnemonic, so do I; blame Intel. MOVDQ2Q, /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX /// vector to a GPR. MMX_MOVD2W, /// MMX_MOVW2D - Copies a GPR into the low 32-bit word of a MMX vector /// and zero out the high word. MMX_MOVW2D, /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRB. PEXTRB, /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to /// i32, corresponds to X86::PEXTRW. PEXTRW, /// INSERTPS - Insert any element of a 4 x float vector into any element /// of a destination 4 x floatvector. INSERTPS, /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRB. PINSRB, /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector, /// corresponds to X86::PINSRW. PINSRW, MMX_PINSRW, /// PSHUFB - Shuffle 16 8-bit values within a vector. PSHUFB, /// ANDNP - Bitwise Logical AND NOT of Packed FP values. ANDNP, /// PSIGN - Copy integer sign. PSIGN, /// BLENDI - Blend where the selector is an immediate. BLENDI, /// SHRUNKBLEND - Blend where the condition has been shrunk. /// This is used to emphasize that the condition mask is /// no more valid for generic VSELECT optimizations. SHRUNKBLEND, /// ADDSUB - Combined add and sub on an FP vector. ADDSUB, // FADD, FSUB, FMUL, FDIV, FMIN, FMAX - FP vector ops with rounding mode. FADD_RND, FSUB_RND, FMUL_RND, FDIV_RND, // SUBUS - Integer sub with unsigned saturation. SUBUS, /// HADD - Integer horizontal add. HADD, /// HSUB - Integer horizontal sub. HSUB, /// FHADD - Floating point horizontal add. FHADD, /// FHSUB - Floating point horizontal sub. FHSUB, /// UMAX, UMIN - Unsigned integer max and min. UMAX, UMIN, /// SMAX, SMIN - Signed integer max and min. SMAX, SMIN, /// FMAX, FMIN - Floating point max and min. /// FMAX, FMIN, /// FMAXC, FMINC - Commutative FMIN and FMAX. FMAXC, FMINC, /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal /// approximation. Note that these typically require refinement /// in order to obtain suitable precision. FRSQRT, FRCP, // TLSADDR - Thread Local Storage. TLSADDR, // TLSBASEADDR - Thread Local Storage. A call to get the start address // of the TLS block for the current module. TLSBASEADDR, // TLSCALL - Thread Local Storage. When calling to an OS provided // thunk at the address from an earlier relocation. TLSCALL, // EH_RETURN - Exception Handling helpers. EH_RETURN, // EH_SJLJ_SETJMP - SjLj exception handling setjmp. EH_SJLJ_SETJMP, // EH_SJLJ_LONGJMP - SjLj exception handling longjmp. EH_SJLJ_LONGJMP, /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for /// the list of operands. TC_RETURN, // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements. VZEXT_MOVL, // VZEXT - Vector integer zero-extend. VZEXT, // VSEXT - Vector integer signed-extend. VSEXT, // VTRUNC - Vector integer truncate. VTRUNC, // VTRUNC - Vector integer truncate with mask. VTRUNCM, // VFPEXT - Vector FP extend. VFPEXT, // VFPROUND - Vector FP round. VFPROUND, // VSHL, VSRL - 128-bit vector logical left / right shift VSHLDQ, VSRLDQ, // VSHL, VSRL, VSRA - Vector shift elements VSHL, VSRL, VSRA, // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate VSHLI, VSRLI, VSRAI, // CMPP - Vector packed double/float comparison. CMPP, // PCMP* - Vector integer comparisons. PCMPEQ, PCMPGT, // PCMP*M - Vector integer comparisons, the result is in a mask vector. PCMPEQM, PCMPGTM, /// CMPM, CMPMU - Vector comparison generating mask bits for fp and /// integer signed and unsigned data types. CMPM, CMPMU, // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results. ADD, SUB, ADC, SBB, SMUL, INC, DEC, OR, XOR, AND, BEXTR, // BEXTR - Bit field extract UMUL, // LOW, HI, FLAGS = umul LHS, RHS // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS SMUL8, UMUL8, // 8-bit divrem that zero-extend the high result (AH). UDIVREM8_ZEXT_HREG, SDIVREM8_SEXT_HREG, // MUL_IMM - X86 specific multiply by immediate. MUL_IMM, // PTEST - Vector bitwise comparisons. PTEST, // TESTP - Vector packed fp sign bitwise comparisons. TESTP, // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector. TESTM, TESTNM, // OR/AND test for masks KORTEST, // Several flavors of instructions with vector shuffle behaviors. PACKSS, PACKUS, // Intra-lane alignr PALIGNR, // AVX512 inter-lane alignr VALIGN, PSHUFD, PSHUFHW, PSHUFLW, SHUFP, MOVDDUP, MOVSHDUP, MOVSLDUP, MOVLHPS, MOVLHPD, MOVHLPS, MOVLPS, MOVLPD, MOVSD, MOVSS, UNPCKL, UNPCKH, VPERMILPV, VPERMILPI, VPERMV, VPERMV3, VPERMIV3, VPERMI, VPERM2X128, VBROADCAST, // masked broadcast VBROADCASTM, // Insert/Extract vector element VINSERT, VEXTRACT, // Vector multiply packed unsigned doubleword integers PMULUDQ, // Vector multiply packed signed doubleword integers PMULDQ, // FMA nodes FMADD, FNMADD, FMSUB, FNMSUB, FMADDSUB, FMSUBADD, // FMA with rounding mode FMADD_RND, FNMADD_RND, FMSUB_RND, FNMSUB_RND, FMADDSUB_RND, FMSUBADD_RND, RNDSCALE, // Compress and expand COMPRESS, EXPAND, // Save xmm argument registers to the stack, according to %al. An operator // is needed so that this can be expanded with control flow. VASTART_SAVE_XMM_REGS, // Windows's _chkstk call to do stack probing. WIN_ALLOCA, // For allocating variable amounts of stack space when using // segmented stacks. Check if the current stacklet has enough space, and // falls back to heap allocation if not. SEG_ALLOCA, // Windows's _ftol2 runtime routine to do fptoui. WIN_FTOL, // Memory barrier MEMBARRIER, MFENCE, SFENCE, LFENCE, // Store FP status word into i16 register. FNSTSW16r, // Store contents of %ah into %eflags. SAHF, // Get a random integer and indicate whether it is valid in CF. RDRAND, // Get a NIST SP800-90B & C compliant random integer and // indicate whether it is valid in CF. RDSEED, PCMPISTRI, PCMPESTRI, // Test if in transactional execution. XTEST, // ERI instructions RSQRT28, RCP28, EXP2, // Compare and swap. LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE, LCMPXCHG8_DAG, LCMPXCHG16_DAG, // Load, scalar_to_vector, and zero extend. VZEXT_LOAD, // Store FP control world into i16 memory. FNSTCW16m, /// This instruction implements FP_TO_SINT with the /// integer destination in memory and a FP reg source. This corresponds /// to the X86::FIST*m instructions and the rounding mode change stuff. It /// has two inputs (token chain and address) and two outputs (int value /// and token chain). FP_TO_INT16_IN_MEM, FP_TO_INT32_IN_MEM, FP_TO_INT64_IN_MEM, /// This instruction implements SINT_TO_FP with the /// integer source in memory and FP reg result. This corresponds to the /// X86::FILD*m instructions. It has three inputs (token chain, address, /// and source type) and two outputs (FP value and token chain). FILD_FLAG /// also produces a flag). FILD, FILD_FLAG, /// This instruction implements an extending load to FP stack slots. /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain /// operand, ptr to load from, and a ValueType node indicating the type /// to load to. FLD, /// This instruction implements a truncating store to FP stack /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a /// chain operand, value to store, address, and a ValueType to store it /// as. FST, /// This instruction grabs the address of the next argument /// from a va_list. (reads and modifies the va_list in memory) VAARG_64 // WARNING: Do not add anything in the end unless you want the node to // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be // thought as target memory ops! }; } /// Define some predicates that are used for node matching. namespace X86 { /// Return true if the specified /// EXTRACT_SUBVECTOR operand specifies a vector extract that is /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions. bool isVEXTRACT128Index(SDNode *N); /// Return true if the specified /// INSERT_SUBVECTOR operand specifies a subvector insert that is /// suitable for input to VINSERTF128, VINSERTI128 instructions. bool isVINSERT128Index(SDNode *N); /// Return true if the specified /// EXTRACT_SUBVECTOR operand specifies a vector extract that is /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions. bool isVEXTRACT256Index(SDNode *N); /// Return true if the specified /// INSERT_SUBVECTOR operand specifies a subvector insert that is /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions. bool isVINSERT256Index(SDNode *N); /// Return the appropriate /// immediate to extract the specified EXTRACT_SUBVECTOR index /// with VEXTRACTF128, VEXTRACTI128 instructions. unsigned getExtractVEXTRACT128Immediate(SDNode *N); /// Return the appropriate /// immediate to insert at the specified INSERT_SUBVECTOR index /// with VINSERTF128, VINSERT128 instructions. unsigned getInsertVINSERT128Immediate(SDNode *N); /// Return the appropriate /// immediate to extract the specified EXTRACT_SUBVECTOR index /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions. unsigned getExtractVEXTRACT256Immediate(SDNode *N); /// Return the appropriate /// immediate to insert at the specified INSERT_SUBVECTOR index /// with VINSERTF64x4, VINSERTI64x4 instructions. unsigned getInsertVINSERT256Immediate(SDNode *N); /// Returns true if Elt is a constant zero or floating point constant +0.0. bool isZeroNode(SDValue Elt); /// Returns true of the given offset can be /// fit into displacement field of the instruction. bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement = true); /// Determines whether the callee is required to pop its /// own arguments. Callee pop is necessary to support tail calls. bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool TailCallOpt); /// AVX512 static rounding constants. These need to match the values in /// avx512fintrin.h. enum STATIC_ROUNDING { TO_NEAREST_INT = 0, TO_NEG_INF = 1, TO_POS_INF = 2, TO_ZERO = 3, CUR_DIRECTION = 4 }; } //===--------------------------------------------------------------------===// // X86 Implementation of the TargetLowering interface class X86TargetLowering final : public TargetLowering { public: explicit X86TargetLowering(const X86TargetMachine &TM, const X86Subtarget &STI); unsigned getJumpTableEncoding() const override; MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; } const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const override; /// Returns relocation base for the given PIC jumptable. SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override; const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override; /// Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. For X86, aggregates /// that contains are placed at 16-byte boundaries while the rest are at /// 4-byte boundaries. unsigned getByValTypeAlignment(Type *Ty) const override; /// Returns the target specific optimal type for load /// and store operations as a result of memset, memcpy, and memmove /// lowering. If DstAlign is zero that means it's safe to destination /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it /// means there isn't a need to check it against alignment requirement, /// probably because the source does not need to be loaded. If 'IsMemset' is /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy /// source is constant so it does not need to be loaded. /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const override; /// Returns true if it's safe to use load / store of the /// specified type to expand memcpy / memset inline. This is mostly true /// for all types except for some special cases. For example, on X86 /// targets without SSE2 f64 load / store are done with fldl / fstpl which /// also does type conversion. Note the specified type doesn't have to be /// legal as the hook is used before type legalization. bool isSafeMemOpType(MVT VT) const override; /// Returns true if the target allows /// unaligned memory accesses. of the specified type. Returns whether it /// is "fast" by reference in the second argument. bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align, bool *Fast) const override; /// Provide custom lowering hooks for some operations. /// SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override; /// Replace the results of node with an illegal result /// type with new values built out of custom code. /// void ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const override; SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override; /// Return true if the target has native support for /// the specified value type and it is 'desirable' to use the type for the /// given node type. e.g. On x86 i16 is legal, but undesirable since i16 /// instruction encodings are longer and some i16 instructions are slow. bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override; /// Return true if the target has native support for the /// specified value type and it is 'desirable' to use the type. e.g. On x86 /// i16 is legal, but undesirable since i16 instruction encodings are longer /// and some i16 instructions are slow. bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override; MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const override; /// This method returns the name of a target specific DAG node. const char *getTargetNodeName(unsigned Opcode) const override; bool isCheapToSpeculateCttz() const override; bool isCheapToSpeculateCtlz() const override; /// Return the value type to use for ISD::SETCC. EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override; /// Determine which of the bits specified in Mask are known to be either /// zero or one and return them in the KnownZero/KnownOne bitsets. void computeKnownBitsForTargetNode(const SDValue Op, APInt &KnownZero, APInt &KnownOne, const SelectionDAG &DAG, unsigned Depth = 0) const override; /// Determine the number of bits in the operation that are sign bits. unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const SelectionDAG &DAG, unsigned Depth) const override; bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const override; SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const; bool ExpandInlineAsm(CallInst *CI) const override; ConstraintType getConstraintType(const std::string &Constraint) const override; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override; const char *LowerXConstraint(EVT ConstraintVT) const override; /// Lower the specified operand into the Ops vector. If it is invalid, don't /// add anything to Ops. If hasMemory is true it means one of the asm /// constraint of the inline asm instruction being processed is 'm'. void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const override; /// Given a physical register constraint /// (e.g. {edx}), return the register number and the register class for the /// register. This should only be used for C_Register constraints. On /// error, this returns a register number of 0. std::pair getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, const std::string &Constraint, MVT VT) const override; /// Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override; /// Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can /// compare a register against the immediate without having to materialize /// the immediate into a register. bool isLegalICmpImmediate(int64_t Imm) const override; /// Return true if the specified immediate is legal /// add immediate, that is the target has add instructions which can /// add a register and the immediate without having to materialize /// the immediate into a register. bool isLegalAddImmediate(int64_t Imm) const override; /// \brief Return the cost of the scaling factor used in the addressing /// mode represented by AM for this target, for a load/store /// of the specified type. /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, it returns a negative value. int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override; bool isVectorShiftByScalarCheap(Type *Ty) const override; /// Return true if it's free to truncate a value of /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in /// register EAX to i16 by referencing its sub-register AX. bool isTruncateFree(Type *Ty1, Type *Ty2) const override; bool isTruncateFree(EVT VT1, EVT VT2) const override; bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override; /// Return true if any actual instruction that defines a /// value of type Ty1 implicit zero-extends the value to Ty2 in the result /// register. This does not necessarily include registers defined in /// unknown ways, such as incoming arguments, or copies from unknown /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this /// does not necessarily apply to truncate instructions. e.g. on x86-64, /// all instructions that define 32-bit values implicit zero-extend the /// result out to 64 bits. bool isZExtFree(Type *Ty1, Type *Ty2) const override; bool isZExtFree(EVT VT1, EVT VT2) const override; bool isZExtFree(SDValue Val, EVT VT2) const override; /// Return true if folding a vector load into ExtVal (a sign, zero, or any /// extend node) is profitable. bool isVectorLoadExtDesirable(SDValue) const override; /// Return true if an FMA operation is faster than a pair of fmul and fadd /// instructions. fmuladd intrinsics will be expanded to FMAs when this /// method returns true, otherwise fmuladd is expanded to fmul + fadd. bool isFMAFasterThanFMulAndFAdd(EVT VT) const override; /// Return true if it's profitable to narrow /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow /// from i32 to i8 but not from i32 to i16. bool isNarrowingProfitable(EVT VT1, EVT VT2) const override; /// Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool isFPImmLegal(const APFloat &Imm, EVT VT) const override; /// Targets can use this to indicate that they only support *some* /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to /// be legal. bool isShuffleMaskLegal(const SmallVectorImpl &Mask, EVT VT) const override; /// Similar to isShuffleMaskLegal. This is used by Targets can use this to /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to /// replace a VAND with a constant pool entry. bool isVectorClearMaskLegal(const SmallVectorImpl &Mask, EVT VT) const override; /// If true, then instruction selection should /// seek to shrink the FP constant of the specified type to a smaller type /// in order to save space and / or reduce runtime. bool ShouldShrinkFPConstant(EVT VT) const override { // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more // expensive than a straight movsd. On the other hand, it's important to // shrink long double fp constant since fldt is very slow. return !X86ScalarSSEf64 || VT == MVT::f80; } /// Return true if we believe it is correct and profitable to reduce the /// load node to a smaller type. bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const override; /// Return true if the specified scalar FP type is computed in an SSE /// register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 } /// Return true if the target uses the MSVC _ftol2 routine for fptoui. bool isTargetFTOL() const; /// Return true if the MSVC _ftol2 routine should be used for fptoui to the /// given type. bool isIntegerTypeFTOL(EVT VT) const { return isTargetFTOL() && VT == MVT::i64; } /// \brief Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override; /// Return true if EXTRACT_SUBVECTOR is cheap for this result type /// with this index. bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override; /// Intel processors have a unified instruction and data cache const char * getClearCacheBuiltinName() const override { return nullptr; // nothing to do, move along. } unsigned getRegisterByName(const char* RegName, EVT VT) const override; /// This method returns a target specific FastISel object, /// or null if the target does not support "fast" ISel. FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override; /// Return true if the target stores stack protector cookies at a fixed /// offset in some non-standard address space, and populates the address /// space and offset as appropriate. bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const override; SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot, SelectionDAG &DAG) const; bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override; bool useLoadStackGuardNode() const override; /// \brief Customize the preferred legalization strategy for certain types. LegalizeTypeAction getPreferredVectorAction(EVT VT) const override; protected: std::pair findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override; private: /// Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; const DataLayout *TD; /// Select between SSE or x87 floating point ops. /// When SSE is available, use it for f32 operations. /// When SSE2 is available, use it for f64 operations. bool X86ScalarSSEf32; bool X86ScalarSSEf64; /// A list of legal FP immediates. std::vector LegalFPImmediates; /// Indicate that this x86 target can instruction /// select the specified FP immediate natively. void addLegalFPImmediate(const APFloat& Imm) { LegalFPImmediates.push_back(Imm); } SDValue LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const; SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, const SmallVectorImpl &ArgInfo, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, MachineFrameInfo *MFI, unsigned i) const; SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg, SDLoc dl, SelectionDAG &DAG, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const; // Call lowering helpers. /// Check whether the call is eligible for tail call optimization. Targets /// that want to do tail call optimization should implement this function. bool IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const; bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const; SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, bool Is64Bit, int FPDiff, SDLoc dl) const; unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG) const; std::pair FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned, bool isReplace) const; SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const; SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, int64_t Offset, SelectionDAG &DAG) const; SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const; SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const; SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const; SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const; SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerToBT(SDValue And, ISD::CondCode CC, SDLoc dl, SelectionDAG &DAG) const; SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const; SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const; SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const; SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const; SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const; SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const; SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const; SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const; SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const; SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const; SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const override; SDValue LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const override; SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const override; bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override; bool mayBeEmittedAsTailCall(CallInst *CI) const override; EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, ISD::NodeType ExtendKind) const override; bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const override; const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override; bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override; bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override; bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override; LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override; bool needsCmpXchgNb(const Type *MemType) const; /// Utility function to emit atomic-load-arith operations (and, or, xor, /// nand, max, min, umax, umin). It takes the corresponding instruction to /// expand, the associated machine basic block, and the associated X86 /// opcodes for reg/reg. MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI, MachineBasicBlock *MBB) const; /// Utility function to emit atomic-load-arith operations (and, or, xor, /// nand, add, sub, swap) for 64-bit operands on 32-bit target. MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI, MachineBasicBlock *MBB) const; // Utility function to emit the low-level va_arg code for X86-64. MachineBasicBlock *EmitVAARG64WithCustomInserter( MachineInstr *MI, MachineBasicBlock *MBB) const; /// Utility function to emit the xmm reg save portion of va_start. MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter( MachineInstr *BInstr, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredSelect(MachineInstr *I, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI, MachineBasicBlock *BB) const; MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI, MachineBasicBlock *MBB) const; MachineBasicBlock *emitFMA3Instr(MachineInstr *MI, MachineBasicBlock *MBB) const; /// Emit nodes that will be selected as "test Op0,Op0", or something /// equivalent, for use with the given x86 condition code. SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const; /// Emit nodes that will be selected as "cmp Op0,Op1", or something /// equivalent, for use with the given x86 condition code. SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl, SelectionDAG &DAG) const; /// Convert a comparison if required by the subtarget. SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const; /// Use rsqrt* to speed up sqrt calculations. SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps, bool &UseOneConstNR) const override; /// Use rcp* to speed up fdiv calculations. SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI, unsigned &RefinementSteps) const override; }; namespace X86 { FastISel *createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo); } } #endif // X86ISELLOWERING_H