//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86GenInstrInfo.inc" #include "X86InstrBuilder.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/CodeGen/MachineInstrBuilder.h" using namespace llvm; X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) : TargetInstrInfo(X86Insts, sizeof(X86Insts)/sizeof(X86Insts[0])), TM(tm), RI(tm, *this) { } /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL /// instruction if it has one. This is used by codegen passes that update /// DWARF line number info as they modify the code. unsigned X86InstrInfo::getDWARF_LABELOpcode() const { return X86::DWARF_LABEL; } bool X86InstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg) const { MachineOpCode oc = MI.getOpcode(); if (oc == X86::MOV8rr || oc == X86::MOV16rr || oc == X86::MOV32rr || oc == X86::MOV64rr || oc == X86::MOV16to16_ || oc == X86::MOV32to32_ || oc == X86::FpMOV || oc == X86::MOVSSrr || oc == X86::MOVSDrr || oc == X86::FsMOVAPSrr || oc == X86::FsMOVAPDrr || oc == X86::MOVAPSrr || oc == X86::MOVAPDrr || oc == X86::MOVSS2PSrr || oc == X86::MOVSD2PDrr || oc == X86::MOVPS2SSrr || oc == X86::MOVPD2SDrr) { assert(MI.getNumOperands() == 2 && MI.getOperand(0).isRegister() && MI.getOperand(1).isRegister() && "invalid register-register move instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } return false; } unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV16_rm: case X86::MOV32rm: case X86::MOV32_rm: case X86::MOV64rm: case X86::FpLD64m: case X86::MOVSSrm: case X86::MOVSDrm: case X86::MOVAPSrm: case X86::MOVAPDrm: if (MI->getOperand(1).isFrameIndex() && MI->getOperand(2).isImmediate() && MI->getOperand(3).isRegister() && MI->getOperand(4).isImmediate() && MI->getOperand(2).getImmedValue() == 1 && MI->getOperand(3).getReg() == 0 && MI->getOperand(4).getImmedValue() == 0) { FrameIndex = MI->getOperand(1).getFrameIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case X86::MOV8mr: case X86::MOV16mr: case X86::MOV16_mr: case X86::MOV32mr: case X86::MOV32_mr: case X86::MOV64mr: case X86::FpSTP64m: case X86::MOVSSmr: case X86::MOVSDmr: case X86::MOVAPSmr: case X86::MOVAPDmr: if (MI->getOperand(0).isFrameIndex() && MI->getOperand(1).isImmediate() && MI->getOperand(2).isRegister() && MI->getOperand(3).isImmediate() && MI->getOperand(1).getImmedValue() == 1 && MI->getOperand(2).getReg() == 0 && MI->getOperand(3).getImmedValue() == 0) { FrameIndex = MI->getOperand(0).getFrameIndex(); return MI->getOperand(4).getReg(); } break; } return 0; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const { // All instructions input are two-addr instructions. Get the known operands. unsigned Dest = MI->getOperand(0).getReg(); unsigned Src = MI->getOperand(1).getReg(); MachineInstr *NewMI = NULL; switch (MI->getOpcode()) { default: break; case X86::SHUFPSrri: { assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); const X86Subtarget *Subtarget = &TM.getSubtarget(); unsigned A = MI->getOperand(0).getReg(); unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); unsigned M = MI->getOperand(3).getImmedValue(); if (!Subtarget->hasSSE2() || B != C) return 0; NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M); NewMI->copyKillDeadInfo(MI); return NewMI; } } // FIXME: None of these instructions are promotable to LEAs without // additional information. In particular, LEA doesn't set the flags that // add and inc do. :( return 0; // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When // we have subtarget support, enable the 16-bit LEA generation here. bool DisableLEA16 = true; switch (MI->getOpcode()) { case X86::INC32r: case X86::INC64_32r: assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, 1); break; case X86::INC16r: case X86::INC64_16r: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 2 && "Unknown inc instruction!"); NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1); break; case X86::DEC32r: case X86::DEC64_32r: assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, -1); break; case X86::DEC16r: case X86::DEC64_16r: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 2 && "Unknown dec instruction!"); NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1); break; case X86::ADD32rr: assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); NewMI = addRegReg(BuildMI(get(X86::LEA32r), Dest), Src, MI->getOperand(2).getReg()); break; case X86::ADD16rr: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src, MI->getOperand(2).getReg()); break; case X86::ADD32ri: case X86::ADD32ri8: assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); if (MI->getOperand(2).isImmediate()) NewMI = addRegOffset(BuildMI(get(X86::LEA32r), Dest), Src, MI->getOperand(2).getImmedValue()); break; case X86::ADD16ri: case X86::ADD16ri8: if (DisableLEA16) return 0; assert(MI->getNumOperands() == 3 && "Unknown add instruction!"); if (MI->getOperand(2).isImmediate()) NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, MI->getOperand(2).getImmedValue()); break; case X86::SHL16ri: if (DisableLEA16) return 0; case X86::SHL32ri: assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() && "Unknown shl instruction!"); unsigned ShAmt = MI->getOperand(2).getImmedValue(); if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) { X86AddressMode AM; AM.Scale = 1 << ShAmt; AM.IndexReg = Src; unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r; NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM); } break; } if (NewMI) NewMI->copyKillDeadInfo(MI); return NewMI; } /// commuteInstruction - We have a few instructions that must be hacked on to /// commute them. /// MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const { // FIXME: Can commute cmoves by changing the condition! switch (MI->getOpcode()) { case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) case X86::SHLD32rri8:{// A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) unsigned Opc; unsigned Size; switch (MI->getOpcode()) { default: assert(0 && "Unreachable!"); case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; } unsigned Amt = MI->getOperand(3).getImmedValue(); unsigned A = MI->getOperand(0).getReg(); unsigned B = MI->getOperand(1).getReg(); unsigned C = MI->getOperand(2).getReg(); bool BisKill = MI->getOperand(1).isKill(); bool CisKill = MI->getOperand(2).isKill(); return BuildMI(get(Opc), A).addReg(C, false, false, CisKill) .addReg(B, false, false, BisKill).addImm(Size-Amt); } default: return TargetInstrInfo::commuteInstruction(MI); } } static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { switch (BrOpc) { default: return X86::COND_INVALID; case X86::JE: return X86::COND_E; case X86::JNE: return X86::COND_NE; case X86::JL: return X86::COND_L; case X86::JLE: return X86::COND_LE; case X86::JG: return X86::COND_G; case X86::JGE: return X86::COND_GE; case X86::JB: return X86::COND_B; case X86::JBE: return X86::COND_BE; case X86::JA: return X86::COND_A; case X86::JAE: return X86::COND_AE; case X86::JS: return X86::COND_S; case X86::JNS: return X86::COND_NS; case X86::JP: return X86::COND_P; case X86::JNP: return X86::COND_NP; case X86::JO: return X86::COND_O; case X86::JNO: return X86::COND_NO; } } unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { switch (CC) { default: assert(0 && "Illegal condition code!"); case X86::COND_E: return X86::JE; case X86::COND_NE: return X86::JNE; case X86::COND_L: return X86::JL; case X86::COND_LE: return X86::JLE; case X86::COND_G: return X86::JG; case X86::COND_GE: return X86::JGE; case X86::COND_B: return X86::JB; case X86::COND_BE: return X86::JBE; case X86::COND_A: return X86::JA; case X86::COND_AE: return X86::JAE; case X86::COND_S: return X86::JS; case X86::COND_NS: return X86::JNS; case X86::COND_P: return X86::JP; case X86::COND_NP: return X86::JNP; case X86::COND_O: return X86::JO; case X86::COND_NO: return X86::JNO; } } /// GetOppositeBranchCondition - Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: assert(0 && "Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; } } bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, std::vector &Cond) const { // TODO: If FP_REG_KILL is around, ignore it. // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) { if (!isBranch(LastInst->getOpcode())) return true; // If the block ends with a branch there are 3 possibilities: // it's an unconditional, conditional, or indirect branch. if (LastInst->getOpcode() == X86::JMP) { TBB = LastInst->getOperand(0).getMachineBasicBlock(); return false; } X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode()); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // Otherwise, block ends with fall-through condbranch. TBB = LastInst->getOperand(0).getMachineBasicBlock(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); return false; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isTerminatorInstr((--I)->getOpcode())) return true; // If the block ends with X86::JMP and a conditional branch, handle it. X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode()); if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) { TBB = SecondLastInst->getOperand(0).getMachineBasicBlock(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); FBB = LastInst->getOperand(0).getMachineBasicBlock(); return false; } // Otherwise, can't handle this. return true; } void X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return; --I; if (I->getOpcode() != X86::JMP && GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) return; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return; --I; if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) return; // Remove the branch. I->eraseFromParent(); } void X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const std::vector &Cond) const { // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); if (FBB == 0) { // One way branch. if (Cond.empty()) { // Unconditional branch? BuildMI(&MBB, get(X86::JMP)).addMBB(TBB); } else { // Conditional branch. unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm()); BuildMI(&MBB, get(Opc)).addMBB(TBB); } return; } // Two-way Conditional branch. unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm()); BuildMI(&MBB, get(Opc)).addMBB(TBB); BuildMI(&MBB, get(X86::JMP)).addMBB(FBB); } bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const { if (MBB.empty()) return false; switch (MBB.back().getOpcode()) { case X86::JMP: // Uncond branch. case X86::JMP32r: // Indirect branch. case X86::JMP32m: // Indirect branch through mem. return true; default: return false; } } bool X86InstrInfo:: ReverseBranchCondition(std::vector &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm())); return false; } const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const { const X86Subtarget *Subtarget = &TM.getSubtarget(); if (Subtarget->is64Bit()) return &X86::GR64RegClass; else return &X86::GR32RegClass; }