//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // X86 specific DAG Nodes. // def SDTIntShiftDOp: SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>, SDTCisInt<3>]>; def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisSameAs<1, 2>]>; def SDTX86Cmov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, i32>]>; // Unary and binary operator instructions that set EFLAGS as a side-effect. def SDTUnaryArithWithFlags : SDTypeProfile<2, 1, [SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTBinaryArithWithFlags : SDTypeProfile<2, 2, [SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisInt<0>, SDTCisVT<1, i32>]>; def SDTX86BrCond : SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC : SDTypeProfile<1, 2, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86SetCC_C : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, i8>, SDTCisVT<2, i32>]>; def SDTX86cas : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisInt<1>, SDTCisVT<2, i8>]>; def SDTX86cas8 : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDTX86atomicBinary : SDTypeProfile<2, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisPtrTy<2>, SDTCisInt<3>,SDTCisInt<4>]>; def SDTX86Ret : SDTypeProfile<0, -1, [SDTCisVT<0, i16>]>; def SDT_X86CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_X86CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_X86Call : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_X86VASTART_SAVE_XMM_REGS : SDTypeProfile<0, -1, [SDTCisVT<0, i8>, SDTCisVT<1, iPTR>, SDTCisVT<2, iPTR>]>; def SDTX86RepStr : SDTypeProfile<0, 1, [SDTCisVT<0, OtherVT>]>; def SDTX86Void : SDTypeProfile<0, 0, []>; def SDTX86Wrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_X86TLSADDR : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TLSCALL : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>; def SDT_X86SegmentBaseAddress : SDTypeProfile<1, 1, [SDTCisPtrTy<0>]>; def SDT_X86EHRET : SDTypeProfile<0, 1, [SDTCisInt<0>]>; def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>; def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>; def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>; def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>; def X86shrd : SDNode<"X86ISD::SHRD", SDTIntShiftDOp>; def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest>; def X86bt : SDNode<"X86ISD::BT", SDTX86CmpTest>; def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov>; def X86brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>; def X86setcc : SDNode<"X86ISD::SETCC", SDTX86SetCC>; def X86setcc_c : SDNode<"X86ISD::SETCC_CARRY", SDTX86SetCC_C>; def X86cas : SDNode<"X86ISD::LCMPXCHG_DAG", SDTX86cas, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86cas8 : SDNode<"X86ISD::LCMPXCHG8_DAG", SDTX86cas8, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86AtomAdd64 : SDNode<"X86ISD::ATOMADD64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSub64 : SDNode<"X86ISD::ATOMSUB64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomOr64 : SDNode<"X86ISD::ATOMOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomXor64 : SDNode<"X86ISD::ATOMXOR64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomAnd64 : SDNode<"X86ISD::ATOMAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomNand64 : SDNode<"X86ISD::ATOMNAND64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86AtomSwap64 : SDNode<"X86ISD::ATOMSWAP64_DAG", SDTX86atomicBinary, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86Ret, [SDNPHasChain, SDNPOptInFlag, SDNPVariadic]>; def X86vastart_save_xmm_regs : SDNode<"X86ISD::VASTART_SAVE_XMM_REGS", SDT_X86VASTART_SAVE_XMM_REGS, [SDNPHasChain, SDNPVariadic]>; def X86callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_X86CallSeqStart, [SDNPHasChain, SDNPOutFlag]>; def X86callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_X86CallSeqEnd, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def X86call : SDNode<"X86ISD::CALL", SDT_X86Call, [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag, SDNPVariadic]>; def X86rep_stos: SDNode<"X86ISD::REP_STOS", SDTX86RepStr, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore]>; def X86rep_movs: SDNode<"X86ISD::REP_MOVS", SDTX86RepStr, [SDNPHasChain, SDNPInFlag, SDNPOutFlag, SDNPMayStore, SDNPMayLoad]>; def X86rdtsc : SDNode<"X86ISD::RDTSC_DAG", SDTX86Void, [SDNPHasChain, SDNPOutFlag, SDNPSideEffect]>; def X86Wrapper : SDNode<"X86ISD::Wrapper", SDTX86Wrapper>; def X86WrapperRIP : SDNode<"X86ISD::WrapperRIP", SDTX86Wrapper>; def X86tlsaddr : SDNode<"X86ISD::TLSADDR", SDT_X86TLSADDR, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>; def X86SegmentBaseAddress : SDNode<"X86ISD::SegmentBaseAddress", SDT_X86SegmentBaseAddress, []>; def X86ehret : SDNode<"X86ISD::EH_RETURN", SDT_X86EHRET, [SDNPHasChain]>; def X86tcret : SDNode<"X86ISD::TC_RETURN", SDT_X86TCRET, [SDNPHasChain, SDNPOptInFlag, SDNPVariadic]>; def X86add_flag : SDNode<"X86ISD::ADD", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86sub_flag : SDNode<"X86ISD::SUB", SDTBinaryArithWithFlags>; def X86smul_flag : SDNode<"X86ISD::SMUL", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86umul_flag : SDNode<"X86ISD::UMUL", SDTUnaryArithWithFlags, [SDNPCommutative]>; def X86inc_flag : SDNode<"X86ISD::INC", SDTUnaryArithWithFlags>; def X86dec_flag : SDNode<"X86ISD::DEC", SDTUnaryArithWithFlags>; def X86or_flag : SDNode<"X86ISD::OR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86xor_flag : SDNode<"X86ISD::XOR", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86and_flag : SDNode<"X86ISD::AND", SDTBinaryArithWithFlags, [SDNPCommutative]>; def X86mul_imm : SDNode<"X86ISD::MUL_IMM", SDTIntBinOp>; def X86MingwAlloca : SDNode<"X86ISD::MINGW_ALLOCA", SDTX86Void, [SDNPHasChain, SDNPInFlag, SDNPOutFlag]>; def X86TLSCall : SDNode<"X86ISD::TLSCALL", SDT_X86TLSCALL, []>; //===----------------------------------------------------------------------===// // X86 Operand Definitions. // // A version of ptr_rc which excludes SP, ESP, and RSP. This is used for // the index operand of an address, to conform to x86 encoding restrictions. def ptr_rc_nosp : PointerLikeRegClass<1>; // *mem - Operand definitions for the funky X86 addressing mode operands. // def X86MemAsmOperand : AsmOperandClass { let Name = "Mem"; let SuperClasses = []; } def X86NoSegMemAsmOperand : AsmOperandClass { let Name = "NoSegMem"; let SuperClasses = [X86MemAsmOperand]; } def X86AbsMemAsmOperand : AsmOperandClass { let Name = "AbsMem"; let SuperClasses = [X86NoSegMemAsmOperand]; } class X86MemOperand : Operand { let PrintMethod = printMethod; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } def opaque32mem : X86MemOperand<"printopaquemem">; def opaque48mem : X86MemOperand<"printopaquemem">; def opaque80mem : X86MemOperand<"printopaquemem">; def opaque512mem : X86MemOperand<"printopaquemem">; def i8mem : X86MemOperand<"printi8mem">; def i16mem : X86MemOperand<"printi16mem">; def i32mem : X86MemOperand<"printi32mem">; def i64mem : X86MemOperand<"printi64mem">; def i128mem : X86MemOperand<"printi128mem">; //def i256mem : X86MemOperand<"printi256mem">; def f32mem : X86MemOperand<"printf32mem">; def f64mem : X86MemOperand<"printf64mem">; def f80mem : X86MemOperand<"printf80mem">; def f128mem : X86MemOperand<"printf128mem">; //def f256mem : X86MemOperand<"printf256mem">; // A version of i8mem for use on x86-64 that uses GR64_NOREX instead of // plain GR64, so that it doesn't potentially require a REX prefix. def i8mem_NOREX : Operand { let PrintMethod = "printi8mem"; let MIOperandInfo = (ops GR64_NOREX, i8imm, GR64_NOREX_NOSP, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } // Special i32mem for addresses of load folding tail calls. These are not // allowed to use callee-saved registers since they must be scheduled // after callee-saved register are popped. def i32mem_TC : Operand { let PrintMethod = "printi32mem"; let MIOperandInfo = (ops GR32_TC, i8imm, GR32_TC, i32imm, i8imm); let ParserMatchClass = X86MemAsmOperand; } def lea32mem : Operand { let PrintMethod = "printlea32mem"; let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm); let ParserMatchClass = X86NoSegMemAsmOperand; } let ParserMatchClass = X86AbsMemAsmOperand, PrintMethod = "print_pcrel_imm" in { def i32imm_pcrel : Operand; def offset8 : Operand; def offset16 : Operand; def offset32 : Operand; def offset64 : Operand; // Branch targets have OtherVT type and print as pc-relative values. def brtarget : Operand; def brtarget8 : Operand; } def SSECC : Operand { let PrintMethod = "printSSECC"; } class ImmSExtAsmOperandClass : AsmOperandClass { let SuperClasses = [ImmAsmOperand]; let RenderMethod = "addImmOperands"; } // Sign-extended immediate classes. We don't need to define the full lattice // here because there is no instruction with an ambiguity between ImmSExti64i32 // and ImmSExti32i8. // // The strange ranges come from the fact that the assembler always works with // 64-bit immediates, but for a 16-bit target value we want to accept both "-1" // (which will be a -1ULL), and "0xFF" (-1 in 16-bits). // [0, 0x7FFFFFFF] | [0xFFFFFFFF80000000, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i32AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i32"; } // [0, 0x0000007F] | [0x000000000000FF80, 0x000000000000FFFF] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti16i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti16i8"; let SuperClasses = [ImmSExti64i32AsmOperand]; } // [0, 0x0000007F] | [0x00000000FFFFFF80, 0x00000000FFFFFFFF] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti32i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti32i8"; } // [0, 0x0000007F] | [0xFFFFFFFFFFFFFF80, 0xFFFFFFFFFFFFFFFF] def ImmSExti64i8AsmOperand : ImmSExtAsmOperandClass { let Name = "ImmSExti64i8"; let SuperClasses = [ImmSExti16i8AsmOperand, ImmSExti32i8AsmOperand, ImmSExti64i32AsmOperand]; } // A couple of more descriptive operand definitions. // 16-bits but only 8 bits are significant. def i16i8imm : Operand { let ParserMatchClass = ImmSExti16i8AsmOperand; } // 32-bits but only 8 bits are significant. def i32i8imm : Operand { let ParserMatchClass = ImmSExti32i8AsmOperand; } //===----------------------------------------------------------------------===// // X86 Complex Pattern Definitions. // // Define X86 specific addressing mode. def addr : ComplexPattern; def lea32addr : ComplexPattern; def tls32addr : ComplexPattern; //===----------------------------------------------------------------------===// // X86 Instruction Predicate Definitions. def HasCMov : Predicate<"Subtarget->hasCMov()">; def NoCMov : Predicate<"!Subtarget->hasCMov()">; def HasMMX : Predicate<"Subtarget->hasMMX()">; def HasSSE1 : Predicate<"Subtarget->hasSSE1()">; def HasSSE2 : Predicate<"Subtarget->hasSSE2()">; def HasSSE3 : Predicate<"Subtarget->hasSSE3()">; def HasSSSE3 : Predicate<"Subtarget->hasSSSE3()">; def HasSSE41 : Predicate<"Subtarget->hasSSE41()">; def HasSSE42 : Predicate<"Subtarget->hasSSE42()">; def HasSSE4A : Predicate<"Subtarget->hasSSE4A()">; def HasAVX : Predicate<"Subtarget->hasAVX()">; def HasFMA3 : Predicate<"Subtarget->hasFMA3()">; def HasFMA4 : Predicate<"Subtarget->hasFMA4()">; def FPStackf32 : Predicate<"!Subtarget->hasSSE1()">; def FPStackf64 : Predicate<"!Subtarget->hasSSE2()">; def In32BitMode : Predicate<"!Subtarget->is64Bit()">; def In64BitMode : Predicate<"Subtarget->is64Bit()">; def IsWin64 : Predicate<"Subtarget->isTargetWin64()">; def NotWin64 : Predicate<"!Subtarget->isTargetWin64()">; def SmallCode : Predicate<"TM.getCodeModel() == CodeModel::Small">; def KernelCode : Predicate<"TM.getCodeModel() == CodeModel::Kernel">; def FarData : Predicate<"TM.getCodeModel() != CodeModel::Small &&" "TM.getCodeModel() != CodeModel::Kernel">; def NearData : Predicate<"TM.getCodeModel() == CodeModel::Small ||" "TM.getCodeModel() == CodeModel::Kernel">; def IsStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">; def IsNotPIC : Predicate<"TM.getRelocationModel() != Reloc::PIC_">; def OptForSize : Predicate<"OptForSize">; def OptForSpeed : Predicate<"!OptForSize">; def FastBTMem : Predicate<"!Subtarget->isBTMemSlow()">; def CallImmAddr : Predicate<"Subtarget->IsLegalToCallImmediateAddr(TM)">; def HasAES : Predicate<"Subtarget->hasAES()">; //===----------------------------------------------------------------------===// // X86 Instruction Format Definitions. // include "X86InstrFormats.td" //===----------------------------------------------------------------------===// // Pattern fragments... // // X86 specific condition code. These correspond to CondCode in // X86InstrInfo.h. They must be kept in synch. def X86_COND_A : PatLeaf<(i8 0)>; // alt. COND_NBE def X86_COND_AE : PatLeaf<(i8 1)>; // alt. COND_NC def X86_COND_B : PatLeaf<(i8 2)>; // alt. COND_C def X86_COND_BE : PatLeaf<(i8 3)>; // alt. COND_NA def X86_COND_E : PatLeaf<(i8 4)>; // alt. COND_Z def X86_COND_G : PatLeaf<(i8 5)>; // alt. COND_NLE def X86_COND_GE : PatLeaf<(i8 6)>; // alt. COND_NL def X86_COND_L : PatLeaf<(i8 7)>; // alt. COND_NGE def X86_COND_LE : PatLeaf<(i8 8)>; // alt. COND_NG def X86_COND_NE : PatLeaf<(i8 9)>; // alt. COND_NZ def X86_COND_NO : PatLeaf<(i8 10)>; def X86_COND_NP : PatLeaf<(i8 11)>; // alt. COND_PO def X86_COND_NS : PatLeaf<(i8 12)>; def X86_COND_O : PatLeaf<(i8 13)>; def X86_COND_P : PatLeaf<(i8 14)>; // alt. COND_PE def X86_COND_S : PatLeaf<(i8 15)>; def immSext8 : PatLeaf<(imm), [{ return N->getSExtValue() == (int8_t)N->getSExtValue(); }]>; def i16immSExt8 : PatLeaf<(i16 immSext8)>; def i32immSExt8 : PatLeaf<(i32 immSext8)>; /// Load patterns: these constraint the match to the right address space. def dsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; return true; }]>; def gsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) return PT->getAddressSpace() == 256; return false; }]>; def fsload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ if (const Value *Src = cast(N)->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) return PT->getAddressSpace() == 257; return false; }]>; // Helper fragments for loads. // It's always safe to treat a anyext i16 load as a i32 load if the i16 is // known to be 32-bit aligned or better. Ditto for i8 to i16. def loadi16 : PatFrag<(ops node:$ptr), (i16 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi16_anyext : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)),[{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 2 && !LD->isVolatile(); return false; }]>; def loadi32 : PatFrag<(ops node:$ptr), (i32 (unindexedload node:$ptr)), [{ LoadSDNode *LD = cast(N); if (const Value *Src = LD->getSrcValue()) if (const PointerType *PT = dyn_cast(Src->getType())) if (PT->getAddressSpace() > 255) return false; ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) return true; if (ExtType == ISD::EXTLOAD) return LD->getAlignment() >= 4 && !LD->isVolatile(); return false; }]>; def loadi8 : PatFrag<(ops node:$ptr), (i8 (dsload node:$ptr))>; def loadi64 : PatFrag<(ops node:$ptr), (i64 (dsload node:$ptr))>; def loadf32 : PatFrag<(ops node:$ptr), (f32 (dsload node:$ptr))>; def loadf64 : PatFrag<(ops node:$ptr), (f64 (dsload node:$ptr))>; def loadf80 : PatFrag<(ops node:$ptr), (f80 (dsload node:$ptr))>; def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextloadi8 node:$ptr))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; def zextloadi8i1 : PatFrag<(ops node:$ptr), (i8 (zextloadi1 node:$ptr))>; def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextloadi1 node:$ptr))>; def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextloadi1 node:$ptr))>; def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextloadi8 node:$ptr))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extloadi1 node:$ptr))>; def extloadi16i1 : PatFrag<(ops node:$ptr), (i16 (extloadi1 node:$ptr))>; def extloadi32i1 : PatFrag<(ops node:$ptr), (i32 (extloadi1 node:$ptr))>; def extloadi16i8 : PatFrag<(ops node:$ptr), (i16 (extloadi8 node:$ptr))>; def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; // An 'and' node with a single use. def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'srl' node with a single use. def srl_su : PatFrag<(ops node:$lhs, node:$rhs), (srl node:$lhs, node:$rhs), [{ return N->hasOneUse(); }]>; // An 'trunc' node with a single use. def trunc_su : PatFrag<(ops node:$src), (trunc node:$src), [{ return N->hasOneUse(); }]>; // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ if (ConstantSDNode *CN = dyn_cast(N->getOperand(1))) return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); APInt Mask = APInt::getAllOnesValue(BitWidth); APInt KnownZero0, KnownOne0; CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0); APInt KnownZero1, KnownOne1; CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0); return (~KnownZero0 & ~KnownZero1) == 0; }]>; //===----------------------------------------------------------------------===// // Instruction list... // // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [ESP, EFLAGS], Uses = [ESP] in { def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In32BitMode]>; def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In32BitMode]>; } // x86-64 va_start lowering magic. let usesCustomInserter = 1 in { def VASTART_SAVE_XMM_REGS : I<0, Pseudo, (outs), (ins GR8:$al, i64imm:$regsavefi, i64imm:$offset, variable_ops), "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", [(X86vastart_save_xmm_regs GR8:$al, imm:$regsavefi, imm:$offset)]>; // Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls // to _alloca is needed to probe the stack when allocating more than 4k bytes in // one go. Touching the stack at 4K increments is necessary to ensure that the // guard pages used by the OS virtual memory manager are allocated in correct // sequence. // The main point of having separate instruction are extra unmodelled effects // (compared to ordinary calls) like stack pointer change. def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins), "# dynamic stack allocation", [(X86MingwAlloca)]>; } // Nop let neverHasSideEffects = 1 in { def NOOP : I<0x90, RawFrm, (outs), (ins), "nop", []>; def NOOPW : I<0x1f, MRM0m, (outs), (ins i16mem:$zero), "nop{w}\t$zero", []>, TB, OpSize; def NOOPL : I<0x1f, MRM0m, (outs), (ins i32mem:$zero), "nop{l}\t$zero", []>, TB; } // Trap def INTO : I<0xce, RawFrm, (outs), (ins), "into", []>; def INT3 : I<0xcc, RawFrm, (outs), (ins), "int3", []>; // FIXME: need to make sure that "int $3" matches int3 def INT : Ii8<0xcd, RawFrm, (outs), (ins i8imm:$trap), "int\t$trap", []>; def IRET16 : I<0xcf, RawFrm, (outs), (ins), "iret{w}", []>, OpSize; def IRET32 : I<0xcf, RawFrm, (outs), (ins), "iret{l}", []>; // PIC base construction. This expands to code that looks like this: // call $next_inst // popl %destreg" let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), "", []>; //===----------------------------------------------------------------------===// // Control Flow Instructions. // // Return instructions. let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, FPForm = SpecialFP in { def RET : I <0xC3, RawFrm, (outs), (ins variable_ops), "ret", [(X86retflag 0)]>; def RETI : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), "ret\t$amt", [(X86retflag timm:$amt)]>; def LRET : I <0xCB, RawFrm, (outs), (ins), "lret", []>; def LRETI : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), "lret\t$amt", []>; } // Unconditional branches. let isBarrier = 1, isBranch = 1, isTerminator = 1 in { def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst), "jmp\t$dst", [(br bb:$dst)]>; def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), "jmp\t$dst", []>; } // Conditional Branches. let isBranch = 1, isTerminator = 1, Uses = [EFLAGS] in { multiclass ICBr opc1, bits<8> opc4, string asm, PatFrag Cond> { def _1 : Ii8PCRel ; def _4 : Ii32PCRel, TB; } } defm JO : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>; defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>; defm JB : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>; defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>; defm JE : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>; defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>; defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>; defm JA : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>; defm JS : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>; defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>; defm JP : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>; defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>; defm JL : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>; defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>; defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>; defm JG : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>; // FIXME: What about the CX/RCX versions of this instruction? let Uses = [ECX], isBranch = 1, isTerminator = 1 in def JCXZ8 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), "jcxz\t$dst", []>; // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", [(brind GR32:$dst)]>; def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", [(brind (loadi32 addr:$dst))]>; def FARJMP16i : Iseg16<0xEA, RawFrm, (outs), (ins i16imm:$seg, i16imm:$off), "ljmp{w}\t$seg, $off", []>, OpSize; def FARJMP32i : Iseg32<0xEA, RawFrm, (outs), (ins i16imm:$seg, i32imm:$off), "ljmp{l}\t$seg, $off", []>; def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst), "ljmp{w}\t{*}$dst", []>, OpSize; def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst), "ljmp{l}\t{*}$dst", []>; } // Loop instructions def LOOP : I<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>; def LOOPE : I<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>; def LOOPNE : I<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. Uses for argument // registers are added manually. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in { def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, (outs), (ins i32imm_pcrel:$dst,variable_ops), "call\t$dst", []>; def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), "call\t{*}$dst", [(X86call GR32:$dst)]>; def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), "call\t{*}$dst", [(X86call (loadi32 addr:$dst))]>; def FARCALL16i : Iseg16<0x9A, RawFrm, (outs), (ins i16imm:$seg, i16imm:$off), "lcall{w}\t$seg, $off", []>, OpSize; def FARCALL32i : Iseg32<0x9A, RawFrm, (outs), (ins i16imm:$seg, i32imm:$off), "lcall{l}\t$seg, $off", []>; def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst), "lcall{w}\t{*}$dst", []>, OpSize; def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst), "lcall{l}\t{*}$dst", []>; } // Constructing a stack frame. def ENTER : I<0xC8, RawFrm, (outs), (ins i16imm:$len, i8imm:$lvl), "enter\t$len, $lvl", []>; // Tail call stuff. let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in { def TCRETURNdi : I<0, Pseudo, (outs), (ins i32imm_pcrel:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; def TCRETURNri : I<0, Pseudo, (outs), (ins GR32_TC:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; let mayLoad = 1 in def TCRETURNmi : I<0, Pseudo, (outs), (ins i32mem_TC:$dst, i32imm:$offset, variable_ops), "#TC_RETURN $dst $offset", []>; // FIXME: The should be pseudo instructions that are lowered when going to // mcinst. def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs), (ins i32imm_pcrel:$dst, variable_ops), "jmp\t$dst # TAILCALL", []>; def TAILJMPr : I<0xFF, MRM4r, (outs), (ins GR32_TC:$dst, variable_ops), "jmp{l}\t{*}$dst # TAILCALL", []>; let mayLoad = 1 in def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst, variable_ops), "jmp{l}\t{*}$dst # TAILCALL", []>; // FIXME: This is a hack so that MCInst lowering can preserve the TAILCALL // marker on instructions, while still being able to relax. let isCodeGenOnly = 1 in { def TAILJMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), "jmp\t$dst # TAILCALL", []>; } } //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // let Defs = [EBP, ESP], Uses = [EBP, ESP], mayLoad = 1, neverHasSideEffects=1 in def LEAVE : I<0xC9, RawFrm, (outs), (ins), "leave", []>; def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", []>, OpSize, XS; let mayLoad = 1 in def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", []>, OpSize, XS; def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", []>, XS; let mayLoad = 1 in def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", []>, XS; let Defs = [ESP], Uses = [ESP], neverHasSideEffects=1 in { let mayLoad = 1 in { def POP16r : I<0x58, AddRegFrm, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>, OpSize; def POP32r : I<0x58, AddRegFrm, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>; def POP16rmr: I<0x8F, MRM0r, (outs GR16:$reg), (ins), "pop{w}\t$reg", []>, OpSize; def POP16rmm: I<0x8F, MRM0m, (outs i16mem:$dst), (ins), "pop{w}\t$dst", []>, OpSize; def POP32rmr: I<0x8F, MRM0r, (outs GR32:$reg), (ins), "pop{l}\t$reg", []>; def POP32rmm: I<0x8F, MRM0m, (outs i32mem:$dst), (ins), "pop{l}\t$dst", []>; } let mayStore = 1 in { def PUSH16r : I<0x50, AddRegFrm, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>, OpSize; def PUSH32r : I<0x50, AddRegFrm, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>; def PUSH16rmr: I<0xFF, MRM6r, (outs), (ins GR16:$reg), "push{w}\t$reg",[]>, OpSize; def PUSH16rmm: I<0xFF, MRM6m, (outs), (ins i16mem:$src), "push{w}\t$src",[]>, OpSize; def PUSH32rmr: I<0xFF, MRM6r, (outs), (ins GR32:$reg), "push{l}\t$reg",[]>; def PUSH32rmm: I<0xFF, MRM6m, (outs), (ins i32mem:$src), "push{l}\t$src",[]>; } } let Defs = [ESP], Uses = [ESP], neverHasSideEffects = 1, mayStore = 1 in { def PUSHi8 : Ii8<0x6a, RawFrm, (outs), (ins i32i8imm:$imm), "push{l}\t$imm", []>; def PUSHi16 : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), "push{w}\t$imm", []>, OpSize; def PUSHi32 : Ii32<0x68, RawFrm, (outs), (ins i32imm:$imm), "push{l}\t$imm", []>; } let Defs = [ESP, EFLAGS], Uses = [ESP], mayLoad = 1, neverHasSideEffects=1 in { def POPF16 : I<0x9D, RawFrm, (outs), (ins), "popf{w}", []>, OpSize; def POPF32 : I<0x9D, RawFrm, (outs), (ins), "popf{l|d}", []>, Requires<[In32BitMode]>; } let Defs = [ESP], Uses = [ESP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in { def PUSHF16 : I<0x9C, RawFrm, (outs), (ins), "pushf{w}", []>, OpSize; def PUSHF32 : I<0x9C, RawFrm, (outs), (ins), "pushf{l|d}", []>, Requires<[In32BitMode]>; } let isTwoAddress = 1 in // GR32 = bswap GR32 def BSWAP32r : I<0xC8, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "bswap{l}\t$dst", [(set GR32:$dst, (bswap GR32:$src))]>, TB; // Bit scan instructions. let Defs = [EFLAGS] in { def BSF16rr : I<0xBC, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf GR16:$src))]>, TB, OpSize; def BSF16rm : I<0xBC, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsf{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsf (loadi16 addr:$src)))]>, TB, OpSize; def BSF32rr : I<0xBC, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf GR32:$src))]>, TB; def BSF32rm : I<0xBC, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsf{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsf (loadi32 addr:$src)))]>, TB; def BSR16rr : I<0xBD, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr GR16:$src))]>, TB, OpSize; def BSR16rm : I<0xBD, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "bsr{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, EFLAGS, (X86bsr (loadi16 addr:$src)))]>, TB, OpSize; def BSR32rr : I<0xBD, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr GR32:$src))]>, TB; def BSR32rm : I<0xBD, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "bsr{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, EFLAGS, (X86bsr (loadi32 addr:$src)))]>, TB; } // Defs = [EFLAGS] let neverHasSideEffects = 1 in def LEA16r : I<0x8D, MRMSrcMem, (outs GR16:$dst), (ins lea32mem:$src), "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize; let isReMaterializable = 1 in def LEA32r : I<0x8D, MRMSrcMem, (outs GR32:$dst), (ins lea32mem:$src), "lea{l}\t{$src|$dst}, {$dst|$src}", [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>; let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)]>, REP; def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)]>, REP, OpSize; def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)]>, REP; } // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in { def MOVSB : I<0xA4, RawFrm, (outs), (ins), "{movsb}", []>; def MOVSW : I<0xA5, RawFrm, (outs), (ins), "{movsw}", []>, OpSize; def MOVSD : I<0xA5, RawFrm, (outs), (ins), "{movsl|movsd}", []>; } let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)]>, REP; let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)]>, REP, OpSize; let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)]>, REP; // These uses the DF flag in the EFLAGS register to inc or dec EDI and ESI let Defs = [EDI], Uses = [AL,EDI,EFLAGS] in def STOSB : I<0xAA, RawFrm, (outs), (ins), "{stosb}", []>; let Defs = [EDI], Uses = [AX,EDI,EFLAGS] in def STOSW : I<0xAB, RawFrm, (outs), (ins), "{stosw}", []>, OpSize; let Defs = [EDI], Uses = [EAX,EDI,EFLAGS] in def STOSD : I<0xAB, RawFrm, (outs), (ins), "{stosl|stosd}", []>; def SCAS8 : I<0xAE, RawFrm, (outs), (ins), "scas{b}", []>; def SCAS16 : I<0xAF, RawFrm, (outs), (ins), "scas{w}", []>, OpSize; def SCAS32 : I<0xAF, RawFrm, (outs), (ins), "scas{l}", []>; def CMPS8 : I<0xA6, RawFrm, (outs), (ins), "cmps{b}", []>; def CMPS16 : I<0xA7, RawFrm, (outs), (ins), "cmps{w}", []>, OpSize; def CMPS32 : I<0xA7, RawFrm, (outs), (ins), "cmps{l}", []>; let Defs = [RAX, RDX] in def RDTSC : I<0x31, RawFrm, (outs), (ins), "rdtsc", [(X86rdtsc)]>, TB; let Defs = [RAX, RCX, RDX] in def RDTSCP : I<0x01, MRM_F9, (outs), (ins), "rdtscp", []>, TB; let isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in { def TRAP : I<0x0B, RawFrm, (outs), (ins), "ud2", [(trap)]>, TB; } def SYSCALL : I<0x05, RawFrm, (outs), (ins), "syscall", []>, TB; def SYSRET : I<0x07, RawFrm, (outs), (ins), "sysret", []>, TB; def SYSENTER : I<0x34, RawFrm, (outs), (ins), "sysenter", []>, TB; def SYSEXIT : I<0x35, RawFrm, (outs), (ins), "sysexit", []>, TB; def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>; //===----------------------------------------------------------------------===// // Input/Output Instructions... // let Defs = [AL], Uses = [DX] in def IN8rr : I<0xEC, RawFrm, (outs), (ins), "in{b}\t{%dx, %al|%AL, %DX}", []>; let Defs = [AX], Uses = [DX] in def IN16rr : I<0xED, RawFrm, (outs), (ins), "in{w}\t{%dx, %ax|%AX, %DX}", []>, OpSize; let Defs = [EAX], Uses = [DX] in def IN32rr : I<0xED, RawFrm, (outs), (ins), "in{l}\t{%dx, %eax|%EAX, %DX}", []>; let Defs = [AL] in def IN8ri : Ii8<0xE4, RawFrm, (outs), (ins i16i8imm:$port), "in{b}\t{$port, %al|%AL, $port}", []>; let Defs = [AX] in def IN16ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port), "in{w}\t{$port, %ax|%AX, $port}", []>, OpSize; let Defs = [EAX] in def IN32ri : Ii8<0xE5, RawFrm, (outs), (ins i16i8imm:$port), "in{l}\t{$port, %eax|%EAX, $port}", []>; let Uses = [DX, AL] in def OUT8rr : I<0xEE, RawFrm, (outs), (ins), "out{b}\t{%al, %dx|%DX, %AL}", []>; let Uses = [DX, AX] in def OUT16rr : I<0xEF, RawFrm, (outs), (ins), "out{w}\t{%ax, %dx|%DX, %AX}", []>, OpSize; let Uses = [DX, EAX] in def OUT32rr : I<0xEF, RawFrm, (outs), (ins), "out{l}\t{%eax, %dx|%DX, %EAX}", []>; let Uses = [AL] in def OUT8ir : Ii8<0xE6, RawFrm, (outs), (ins i16i8imm:$port), "out{b}\t{%al, $port|$port, %AL}", []>; let Uses = [AX] in def OUT16ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port), "out{w}\t{%ax, $port|$port, %AX}", []>, OpSize; let Uses = [EAX] in def OUT32ir : Ii8<0xE7, RawFrm, (outs), (ins i16i8imm:$port), "out{l}\t{%eax, $port|$port, %EAX}", []>; def IN8 : I<0x6C, RawFrm, (outs), (ins), "ins{b}", []>; def IN16 : I<0x6D, RawFrm, (outs), (ins), "ins{w}", []>, OpSize; def IN32 : I<0x6D, RawFrm, (outs), (ins), "ins{l}", []>; //===----------------------------------------------------------------------===// // Move Instructions... // let neverHasSideEffects = 1 in { def MOV8rr : I<0x88, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", []>; def MOV16rr : I<0x89, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32rr : I<0x89, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOV8ri : Ii8 <0xB0, AddRegFrm, (outs GR8 :$dst), (ins i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, imm:$src)]>; def MOV16ri : Ii16<0xB8, AddRegFrm, (outs GR16:$dst), (ins i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, imm:$src)]>, OpSize; def MOV32ri : Ii32<0xB8, AddRegFrm, (outs GR32:$dst), (ins i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, imm:$src)]>; } def MOV8mi : Ii8 <0xC6, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store (i8 imm:$src), addr:$dst)]>; def MOV16mi : Ii16<0xC7, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store (i16 imm:$src), addr:$dst)]>, OpSize; def MOV32mi : Ii32<0xC7, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store (i32 imm:$src), addr:$dst)]>; /// moffs8, moffs16 and moffs32 versions of moves. The immediate is a /// 32-bit offset from the PC. These are only valid in x86-32 mode. def MOV8o8a : Ii32 <0xA0, RawFrm, (outs), (ins offset8:$src), "mov{b}\t{$src, %al|%al, $src}", []>; def MOV16o16a : Ii32 <0xA1, RawFrm, (outs), (ins offset16:$src), "mov{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def MOV32o32a : Ii32 <0xA1, RawFrm, (outs), (ins offset32:$src), "mov{l}\t{$src, %eax|%eax, $src}", []>; def MOV8ao8 : Ii32 <0xA2, RawFrm, (outs offset8:$dst), (ins), "mov{b}\t{%al, $dst|$dst, %al}", []>; def MOV16ao16 : Ii32 <0xA3, RawFrm, (outs offset16:$dst), (ins), "mov{w}\t{%ax, $dst|$dst, %ax}", []>, OpSize; def MOV32ao32 : Ii32 <0xA3, RawFrm, (outs offset32:$dst), (ins), "mov{l}\t{%eax, $dst|$dst, %eax}", []>; // Moves to and from segment registers def MOV16rs : I<0x8C, MRMDestReg, (outs GR16:$dst), (ins SEGMENT_REG:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32rs : I<0x8C, MRMDestReg, (outs GR32:$dst), (ins SEGMENT_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; def MOV16ms : I<0x8C, MRMDestMem, (outs i16mem:$dst), (ins SEGMENT_REG:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32ms : I<0x8C, MRMDestMem, (outs i32mem:$dst), (ins SEGMENT_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; def MOV16sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32sr : I<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; def MOV16sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i16mem:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32sm : I<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; let isCodeGenOnly = 1 in { def MOV8rr_REV : I<0x8A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src), "mov{b}\t{$src, $dst|$dst, $src}", []>; def MOV16rr_REV : I<0x8B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def MOV32rr_REV : I<0x8B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; } let canFoldAsLoad = 1, isReMaterializable = 1 in { def MOV8rm : I<0x8A, MRMSrcMem, (outs GR8 :$dst), (ins i8mem :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(set GR8:$dst, (loadi8 addr:$src))]>; def MOV16rm : I<0x8B, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (loadi16 addr:$src))]>, OpSize; def MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (loadi32 addr:$src))]>; } def MOV8mr : I<0x88, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "mov{b}\t{$src, $dst|$dst, $src}", [(store GR8:$src, addr:$dst)]>; def MOV16mr : I<0x89, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "mov{w}\t{$src, $dst|$dst, $src}", [(store GR16:$src, addr:$dst)]>, OpSize; def MOV32mr : I<0x89, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", [(store GR32:$src, addr:$dst)]>; /// Versions of MOV32rr, MOV32rm, and MOV32mr for i32mem_TC and GR32_TC. let neverHasSideEffects = 1 in def MOV32rr_TC : I<0x89, MRMDestReg, (outs GR32_TC:$dst), (ins GR32_TC:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def MOV32rm_TC : I<0x8B, MRMSrcMem, (outs GR32_TC:$dst), (ins i32mem_TC:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; let mayStore = 1 in def MOV32mr_TC : I<0x89, MRMDestMem, (outs), (ins i32mem_TC:$dst, GR32_TC:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>; // Versions of MOV8rr, MOV8mr, and MOV8rm that use i8mem_NOREX and GR8_NOREX so // that they can be used for copying and storing h registers, which can't be // encoded when a REX prefix is present. let neverHasSideEffects = 1 in def MOV8rr_NOREX : I<0x88, MRMDestReg, (outs GR8_NOREX:$dst), (ins GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; let mayStore = 1 in def MOV8mr_NOREX : I<0x88, MRMDestMem, (outs), (ins i8mem_NOREX:$dst, GR8_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; let mayLoad = 1, canFoldAsLoad = 1, isReMaterializable = 1 in def MOV8rm_NOREX : I<0x8A, MRMSrcMem, (outs GR8_NOREX:$dst), (ins i8mem_NOREX:$src), "mov{b}\t{$src, $dst|$dst, $src} # NOREX", []>; // Moves to and from debug registers def MOV32rd : I<0x21, MRMDestReg, (outs GR32:$dst), (ins DEBUG_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, TB; def MOV32dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, TB; // Moves to and from control registers def MOV32rc : I<0x20, MRMDestReg, (outs GR32:$dst), (ins CONTROL_REG:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, TB; def MOV32cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR32:$src), "mov{l}\t{$src, $dst|$dst, $src}", []>, TB; //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication // AL is really implied by AX, by the registers in Defs must match the // SDNode results (i8, i32). let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), "mul{w}\t$src", []>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), "mul{l}\t$src", []>; // EAX,EDX = EAX*GR32 let Defs = [AL,EFLAGS,AX], Uses = [AL] in def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), "mul{b}\t$src", // FIXME: Used for 8-bit mul, ignore result upper 8 bits. // This probably ought to be moved to a def : Pat<> if the // syntax can be accepted. [(set AL, (mul AL, (loadi8 addr:$src))), (implicit EFLAGS)]>; // AL,AH = AL*[mem8] let mayLoad = 1, neverHasSideEffects = 1 in { let Defs = [AX,DX,EFLAGS], Uses = [AX] in def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), "mul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), "mul{l}\t$src", []>; // EAX,EDX = EAX*[mem32] } let neverHasSideEffects = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>; // AL,AH = AL*GR8 let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>, OpSize; // AX,DX = AX*GR16 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>; // EAX,EDX = EAX*GR32 let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AL] in def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), "imul{b}\t$src", []>; // AL,AH = AL*[mem8] let Defs = [AX,DX,EFLAGS], Uses = [AX] in def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16] let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), "imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32] } } // neverHasSideEffects // unsigned division/remainder let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "div{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "div{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "div{l}\t$src", []>; let mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "div{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "div{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), "div{l}\t$src", []>; } // Signed division/remainder. let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH "idiv{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX "idiv{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX "idiv{l}\t$src", []>; let mayLoad = 1, mayLoad = 1 in { let Defs = [AL,EFLAGS,AX], Uses = [AX] in def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH "idiv{b}\t$src", []>; let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX "idiv{w}\t$src", []>, OpSize; let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX "idiv{l}\t$src", []>; } //===----------------------------------------------------------------------===// // Two address Instructions. // let isTwoAddress = 1 in { // Conditional moves let Uses = [EFLAGS] in { let Predicates = [HasCMov] in { let isCommutable = 1 in { def CMOVB16rr : I<0x42, MRMSrcReg, // if , TB, OpSize; def CMOVB32rr : I<0x42, MRMSrcReg, // if , TB; def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovae{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_AE, EFLAGS))]>, TB, OpSize; def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovae{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_AE, EFLAGS))]>, TB; def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmove{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_E, EFLAGS))]>, TB, OpSize; def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmove{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_E, EFLAGS))]>, TB; def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovne{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NE, EFLAGS))]>, TB, OpSize; def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovne{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NE, EFLAGS))]>, TB; def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovbe{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_BE, EFLAGS))]>, TB, OpSize; def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovbe{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_BE, EFLAGS))]>, TB; def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmova{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_A, EFLAGS))]>, TB, OpSize; def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmova{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_A, EFLAGS))]>, TB; def CMOVL16rr : I<0x4C, MRMSrcReg, // if , TB, OpSize; def CMOVL32rr : I<0x4C, MRMSrcReg, // if , TB; def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovge{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_GE, EFLAGS))]>, TB, OpSize; def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovge{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_GE, EFLAGS))]>, TB; def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovle{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_LE, EFLAGS))]>, TB, OpSize; def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovle{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_LE, EFLAGS))]>, TB; def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovg{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_G, EFLAGS))]>, TB, OpSize; def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovg{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_G, EFLAGS))]>, TB; def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovs{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_S, EFLAGS))]>, TB, OpSize; def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovs{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_S, EFLAGS))]>, TB; def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovns{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NS, EFLAGS))]>, TB, OpSize; def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovns{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NS, EFLAGS))]>, TB; def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovp{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_P, EFLAGS))]>, TB, OpSize; def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovp{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_P, EFLAGS))]>, TB; def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovnp{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NP, EFLAGS))]>, TB, OpSize; def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovnp{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NP, EFLAGS))]>, TB; def CMOVO16rr : I<0x40, MRMSrcReg, // if overflow, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovo{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_O, EFLAGS))]>, TB, OpSize; def CMOVO32rr : I<0x40, MRMSrcReg, // if overflow, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovo{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_O, EFLAGS))]>, TB; def CMOVNO16rr : I<0x41, MRMSrcReg, // if !overflow, GR16 = GR16 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "cmovno{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, X86_COND_NO, EFLAGS))]>, TB, OpSize; def CMOVNO32rr : I<0x41, MRMSrcReg, // if !overflow, GR32 = GR32 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "cmovno{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, X86_COND_NO, EFLAGS))]>, TB; } // isCommutable = 1 def CMOVB16rm : I<0x42, MRMSrcMem, // if , TB, OpSize; def CMOVB32rm : I<0x42, MRMSrcMem, // if , TB; def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovae{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_AE, EFLAGS))]>, TB, OpSize; def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovae{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_AE, EFLAGS))]>, TB; def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmove{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_E, EFLAGS))]>, TB, OpSize; def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmove{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_E, EFLAGS))]>, TB; def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovne{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NE, EFLAGS))]>, TB, OpSize; def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovne{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NE, EFLAGS))]>, TB; def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovbe{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_BE, EFLAGS))]>, TB, OpSize; def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovbe{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_BE, EFLAGS))]>, TB; def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmova{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_A, EFLAGS))]>, TB, OpSize; def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmova{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_A, EFLAGS))]>, TB; def CMOVL16rm : I<0x4C, MRMSrcMem, // if , TB, OpSize; def CMOVL32rm : I<0x4C, MRMSrcMem, // if , TB; def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovge{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_GE, EFLAGS))]>, TB, OpSize; def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovge{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_GE, EFLAGS))]>, TB; def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovle{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_LE, EFLAGS))]>, TB, OpSize; def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovle{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_LE, EFLAGS))]>, TB; def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovg{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_G, EFLAGS))]>, TB, OpSize; def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovg{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_G, EFLAGS))]>, TB; def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovs{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_S, EFLAGS))]>, TB, OpSize; def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovs{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_S, EFLAGS))]>, TB; def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovns{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NS, EFLAGS))]>, TB, OpSize; def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovns{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NS, EFLAGS))]>, TB; def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovp{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_P, EFLAGS))]>, TB, OpSize; def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovp{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_P, EFLAGS))]>, TB; def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovnp{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NP, EFLAGS))]>, TB, OpSize; def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovnp{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NP, EFLAGS))]>, TB; def CMOVO16rm : I<0x40, MRMSrcMem, // if overflow, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovo{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_O, EFLAGS))]>, TB, OpSize; def CMOVO32rm : I<0x40, MRMSrcMem, // if overflow, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovo{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_O, EFLAGS))]>, TB; def CMOVNO16rm : I<0x41, MRMSrcMem, // if !overflow, GR16 = [mem16] (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "cmovno{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (X86cmov GR16:$src1, (loadi16 addr:$src2), X86_COND_NO, EFLAGS))]>, TB, OpSize; def CMOVNO32rm : I<0x41, MRMSrcMem, // if !overflow, GR32 = [mem32] (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "cmovno{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (X86cmov GR32:$src1, (loadi32 addr:$src2), X86_COND_NO, EFLAGS))]>, TB; } // Predicates = [HasCMov] // X86 doesn't have 8-bit conditional moves. Use a customInserter to // emit control flow. An alternative to this is to mark i8 SELECT as Promote, // however that requires promoting the operands, and can induce additional // i8 register pressure. Note that CMOV_GR8 is conservatively considered to // clobber EFLAGS, because if one of the operands is zero, the expansion // could involve an xor. let usesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] in { def CMOV_GR8 : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), "#CMOV_GR8 PSEUDO!", [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, imm:$cond, EFLAGS))]>; let Predicates = [NoCMov] in { def CMOV_GR32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), "#CMOV_GR32* PSEUDO!", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; def CMOV_GR16 : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), "#CMOV_GR16* PSEUDO!", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP32 : I<0, Pseudo, (outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), "#CMOV_RFP32 PSEUDO!", [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP64 : I<0, Pseudo, (outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), "#CMOV_RFP64 PSEUDO!", [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP80 : I<0, Pseudo, (outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), "#CMOV_RFP80 PSEUDO!", [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, EFLAGS))]>; } // Predicates = [NoCMov] } // UsesCustomInserter = 1, isTwoAddress = 0, Defs = [EFLAGS] } // Uses = [EFLAGS] // unary instructions let CodeSize = 2 in { let Defs = [EFLAGS] in { def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src), "neg{b}\t$dst", [(set GR8:$dst, (ineg GR8:$src)), (implicit EFLAGS)]>; def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src), "neg{w}\t$dst", [(set GR16:$dst, (ineg GR16:$src)), (implicit EFLAGS)]>, OpSize; def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src), "neg{l}\t$dst", [(set GR32:$dst, (ineg GR32:$src)), (implicit EFLAGS)]>; let isTwoAddress = 0 in { def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), "neg{b}\t$dst", [(store (ineg (loadi8 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), "neg{w}\t$dst", [(store (ineg (loadi16 addr:$dst)), addr:$dst), (implicit EFLAGS)]>, OpSize; def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), "neg{l}\t$dst", [(store (ineg (loadi32 addr:$dst)), addr:$dst), (implicit EFLAGS)]>; } } // Defs = [EFLAGS] // Match xor -1 to not. Favors these over a move imm + xor to save code size. let AddedComplexity = 15 in { def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src), "not{b}\t$dst", [(set GR8:$dst, (not GR8:$src))]>; def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src), "not{w}\t$dst", [(set GR16:$dst, (not GR16:$src))]>, OpSize; def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src), "not{l}\t$dst", [(set GR32:$dst, (not GR32:$src))]>; } let isTwoAddress = 0 in { def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), "not{b}\t$dst", [(store (not (loadi8 addr:$dst)), addr:$dst)]>; def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), "not{w}\t$dst", [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize; def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), "not{l}\t$dst", [(store (not (loadi32 addr:$dst)), addr:$dst)]>; } } // CodeSize // TODO: inc/dec is slow for P4, but fast for Pentium-M. let Defs = [EFLAGS] in { let CodeSize = 2 in def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "inc{b}\t$dst", [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src))]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "inc{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src))]>, OpSize, Requires<[In32BitMode]>; def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "inc{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src))]>, Requires<[In32BitMode]>; } let isTwoAddress = 0, CodeSize = 2 in { def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", [(store (add (loadi8 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>; def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", [(store (add (loadi16 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", [(store (add (loadi32 addr:$dst), 1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } let CodeSize = 2 in def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "dec{b}\t$dst", [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src))]>; let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src), "dec{w}\t$dst", [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src))]>, OpSize, Requires<[In32BitMode]>; def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src), "dec{l}\t$dst", [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src))]>, Requires<[In32BitMode]>; } let isTwoAddress = 0, CodeSize = 2 in { def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", [(store (add (loadi8 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>; def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", [(store (add (loadi16 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, OpSize, Requires<[In32BitMode]>; def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", [(store (add (loadi32 addr:$dst), -1), addr:$dst), (implicit EFLAGS)]>, Requires<[In32BitMode]>; } } // Defs = [EFLAGS] // Logical operators... let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y def AND8rr : I<0x20, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1, GR8:$src2))]>; def AND16rr : I<0x21, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1, GR16:$src2))]>, OpSize; def AND32rr : I<0x21, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1, GR32:$src2))]>; } // AND instructions with the destination register in REG and the source register // in R/M. Included for the disassembler. let isCodeGenOnly = 1 in { def AND8rr_REV : I<0x22, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "and{b}\t{$src2, $dst|$dst, $src2}", []>; def AND16rr_REV : I<0x23, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def AND32rr_REV : I<0x23, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", []>; } def AND8rm : I<0x22, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1, (loadi8 addr:$src2)))]>; def AND16rm : I<0x23, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1, (loadi16 addr:$src2)))]>, OpSize; def AND32rm : I<0x23, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1, (loadi32 addr:$src2)))]>; def AND8ri : Ii8<0x80, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm :$src2), "and{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1, imm:$src2))]>; def AND16ri : Ii16<0x81, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1, imm:$src2))]>, OpSize; def AND32ri : Ii32<0x81, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1, imm:$src2))]>; def AND16ri8 : Ii8<0x83, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "and{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def AND32ri8 : Ii8<0x83, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "and{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def AND8mr : I<0x20, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "and{b}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mr : I<0x21, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mr : I<0x21, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def AND8mi : Ii8<0x80, MRM4m, (outs), (ins i8mem :$dst, i8imm :$src), "and{b}\t{$src, $dst|$dst, $src}", [(store (and (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mi : Ii16<0x81, MRM4m, (outs), (ins i16mem:$dst, i16imm:$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mi : Ii32<0x81, MRM4m, (outs), (ins i32mem:$dst, i32imm:$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def AND16mi8 : Ii8<0x83, MRM4m, (outs), (ins i16mem:$dst, i16i8imm :$src), "and{w}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def AND32mi8 : Ii8<0x83, MRM4m, (outs), (ins i32mem:$dst, i32i8imm :$src), "and{l}\t{$src, $dst|$dst, $src}", [(store (and (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def AND8i8 : Ii8<0x24, RawFrm, (outs), (ins i8imm:$src), "and{b}\t{$src, %al|%al, $src}", []>; def AND16i16 : Ii16<0x25, RawFrm, (outs), (ins i16imm:$src), "and{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def AND32i32 : Ii32<0x25, RawFrm, (outs), (ins i32imm:$src), "and{l}\t{$src, %eax|%eax, $src}", []>; } let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y def OR8rr : I<0x08, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86or_flag GR8:$src1, GR8:$src2))]>; def OR16rr : I<0x09, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1,GR16:$src2))]>, OpSize; def OR32rr : I<0x09, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1,GR32:$src2))]>; } // OR instructions with the destination register in REG and the source register // in R/M. Included for the disassembler. let isCodeGenOnly = 1 in { def OR8rr_REV : I<0x0A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "or{b}\t{$src2, $dst|$dst, $src2}", []>; def OR16rr_REV : I<0x0B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def OR32rr_REV : I<0x0B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", []>; } def OR8rm : I<0x0A, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86or_flag GR8:$src1, (load addr:$src2)))]>; def OR16rm : I<0x0B, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1, (load addr:$src2)))]>, OpSize; def OR32rm : I<0x0B, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1, (load addr:$src2)))]>; def OR8ri : Ii8 <0x80, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "or{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst,EFLAGS, (X86or_flag GR8:$src1, imm:$src2))]>; def OR16ri : Ii16<0x81, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1, imm:$src2))]>, OpSize; def OR32ri : Ii32<0x81, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1, imm:$src2))]>; def OR16ri8 : Ii8<0x83, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "or{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86or_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def OR32ri8 : Ii8<0x83, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "or{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86or_flag GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def OR8mr : I<0x08, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "or{b}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mr : I<0x09, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mr : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def OR8mi : Ii8<0x80, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src), "or{b}\t{$src, $dst|$dst, $src}", [(store (or (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mi : Ii16<0x81, MRM1m, (outs), (ins i16mem:$dst, i16imm:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mi : Ii32<0x81, MRM1m, (outs), (ins i32mem:$dst, i32imm:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def OR16mi8 : Ii8<0x83, MRM1m, (outs), (ins i16mem:$dst, i16i8imm:$src), "or{w}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def OR32mi8 : Ii8<0x83, MRM1m, (outs), (ins i32mem:$dst, i32i8imm:$src), "or{l}\t{$src, $dst|$dst, $src}", [(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def OR8i8 : Ii8 <0x0C, RawFrm, (outs), (ins i8imm:$src), "or{b}\t{$src, %al|%al, $src}", []>; def OR16i16 : Ii16 <0x0D, RawFrm, (outs), (ins i16imm:$src), "or{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def OR32i32 : Ii32 <0x0D, RawFrm, (outs), (ins i32imm:$src), "or{l}\t{$src, %eax|%eax, $src}", []>; } // isTwoAddress = 0 let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y def XOR8rr : I<0x30, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1, GR8:$src2))]>; def XOR16rr : I<0x31, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1, GR16:$src2))]>, OpSize; def XOR32rr : I<0x31, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1, GR32:$src2))]>; } // isCommutable = 1 // XOR instructions with the destination register in REG and the source register // in R/M. Included for the disassembler. let isCodeGenOnly = 1 in { def XOR8rr_REV : I<0x32, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", []>; def XOR16rr_REV : I<0x33, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def XOR32rr_REV : I<0x33, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", []>; } def XOR8rm : I<0x32, MRMSrcMem, (outs GR8 :$dst), (ins GR8:$src1, i8mem :$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1, (load addr:$src2)))]>; def XOR16rm : I<0x33, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1, (load addr:$src2)))]>, OpSize; def XOR32rm : I<0x33, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1, (load addr:$src2)))]>; def XOR8ri : Ii8<0x80, MRM6r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "xor{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86xor_flag GR8:$src1, imm:$src2))]>; def XOR16ri : Ii16<0x81, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1, imm:$src2))]>, OpSize; def XOR32ri : Ii32<0x81, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1, imm:$src2))]>; def XOR16ri8 : Ii8<0x83, MRM6r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "xor{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86xor_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def XOR32ri8 : Ii8<0x83, MRM6r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "xor{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86xor_flag GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def XOR8mr : I<0x30, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src), "xor{b}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR8:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mr : I<0x31, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR16:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mr : I<0x31, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), GR32:$src), addr:$dst), (implicit EFLAGS)]>; def XOR8mi : Ii8<0x80, MRM6m, (outs), (ins i8mem :$dst, i8imm :$src), "xor{b}\t{$src, $dst|$dst, $src}", [(store (xor (loadi8 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mi : Ii16<0x81, MRM6m, (outs), (ins i16mem:$dst, i16imm:$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (loadi16 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mi : Ii32<0x81, MRM6m, (outs), (ins i32mem:$dst, i32imm:$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (loadi32 addr:$dst), imm:$src), addr:$dst), (implicit EFLAGS)]>; def XOR16mi8 : Ii8<0x83, MRM6m, (outs), (ins i16mem:$dst, i16i8imm :$src), "xor{w}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i16immSExt8:$src), addr:$dst), (implicit EFLAGS)]>, OpSize; def XOR32mi8 : Ii8<0x83, MRM6m, (outs), (ins i32mem:$dst, i32i8imm :$src), "xor{l}\t{$src, $dst|$dst, $src}", [(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst), (implicit EFLAGS)]>; def XOR8i8 : Ii8 <0x34, RawFrm, (outs), (ins i8imm:$src), "xor{b}\t{$src, %al|%al, $src}", []>; def XOR16i16 : Ii16<0x35, RawFrm, (outs), (ins i16imm:$src), "xor{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def XOR32i32 : Ii32<0x35, RawFrm, (outs), (ins i32imm:$src), "xor{l}\t{$src, %eax|%eax, $src}", []>; } // isTwoAddress = 0 } // Defs = [EFLAGS] // Shift instructions let Defs = [EFLAGS] in { let Uses = [CL] in { def SHL8rCL : I<0xD2, MRM4r, (outs GR8 :$dst), (ins GR8 :$src), "shl{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (shl GR8:$src, CL))]>; def SHL16rCL : I<0xD3, MRM4r, (outs GR16:$dst), (ins GR16:$src), "shl{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (shl GR16:$src, CL))]>, OpSize; def SHL32rCL : I<0xD3, MRM4r, (outs GR32:$dst), (ins GR32:$src), "shl{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (shl GR32:$src, CL))]>; } // Uses = [CL] def SHL8ri : Ii8<0xC0, MRM4r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "shl{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (shl GR8:$src1, (i8 imm:$src2)))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. def SHL16ri : Ii8<0xC1, MRM4r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "shl{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (shl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SHL32ri : Ii8<0xC1, MRM4r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "shl{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (shl GR32:$src1, (i8 imm:$src2)))]>; // NOTE: We don't include patterns for shifts of a register by one, because // 'add reg,reg' is cheaper. def SHL8r1 : I<0xD0, MRM4r, (outs GR8:$dst), (ins GR8:$src1), "shl{b}\t$dst", []>; def SHL16r1 : I<0xD1, MRM4r, (outs GR16:$dst), (ins GR16:$src1), "shl{w}\t$dst", []>, OpSize; def SHL32r1 : I<0xD1, MRM4r, (outs GR32:$dst), (ins GR32:$src1), "shl{l}\t$dst", []>; } // isConvertibleToThreeAddress = 1 let isTwoAddress = 0 in { let Uses = [CL] in { def SHL8mCL : I<0xD2, MRM4m, (outs), (ins i8mem :$dst), "shl{b}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi8 addr:$dst), CL), addr:$dst)]>; def SHL16mCL : I<0xD3, MRM4m, (outs), (ins i16mem:$dst), "shl{w}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SHL32mCL : I<0xD3, MRM4m, (outs), (ins i32mem:$dst), "shl{l}\t{%cl, $dst|$dst, CL}", [(store (shl (loadi32 addr:$dst), CL), addr:$dst)]>; } def SHL8mi : Ii8<0xC0, MRM4m, (outs), (ins i8mem :$dst, i8imm:$src), "shl{b}\t{$src, $dst|$dst, $src}", [(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHL16mi : Ii8<0xC1, MRM4m, (outs), (ins i16mem:$dst, i8imm:$src), "shl{w}\t{$src, $dst|$dst, $src}", [(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHL32mi : Ii8<0xC1, MRM4m, (outs), (ins i32mem:$dst, i8imm:$src), "shl{l}\t{$src, $dst|$dst, $src}", [(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SHL8m1 : I<0xD0, MRM4m, (outs), (ins i8mem :$dst), "shl{b}\t$dst", [(store (shl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SHL16m1 : I<0xD1, MRM4m, (outs), (ins i16mem:$dst), "shl{w}\t$dst", [(store (shl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def SHL32m1 : I<0xD1, MRM4m, (outs), (ins i32mem:$dst), "shl{l}\t$dst", [(store (shl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def SHR8rCL : I<0xD2, MRM5r, (outs GR8 :$dst), (ins GR8 :$src), "shr{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (srl GR8:$src, CL))]>; def SHR16rCL : I<0xD3, MRM5r, (outs GR16:$dst), (ins GR16:$src), "shr{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (srl GR16:$src, CL))]>, OpSize; def SHR32rCL : I<0xD3, MRM5r, (outs GR32:$dst), (ins GR32:$src), "shr{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (srl GR32:$src, CL))]>; } def SHR8ri : Ii8<0xC0, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "shr{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (srl GR8:$src1, (i8 imm:$src2)))]>; def SHR16ri : Ii8<0xC1, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "shr{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (srl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SHR32ri : Ii8<0xC1, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "shr{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (srl GR32:$src1, (i8 imm:$src2)))]>; // Shift by 1 def SHR8r1 : I<0xD0, MRM5r, (outs GR8:$dst), (ins GR8:$src1), "shr{b}\t$dst", [(set GR8:$dst, (srl GR8:$src1, (i8 1)))]>; def SHR16r1 : I<0xD1, MRM5r, (outs GR16:$dst), (ins GR16:$src1), "shr{w}\t$dst", [(set GR16:$dst, (srl GR16:$src1, (i8 1)))]>, OpSize; def SHR32r1 : I<0xD1, MRM5r, (outs GR32:$dst), (ins GR32:$src1), "shr{l}\t$dst", [(set GR32:$dst, (srl GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def SHR8mCL : I<0xD2, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi8 addr:$dst), CL), addr:$dst)]>; def SHR16mCL : I<0xD3, MRM5m, (outs), (ins i16mem:$dst), "shr{w}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SHR32mCL : I<0xD3, MRM5m, (outs), (ins i32mem:$dst), "shr{l}\t{%cl, $dst|$dst, CL}", [(store (srl (loadi32 addr:$dst), CL), addr:$dst)]>; } def SHR8mi : Ii8<0xC0, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src), "shr{b}\t{$src, $dst|$dst, $src}", [(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SHR16mi : Ii8<0xC1, MRM5m, (outs), (ins i16mem:$dst, i8imm:$src), "shr{w}\t{$src, $dst|$dst, $src}", [(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SHR32mi : Ii8<0xC1, MRM5m, (outs), (ins i32mem:$dst, i8imm:$src), "shr{l}\t{$src, $dst|$dst, $src}", [(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SHR8m1 : I<0xD0, MRM5m, (outs), (ins i8mem :$dst), "shr{b}\t$dst", [(store (srl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SHR16m1 : I<0xD1, MRM5m, (outs), (ins i16mem:$dst), "shr{w}\t$dst", [(store (srl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>,OpSize; def SHR32m1 : I<0xD1, MRM5m, (outs), (ins i32mem:$dst), "shr{l}\t$dst", [(store (srl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def SAR8rCL : I<0xD2, MRM7r, (outs GR8 :$dst), (ins GR8 :$src), "sar{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (sra GR8:$src, CL))]>; def SAR16rCL : I<0xD3, MRM7r, (outs GR16:$dst), (ins GR16:$src), "sar{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (sra GR16:$src, CL))]>, OpSize; def SAR32rCL : I<0xD3, MRM7r, (outs GR32:$dst), (ins GR32:$src), "sar{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (sra GR32:$src, CL))]>; } def SAR8ri : Ii8<0xC0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "sar{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sra GR8:$src1, (i8 imm:$src2)))]>; def SAR16ri : Ii8<0xC1, MRM7r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "sar{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sra GR16:$src1, (i8 imm:$src2)))]>, OpSize; def SAR32ri : Ii8<0xC1, MRM7r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "sar{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sra GR32:$src1, (i8 imm:$src2)))]>; // Shift by 1 def SAR8r1 : I<0xD0, MRM7r, (outs GR8 :$dst), (ins GR8 :$src1), "sar{b}\t$dst", [(set GR8:$dst, (sra GR8:$src1, (i8 1)))]>; def SAR16r1 : I<0xD1, MRM7r, (outs GR16:$dst), (ins GR16:$src1), "sar{w}\t$dst", [(set GR16:$dst, (sra GR16:$src1, (i8 1)))]>, OpSize; def SAR32r1 : I<0xD1, MRM7r, (outs GR32:$dst), (ins GR32:$src1), "sar{l}\t$dst", [(set GR32:$dst, (sra GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def SAR8mCL : I<0xD2, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi8 addr:$dst), CL), addr:$dst)]>; def SAR16mCL : I<0xD3, MRM7m, (outs), (ins i16mem:$dst), "sar{w}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def SAR32mCL : I<0xD3, MRM7m, (outs), (ins i32mem:$dst), "sar{l}\t{%cl, $dst|$dst, CL}", [(store (sra (loadi32 addr:$dst), CL), addr:$dst)]>; } def SAR8mi : Ii8<0xC0, MRM7m, (outs), (ins i8mem :$dst, i8imm:$src), "sar{b}\t{$src, $dst|$dst, $src}", [(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def SAR16mi : Ii8<0xC1, MRM7m, (outs), (ins i16mem:$dst, i8imm:$src), "sar{w}\t{$src, $dst|$dst, $src}", [(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def SAR32mi : Ii8<0xC1, MRM7m, (outs), (ins i32mem:$dst, i8imm:$src), "sar{l}\t{$src, $dst|$dst, $src}", [(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Shift by 1 def SAR8m1 : I<0xD0, MRM7m, (outs), (ins i8mem :$dst), "sar{b}\t$dst", [(store (sra (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def SAR16m1 : I<0xD1, MRM7m, (outs), (ins i16mem:$dst), "sar{w}\t$dst", [(store (sra (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def SAR32m1 : I<0xD1, MRM7m, (outs), (ins i32mem:$dst), "sar{l}\t$dst", [(store (sra (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } // Rotate instructions def RCL8r1 : I<0xD0, MRM2r, (outs GR8:$dst), (ins GR8:$src), "rcl{b}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { def RCL8rCL : I<0xD2, MRM2r, (outs GR8:$dst), (ins GR8:$src), "rcl{b}\t{%cl, $dst|$dst, CL}", []>; } def RCL8ri : Ii8<0xC0, MRM2r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt), "rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>; def RCL16r1 : I<0xD1, MRM2r, (outs GR16:$dst), (ins GR16:$src), "rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize; let Uses = [CL] in { def RCL16rCL : I<0xD3, MRM2r, (outs GR16:$dst), (ins GR16:$src), "rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; } def RCL16ri : Ii8<0xC1, MRM2r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt), "rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; def RCL32r1 : I<0xD1, MRM2r, (outs GR32:$dst), (ins GR32:$src), "rcl{l}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { def RCL32rCL : I<0xD3, MRM2r, (outs GR32:$dst), (ins GR32:$src), "rcl{l}\t{%cl, $dst|$dst, CL}", []>; } def RCL32ri : Ii8<0xC1, MRM2r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt), "rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>; def RCR8r1 : I<0xD0, MRM3r, (outs GR8:$dst), (ins GR8:$src), "rcr{b}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { def RCR8rCL : I<0xD2, MRM3r, (outs GR8:$dst), (ins GR8:$src), "rcr{b}\t{%cl, $dst|$dst, CL}", []>; } def RCR8ri : Ii8<0xC0, MRM3r, (outs GR8:$dst), (ins GR8:$src, i8imm:$cnt), "rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>; def RCR16r1 : I<0xD1, MRM3r, (outs GR16:$dst), (ins GR16:$src), "rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize; let Uses = [CL] in { def RCR16rCL : I<0xD3, MRM3r, (outs GR16:$dst), (ins GR16:$src), "rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; } def RCR16ri : Ii8<0xC1, MRM3r, (outs GR16:$dst), (ins GR16:$src, i8imm:$cnt), "rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; def RCR32r1 : I<0xD1, MRM3r, (outs GR32:$dst), (ins GR32:$src), "rcr{l}\t{1, $dst|$dst, 1}", []>; let Uses = [CL] in { def RCR32rCL : I<0xD3, MRM3r, (outs GR32:$dst), (ins GR32:$src), "rcr{l}\t{%cl, $dst|$dst, CL}", []>; } def RCR32ri : Ii8<0xC1, MRM3r, (outs GR32:$dst), (ins GR32:$src, i8imm:$cnt), "rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>; let isTwoAddress = 0 in { def RCL8m1 : I<0xD0, MRM2m, (outs), (ins i8mem:$dst), "rcl{b}\t{1, $dst|$dst, 1}", []>; def RCL8mi : Ii8<0xC0, MRM2m, (outs), (ins i8mem:$dst, i8imm:$cnt), "rcl{b}\t{$cnt, $dst|$dst, $cnt}", []>; def RCL16m1 : I<0xD1, MRM2m, (outs), (ins i16mem:$dst), "rcl{w}\t{1, $dst|$dst, 1}", []>, OpSize; def RCL16mi : Ii8<0xC1, MRM2m, (outs), (ins i16mem:$dst, i8imm:$cnt), "rcl{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; def RCL32m1 : I<0xD1, MRM2m, (outs), (ins i32mem:$dst), "rcl{l}\t{1, $dst|$dst, 1}", []>; def RCL32mi : Ii8<0xC1, MRM2m, (outs), (ins i32mem:$dst, i8imm:$cnt), "rcl{l}\t{$cnt, $dst|$dst, $cnt}", []>; def RCR8m1 : I<0xD0, MRM3m, (outs), (ins i8mem:$dst), "rcr{b}\t{1, $dst|$dst, 1}", []>; def RCR8mi : Ii8<0xC0, MRM3m, (outs), (ins i8mem:$dst, i8imm:$cnt), "rcr{b}\t{$cnt, $dst|$dst, $cnt}", []>; def RCR16m1 : I<0xD1, MRM3m, (outs), (ins i16mem:$dst), "rcr{w}\t{1, $dst|$dst, 1}", []>, OpSize; def RCR16mi : Ii8<0xC1, MRM3m, (outs), (ins i16mem:$dst, i8imm:$cnt), "rcr{w}\t{$cnt, $dst|$dst, $cnt}", []>, OpSize; def RCR32m1 : I<0xD1, MRM3m, (outs), (ins i32mem:$dst), "rcr{l}\t{1, $dst|$dst, 1}", []>; def RCR32mi : Ii8<0xC1, MRM3m, (outs), (ins i32mem:$dst, i8imm:$cnt), "rcr{l}\t{$cnt, $dst|$dst, $cnt}", []>; let Uses = [CL] in { def RCL8mCL : I<0xD2, MRM2m, (outs), (ins i8mem:$dst), "rcl{b}\t{%cl, $dst|$dst, CL}", []>; def RCL16mCL : I<0xD3, MRM2m, (outs), (ins i16mem:$dst), "rcl{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; def RCL32mCL : I<0xD3, MRM2m, (outs), (ins i32mem:$dst), "rcl{l}\t{%cl, $dst|$dst, CL}", []>; def RCR8mCL : I<0xD2, MRM3m, (outs), (ins i8mem:$dst), "rcr{b}\t{%cl, $dst|$dst, CL}", []>; def RCR16mCL : I<0xD3, MRM3m, (outs), (ins i16mem:$dst), "rcr{w}\t{%cl, $dst|$dst, CL}", []>, OpSize; def RCR32mCL : I<0xD3, MRM3m, (outs), (ins i32mem:$dst), "rcr{l}\t{%cl, $dst|$dst, CL}", []>; } } // FIXME: provide shorter instructions when imm8 == 1 let Uses = [CL] in { def ROL8rCL : I<0xD2, MRM0r, (outs GR8 :$dst), (ins GR8 :$src), "rol{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (rotl GR8:$src, CL))]>; def ROL16rCL : I<0xD3, MRM0r, (outs GR16:$dst), (ins GR16:$src), "rol{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (rotl GR16:$src, CL))]>, OpSize; def ROL32rCL : I<0xD3, MRM0r, (outs GR32:$dst), (ins GR32:$src), "rol{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (rotl GR32:$src, CL))]>; } def ROL8ri : Ii8<0xC0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "rol{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (rotl GR8:$src1, (i8 imm:$src2)))]>; def ROL16ri : Ii8<0xC1, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "rol{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (rotl GR16:$src1, (i8 imm:$src2)))]>, OpSize; def ROL32ri : Ii8<0xC1, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "rol{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$src2)))]>; // Rotate by 1 def ROL8r1 : I<0xD0, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), "rol{b}\t$dst", [(set GR8:$dst, (rotl GR8:$src1, (i8 1)))]>; def ROL16r1 : I<0xD1, MRM0r, (outs GR16:$dst), (ins GR16:$src1), "rol{w}\t$dst", [(set GR16:$dst, (rotl GR16:$src1, (i8 1)))]>, OpSize; def ROL32r1 : I<0xD1, MRM0r, (outs GR32:$dst), (ins GR32:$src1), "rol{l}\t$dst", [(set GR32:$dst, (rotl GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def ROL8mCL : I<0xD2, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi8 addr:$dst), CL), addr:$dst)]>; def ROL16mCL : I<0xD3, MRM0m, (outs), (ins i16mem:$dst), "rol{w}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def ROL32mCL : I<0xD3, MRM0m, (outs), (ins i32mem:$dst), "rol{l}\t{%cl, $dst|$dst, CL}", [(store (rotl (loadi32 addr:$dst), CL), addr:$dst)]>; } def ROL8mi : Ii8<0xC0, MRM0m, (outs), (ins i8mem :$dst, i8imm:$src), "rol{b}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROL16mi : Ii8<0xC1, MRM0m, (outs), (ins i16mem:$dst, i8imm:$src), "rol{w}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def ROL32mi : Ii8<0xC1, MRM0m, (outs), (ins i32mem:$dst, i8imm:$src), "rol{l}\t{$src, $dst|$dst, $src}", [(store (rotl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Rotate by 1 def ROL8m1 : I<0xD0, MRM0m, (outs), (ins i8mem :$dst), "rol{b}\t$dst", [(store (rotl (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def ROL16m1 : I<0xD1, MRM0m, (outs), (ins i16mem:$dst), "rol{w}\t$dst", [(store (rotl (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def ROL32m1 : I<0xD1, MRM0m, (outs), (ins i32mem:$dst), "rol{l}\t$dst", [(store (rotl (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } let Uses = [CL] in { def ROR8rCL : I<0xD2, MRM1r, (outs GR8 :$dst), (ins GR8 :$src), "ror{b}\t{%cl, $dst|$dst, CL}", [(set GR8:$dst, (rotr GR8:$src, CL))]>; def ROR16rCL : I<0xD3, MRM1r, (outs GR16:$dst), (ins GR16:$src), "ror{w}\t{%cl, $dst|$dst, CL}", [(set GR16:$dst, (rotr GR16:$src, CL))]>, OpSize; def ROR32rCL : I<0xD3, MRM1r, (outs GR32:$dst), (ins GR32:$src), "ror{l}\t{%cl, $dst|$dst, CL}", [(set GR32:$dst, (rotr GR32:$src, CL))]>; } def ROR8ri : Ii8<0xC0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1, i8imm:$src2), "ror{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (rotr GR8:$src1, (i8 imm:$src2)))]>; def ROR16ri : Ii8<0xC1, MRM1r, (outs GR16:$dst), (ins GR16:$src1, i8imm:$src2), "ror{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (rotr GR16:$src1, (i8 imm:$src2)))]>, OpSize; def ROR32ri : Ii8<0xC1, MRM1r, (outs GR32:$dst), (ins GR32:$src1, i8imm:$src2), "ror{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$src2)))]>; // Rotate by 1 def ROR8r1 : I<0xD0, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), "ror{b}\t$dst", [(set GR8:$dst, (rotr GR8:$src1, (i8 1)))]>; def ROR16r1 : I<0xD1, MRM1r, (outs GR16:$dst), (ins GR16:$src1), "ror{w}\t$dst", [(set GR16:$dst, (rotr GR16:$src1, (i8 1)))]>, OpSize; def ROR32r1 : I<0xD1, MRM1r, (outs GR32:$dst), (ins GR32:$src1), "ror{l}\t$dst", [(set GR32:$dst, (rotr GR32:$src1, (i8 1)))]>; let isTwoAddress = 0 in { let Uses = [CL] in { def ROR8mCL : I<0xD2, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi8 addr:$dst), CL), addr:$dst)]>; def ROR16mCL : I<0xD3, MRM1m, (outs), (ins i16mem:$dst), "ror{w}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi16 addr:$dst), CL), addr:$dst)]>, OpSize; def ROR32mCL : I<0xD3, MRM1m, (outs), (ins i32mem:$dst), "ror{l}\t{%cl, $dst|$dst, CL}", [(store (rotr (loadi32 addr:$dst), CL), addr:$dst)]>; } def ROR8mi : Ii8<0xC0, MRM1m, (outs), (ins i8mem :$dst, i8imm:$src), "ror{b}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>; def ROR16mi : Ii8<0xC1, MRM1m, (outs), (ins i16mem:$dst, i8imm:$src), "ror{w}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>, OpSize; def ROR32mi : Ii8<0xC1, MRM1m, (outs), (ins i32mem:$dst, i8imm:$src), "ror{l}\t{$src, $dst|$dst, $src}", [(store (rotr (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>; // Rotate by 1 def ROR8m1 : I<0xD0, MRM1m, (outs), (ins i8mem :$dst), "ror{b}\t$dst", [(store (rotr (loadi8 addr:$dst), (i8 1)), addr:$dst)]>; def ROR16m1 : I<0xD1, MRM1m, (outs), (ins i16mem:$dst), "ror{w}\t$dst", [(store (rotr (loadi16 addr:$dst), (i8 1)), addr:$dst)]>, OpSize; def ROR32m1 : I<0xD1, MRM1m, (outs), (ins i32mem:$dst), "ror{l}\t$dst", [(store (rotr (loadi32 addr:$dst), (i8 1)), addr:$dst)]>; } // Double shift instructions (generalizations of rotate) let Uses = [CL] in { def SHLD32rrCL : I<0xA5, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, CL))]>, TB; def SHRD32rrCL : I<0xAD, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, CL))]>, TB; def SHLD16rrCL : I<0xA5, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, CL))]>, TB, OpSize; def SHRD16rrCL : I<0xAD, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, CL))]>, TB, OpSize; } let isCommutable = 1 in { // These instructions commute to each other. def SHLD32rri8 : Ii8<0xA4, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$src3), "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR32:$dst, (X86shld GR32:$src1, GR32:$src2, (i8 imm:$src3)))]>, TB; def SHRD32rri8 : Ii8<0xAC, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$src3), "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR32:$dst, (X86shrd GR32:$src1, GR32:$src2, (i8 imm:$src3)))]>, TB; def SHLD16rri8 : Ii8<0xA4, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$src3), "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR16:$dst, (X86shld GR16:$src1, GR16:$src2, (i8 imm:$src3)))]>, TB, OpSize; def SHRD16rri8 : Ii8<0xAC, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$src3), "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(set GR16:$dst, (X86shrd GR16:$src1, GR16:$src2, (i8 imm:$src3)))]>, TB, OpSize; } let isTwoAddress = 0 in { let Uses = [CL] in { def SHLD32mrCL : I<0xA5, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "shld{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shld (loadi32 addr:$dst), GR32:$src2, CL), addr:$dst)]>, TB; def SHRD32mrCL : I<0xAD, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "shrd{l}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shrd (loadi32 addr:$dst), GR32:$src2, CL), addr:$dst)]>, TB; } def SHLD32mri8 : Ii8<0xA4, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3), "shld{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi32 addr:$dst), GR32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; def SHRD32mri8 : Ii8<0xAC, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2, i8imm:$src3), "shrd{l}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi32 addr:$dst), GR32:$src2, (i8 imm:$src3)), addr:$dst)]>, TB; let Uses = [CL] in { def SHLD16mrCL : I<0xA5, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "shld{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shld (loadi16 addr:$dst), GR16:$src2, CL), addr:$dst)]>, TB, OpSize; def SHRD16mrCL : I<0xAD, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "shrd{w}\t{%cl, $src2, $dst|$dst, $src2, CL}", [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, CL), addr:$dst)]>, TB, OpSize; } def SHLD16mri8 : Ii8<0xA4, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3), "shld{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shld (loadi16 addr:$dst), GR16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; def SHRD16mri8 : Ii8<0xAC, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2, i8imm:$src3), "shrd{w}\t{$src3, $src2, $dst|$dst, $src2, $src3}", [(store (X86shrd (loadi16 addr:$dst), GR16:$src2, (i8 imm:$src3)), addr:$dst)]>, TB, OpSize; } } // Defs = [EFLAGS] // Arithmetic. let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y // Register-Register Addition def ADD8rr : I<0x00, MRMDestReg, (outs GR8 :$dst), (ins GR8 :$src1, GR8 :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86add_flag GR8:$src1, GR8:$src2))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. // Register-Register Addition def ADD16rr : I<0x01, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1, GR16:$src2))]>, OpSize; def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1, GR32:$src2))]>; } // end isConvertibleToThreeAddress } // end isCommutable // These are alternate spellings for use by the disassembler, we mark them as // code gen only to ensure they aren't matched by the assembler. let isCodeGenOnly = 1 in { def ADD8rr_alt: I<0x02, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", []>; def ADD16rr_alt: I<0x03, MRMSrcReg,(outs GR16:$dst),(ins GR16:$src1, GR16:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def ADD32rr_alt: I<0x03, MRMSrcReg,(outs GR32:$dst),(ins GR32:$src1, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", []>; } // Register-Memory Addition def ADD8rm : I<0x02, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86add_flag GR8:$src1, (load addr:$src2)))]>; def ADD16rm : I<0x03, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1, (load addr:$src2)))]>, OpSize; def ADD32rm : I<0x03, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1, (load addr:$src2)))]>; // Register-Integer Addition def ADD8ri : Ii8<0x80, MRM0r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86add_flag GR8:$src1, imm:$src2))]>; let isConvertibleToThreeAddress = 1 in { // Can transform into LEA. // Register-Integer Addition def ADD16ri : Ii16<0x81, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1, imm:$src2))]>, OpSize; def ADD32ri : Ii32<0x81, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1, imm:$src2))]>; def ADD16ri8 : Ii8<0x83, MRM0r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86add_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def ADD32ri8 : Ii8<0x83, MRM0r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86add_flag GR32:$src1, i32immSExt8:$src2))]>; } let isTwoAddress = 0 in { // Memory-Register Addition def ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2), "add{b}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi16 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (loadi32 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "add{w}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(store (add (load addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; // addition to rAX def ADD8i8 : Ii8<0x04, RawFrm, (outs), (ins i8imm:$src), "add{b}\t{$src, %al|%al, $src}", []>; def ADD16i16 : Ii16<0x05, RawFrm, (outs), (ins i16imm:$src), "add{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def ADD32i32 : Ii32<0x05, RawFrm, (outs), (ins i32imm:$src), "add{l}\t{$src, %eax|%eax, $src}", []>; } let Uses = [EFLAGS] in { let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y def ADC8rr : I<0x10, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, GR8:$src2))]>; def ADC16rr : I<0x11, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, GR16:$src2))]>, OpSize; def ADC32rr : I<0x11, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, GR32:$src2))]>; } let isCodeGenOnly = 1 in { def ADC8rr_REV : I<0x12, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", []>; def ADC16rr_REV : I<0x13, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def ADC32rr_REV : I<0x13, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", []>; } def ADC8rm : I<0x12, MRMSrcMem , (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, (load addr:$src2)))]>; def ADC16rm : I<0x13, MRMSrcMem , (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, (load addr:$src2)))]>, OpSize; def ADC32rm : I<0x13, MRMSrcMem , (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, (load addr:$src2)))]>; def ADC8ri : Ii8<0x80, MRM2r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (adde GR8:$src1, imm:$src2))]>; def ADC16ri : Ii16<0x81, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, imm:$src2))]>, OpSize; def ADC16ri8 : Ii8<0x83, MRM2r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (adde GR16:$src1, i16immSExt8:$src2))]>, OpSize; def ADC32ri : Ii32<0x81, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, imm:$src2))]>; def ADC32ri8 : Ii8<0x83, MRM2r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (adde GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { def ADC8mr : I<0x10, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR8:$src2), addr:$dst)]>; def ADC16mr : I<0x11, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR16:$src2), addr:$dst)]>, OpSize; def ADC32mr : I<0x11, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), GR32:$src2), addr:$dst)]>; def ADC8mi : Ii8<0x80, MRM2m, (outs), (ins i8mem:$dst, i8imm:$src2), "adc{b}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def ADC16mi : Ii16<0x81, MRM2m, (outs), (ins i16mem:$dst, i16imm:$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def ADC16mi8 : Ii8<0x83, MRM2m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "adc{w}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def ADC32mi : Ii32<0x81, MRM2m, (outs), (ins i32mem:$dst, i32imm:$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def ADC32mi8 : Ii8<0x83, MRM2m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "adc{l}\t{$src2, $dst|$dst, $src2}", [(store (adde (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; def ADC8i8 : Ii8<0x14, RawFrm, (outs), (ins i8imm:$src), "adc{b}\t{$src, %al|%al, $src}", []>; def ADC16i16 : Ii16<0x15, RawFrm, (outs), (ins i16imm:$src), "adc{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def ADC32i32 : Ii32<0x15, RawFrm, (outs), (ins i32imm:$src), "adc{l}\t{$src, %eax|%eax, $src}", []>; } } // Uses = [EFLAGS] // Register-Register Subtraction def SUB8rr : I<0x28, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86sub_flag GR8:$src1, GR8:$src2))]>; def SUB16rr : I<0x29, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86sub_flag GR16:$src1, GR16:$src2))]>, OpSize; def SUB32rr : I<0x29, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86sub_flag GR32:$src1, GR32:$src2))]>; let isCodeGenOnly = 1 in { def SUB8rr_REV : I<0x2A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", []>; def SUB16rr_REV : I<0x2B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def SUB32rr_REV : I<0x2B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", []>; } // Register-Memory Subtraction def SUB8rm : I<0x2A, MRMSrcMem, (outs GR8 :$dst), (ins GR8 :$src1, i8mem :$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86sub_flag GR8:$src1, (load addr:$src2)))]>; def SUB16rm : I<0x2B, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86sub_flag GR16:$src1, (load addr:$src2)))]>, OpSize; def SUB32rm : I<0x2B, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86sub_flag GR32:$src1, (load addr:$src2)))]>; // Register-Integer Subtraction def SUB8ri : Ii8 <0x80, MRM5r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, EFLAGS, (X86sub_flag GR8:$src1, imm:$src2))]>; def SUB16ri : Ii16<0x81, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86sub_flag GR16:$src1, imm:$src2))]>, OpSize; def SUB32ri : Ii32<0x81, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86sub_flag GR32:$src1, imm:$src2))]>; def SUB16ri8 : Ii8<0x83, MRM5r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86sub_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def SUB32ri8 : Ii8<0x83, MRM5r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86sub_flag GR32:$src1, i32immSExt8:$src2))]>; let isTwoAddress = 0 in { // Memory-Register Subtraction def SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR8:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR16:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), GR32:$src2), addr:$dst), (implicit EFLAGS)]>; // Memory-Integer Subtraction def SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2), "sub{b}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi8 addr:$dst), imm:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi16 addr:$dst), imm:$src2),addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (loadi32 addr:$dst), imm:$src2),addr:$dst), (implicit EFLAGS)]>; def SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "sub{w}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i16immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>, OpSize; def SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "sub{l}\t{$src2, $dst|$dst, $src2}", [(store (sub (load addr:$dst), i32immSExt8:$src2), addr:$dst), (implicit EFLAGS)]>; def SUB8i8 : Ii8<0x2C, RawFrm, (outs), (ins i8imm:$src), "sub{b}\t{$src, %al|%al, $src}", []>; def SUB16i16 : Ii16<0x2D, RawFrm, (outs), (ins i16imm:$src), "sub{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def SUB32i32 : Ii32<0x2D, RawFrm, (outs), (ins i32imm:$src), "sub{l}\t{$src, %eax|%eax, $src}", []>; } let Uses = [EFLAGS] in { def SBB8rr : I<0x18, MRMDestReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, GR8:$src2))]>; def SBB16rr : I<0x19, MRMDestReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, GR16:$src2))]>, OpSize; def SBB32rr : I<0x19, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, GR32:$src2))]>; let isTwoAddress = 0 in { def SBB8mr : I<0x18, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR8:$src2), addr:$dst)]>; def SBB16mr : I<0x19, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR16:$src2), addr:$dst)]>, OpSize; def SBB32mr : I<0x19, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), GR32:$src2), addr:$dst)]>; def SBB8mi : Ii8<0x80, MRM3m, (outs), (ins i8mem:$dst, i8imm:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi8 addr:$dst), imm:$src2), addr:$dst)]>; def SBB16mi : Ii16<0x81, MRM3m, (outs), (ins i16mem:$dst, i16imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi16 addr:$dst), imm:$src2), addr:$dst)]>, OpSize; def SBB16mi8 : Ii8<0x83, MRM3m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>, OpSize; def SBB32mi : Ii32<0x81, MRM3m, (outs), (ins i32mem:$dst, i32imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (loadi32 addr:$dst), imm:$src2), addr:$dst)]>; def SBB32mi8 : Ii8<0x83, MRM3m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(store (sube (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>; def SBB8i8 : Ii8<0x1C, RawFrm, (outs), (ins i8imm:$src), "sbb{b}\t{$src, %al|%al, $src}", []>; def SBB16i16 : Ii16<0x1D, RawFrm, (outs), (ins i16imm:$src), "sbb{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def SBB32i32 : Ii32<0x1D, RawFrm, (outs), (ins i32imm:$src), "sbb{l}\t{$src, %eax|%eax, $src}", []>; } let isCodeGenOnly = 1 in { def SBB8rr_REV : I<0x1A, MRMSrcReg, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", []>; def SBB16rr_REV : I<0x1B, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize; def SBB32rr_REV : I<0x1B, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", []>; } def SBB8rm : I<0x1A, MRMSrcMem, (outs GR8:$dst), (ins GR8:$src1, i8mem:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, (load addr:$src2)))]>; def SBB16rm : I<0x1B, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, (load addr:$src2)))]>, OpSize; def SBB32rm : I<0x1B, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, (load addr:$src2)))]>; def SBB8ri : Ii8<0x80, MRM3r, (outs GR8:$dst), (ins GR8:$src1, i8imm:$src2), "sbb{b}\t{$src2, $dst|$dst, $src2}", [(set GR8:$dst, (sube GR8:$src1, imm:$src2))]>; def SBB16ri : Ii16<0x81, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, imm:$src2))]>, OpSize; def SBB16ri8 : Ii8<0x83, MRM3r, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "sbb{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, (sube GR16:$src1, i16immSExt8:$src2))]>, OpSize; def SBB32ri : Ii32<0x81, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, imm:$src2))]>; def SBB32ri8 : Ii8<0x83, MRM3r, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "sbb{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (sube GR32:$src1, i32immSExt8:$src2))]>; } // Uses = [EFLAGS] } // Defs = [EFLAGS] let Defs = [EFLAGS] in { let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y // Register-Register Signed Integer Multiply def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize; def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, GR32:$src2))]>, TB; } // Register-Memory Signed Integer Multiply def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), (ins GR16:$src1, i16mem:$src2), "imul{w}\t{$src2, $dst|$dst, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, (load addr:$src2)))]>, TB, OpSize; def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "imul{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB; } // Defs = [EFLAGS] } // end Two Address instructions // Suprisingly enough, these are not two address instructions! let Defs = [EFLAGS] in { // Register-Integer Signed Integer Multiply def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize; def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, imm:$src2))]>; def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>, OpSize; def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>; // Memory-Integer Signed Integer Multiply def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag (load addr:$src1), imm:$src2))]>, OpSize; def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag (load addr:$src1), imm:$src2))]>; def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR16:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i16immSExt8:$src2))]>, OpSize; def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, EFLAGS, (X86smul_flag (load addr:$src1), i32immSExt8:$src2))]>; } // Defs = [EFLAGS] //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. // let Defs = [EFLAGS] in { let isCommutable = 1 in { // TEST X, Y --> TEST Y, X def TEST8rr : I<0x84, MRMSrcReg, (outs), (ins GR8:$src1, GR8:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR8:$src1, GR8:$src2), 0))]>; def TEST16rr : I<0x85, MRMSrcReg, (outs), (ins GR16:$src1, GR16:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR16:$src1, GR16:$src2), 0))]>, OpSize; def TEST32rr : I<0x85, MRMSrcReg, (outs), (ins GR32:$src1, GR32:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR32:$src1, GR32:$src2), 0))]>; } def TEST8i8 : Ii8<0xA8, RawFrm, (outs), (ins i8imm:$src), "test{b}\t{$src, %al|%al, $src}", []>; def TEST16i16 : Ii16<0xA9, RawFrm, (outs), (ins i16imm:$src), "test{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def TEST32i32 : Ii32<0xA9, RawFrm, (outs), (ins i32imm:$src), "test{l}\t{$src, %eax|%eax, $src}", []>; def TEST8rm : I<0x84, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and GR8:$src1, (loadi8 addr:$src2)), 0))]>; def TEST16rm : I<0x85, MRMSrcMem, (outs), (ins GR16:$src1, i16mem:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and GR16:$src1, (loadi16 addr:$src2)), 0))]>, OpSize; def TEST32rm : I<0x85, MRMSrcMem, (outs), (ins GR32:$src1, i32mem:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and GR32:$src1, (loadi32 addr:$src2)), 0))]>; def TEST8ri : Ii8 <0xF6, MRM0r, // flags = GR8 & imm8 (outs), (ins GR8:$src1, i8imm:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR8:$src1, imm:$src2), 0))]>; def TEST16ri : Ii16<0xF7, MRM0r, // flags = GR16 & imm16 (outs), (ins GR16:$src1, i16imm:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR16:$src1, imm:$src2), 0))]>, OpSize; def TEST32ri : Ii32<0xF7, MRM0r, // flags = GR32 & imm32 (outs), (ins GR32:$src1, i32imm:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and_su GR32:$src1, imm:$src2), 0))]>; def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8 (outs), (ins i8mem:$src1, i8imm:$src2), "test{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and (loadi8 addr:$src1), imm:$src2), 0))]>; def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16 (outs), (ins i16mem:$src1, i16imm:$src2), "test{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and (loadi16 addr:$src1), imm:$src2), 0))]>, OpSize; def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32 (outs), (ins i32mem:$src1, i32imm:$src2), "test{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (and (loadi32 addr:$src1), imm:$src2), 0))]>; } // Defs = [EFLAGS] // Condition code ops, incl. set if equal/not equal/... let Defs = [EFLAGS], Uses = [AH], neverHasSideEffects = 1 in def SAHF : I<0x9E, RawFrm, (outs), (ins), "sahf", []>; // flags = AH let Defs = [AH], Uses = [EFLAGS], neverHasSideEffects = 1 in def LAHF : I<0x9F, RawFrm, (outs), (ins), "lahf", []>; // AH = flags let Uses = [EFLAGS] in { // Use sbb to materialize carry bit. let Defs = [EFLAGS], isCodeGenOnly = 1 in { // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. // However, Pat<> can't replicate the destination reg into the inputs of the // result. // FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces // X86CodeEmitter. def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "", [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "", [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>, OpSize; def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "", [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; } // isCodeGenOnly def SETEr : I<0x94, MRM0r, (outs GR8 :$dst), (ins), "sete\t$dst", [(set GR8:$dst, (X86setcc X86_COND_E, EFLAGS))]>, TB; // GR8 = == def SETEm : I<0x94, MRM0m, (outs), (ins i8mem:$dst), "sete\t$dst", [(store (X86setcc X86_COND_E, EFLAGS), addr:$dst)]>, TB; // [mem8] = == def SETNEr : I<0x95, MRM0r, (outs GR8 :$dst), (ins), "setne\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NE, EFLAGS))]>, TB; // GR8 = != def SETNEm : I<0x95, MRM0m, (outs), (ins i8mem:$dst), "setne\t$dst", [(store (X86setcc X86_COND_NE, EFLAGS), addr:$dst)]>, TB; // [mem8] = != def SETLr : I<0x9C, MRM0r, (outs GR8 :$dst), (ins), "setl\t$dst", [(set GR8:$dst, (X86setcc X86_COND_L, EFLAGS))]>, TB; // GR8 = < signed def SETLm : I<0x9C, MRM0m, (outs), (ins i8mem:$dst), "setl\t$dst", [(store (X86setcc X86_COND_L, EFLAGS), addr:$dst)]>, TB; // [mem8] = < signed def SETGEr : I<0x9D, MRM0r, (outs GR8 :$dst), (ins), "setge\t$dst", [(set GR8:$dst, (X86setcc X86_COND_GE, EFLAGS))]>, TB; // GR8 = >= signed def SETGEm : I<0x9D, MRM0m, (outs), (ins i8mem:$dst), "setge\t$dst", [(store (X86setcc X86_COND_GE, EFLAGS), addr:$dst)]>, TB; // [mem8] = >= signed def SETLEr : I<0x9E, MRM0r, (outs GR8 :$dst), (ins), "setle\t$dst", [(set GR8:$dst, (X86setcc X86_COND_LE, EFLAGS))]>, TB; // GR8 = <= signed def SETLEm : I<0x9E, MRM0m, (outs), (ins i8mem:$dst), "setle\t$dst", [(store (X86setcc X86_COND_LE, EFLAGS), addr:$dst)]>, TB; // [mem8] = <= signed def SETGr : I<0x9F, MRM0r, (outs GR8 :$dst), (ins), "setg\t$dst", [(set GR8:$dst, (X86setcc X86_COND_G, EFLAGS))]>, TB; // GR8 = > signed def SETGm : I<0x9F, MRM0m, (outs), (ins i8mem:$dst), "setg\t$dst", [(store (X86setcc X86_COND_G, EFLAGS), addr:$dst)]>, TB; // [mem8] = > signed def SETBr : I<0x92, MRM0r, (outs GR8 :$dst), (ins), "setb\t$dst", [(set GR8:$dst, (X86setcc X86_COND_B, EFLAGS))]>, TB; // GR8 = < unsign def SETBm : I<0x92, MRM0m, (outs), (ins i8mem:$dst), "setb\t$dst", [(store (X86setcc X86_COND_B, EFLAGS), addr:$dst)]>, TB; // [mem8] = < unsign def SETAEr : I<0x93, MRM0r, (outs GR8 :$dst), (ins), "setae\t$dst", [(set GR8:$dst, (X86setcc X86_COND_AE, EFLAGS))]>, TB; // GR8 = >= unsign def SETAEm : I<0x93, MRM0m, (outs), (ins i8mem:$dst), "setae\t$dst", [(store (X86setcc X86_COND_AE, EFLAGS), addr:$dst)]>, TB; // [mem8] = >= unsign def SETBEr : I<0x96, MRM0r, (outs GR8 :$dst), (ins), "setbe\t$dst", [(set GR8:$dst, (X86setcc X86_COND_BE, EFLAGS))]>, TB; // GR8 = <= unsign def SETBEm : I<0x96, MRM0m, (outs), (ins i8mem:$dst), "setbe\t$dst", [(store (X86setcc X86_COND_BE, EFLAGS), addr:$dst)]>, TB; // [mem8] = <= unsign def SETAr : I<0x97, MRM0r, (outs GR8 :$dst), (ins), "seta\t$dst", [(set GR8:$dst, (X86setcc X86_COND_A, EFLAGS))]>, TB; // GR8 = > signed def SETAm : I<0x97, MRM0m, (outs), (ins i8mem:$dst), "seta\t$dst", [(store (X86setcc X86_COND_A, EFLAGS), addr:$dst)]>, TB; // [mem8] = > signed def SETSr : I<0x98, MRM0r, (outs GR8 :$dst), (ins), "sets\t$dst", [(set GR8:$dst, (X86setcc X86_COND_S, EFLAGS))]>, TB; // GR8 = def SETSm : I<0x98, MRM0m, (outs), (ins i8mem:$dst), "sets\t$dst", [(store (X86setcc X86_COND_S, EFLAGS), addr:$dst)]>, TB; // [mem8] = def SETNSr : I<0x99, MRM0r, (outs GR8 :$dst), (ins), "setns\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NS, EFLAGS))]>, TB; // GR8 = ! def SETNSm : I<0x99, MRM0m, (outs), (ins i8mem:$dst), "setns\t$dst", [(store (X86setcc X86_COND_NS, EFLAGS), addr:$dst)]>, TB; // [mem8] = ! def SETPr : I<0x9A, MRM0r, (outs GR8 :$dst), (ins), "setp\t$dst", [(set GR8:$dst, (X86setcc X86_COND_P, EFLAGS))]>, TB; // GR8 = parity def SETPm : I<0x9A, MRM0m, (outs), (ins i8mem:$dst), "setp\t$dst", [(store (X86setcc X86_COND_P, EFLAGS), addr:$dst)]>, TB; // [mem8] = parity def SETNPr : I<0x9B, MRM0r, (outs GR8 :$dst), (ins), "setnp\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NP, EFLAGS))]>, TB; // GR8 = not parity def SETNPm : I<0x9B, MRM0m, (outs), (ins i8mem:$dst), "setnp\t$dst", [(store (X86setcc X86_COND_NP, EFLAGS), addr:$dst)]>, TB; // [mem8] = not parity def SETOr : I<0x90, MRM0r, (outs GR8 :$dst), (ins), "seto\t$dst", [(set GR8:$dst, (X86setcc X86_COND_O, EFLAGS))]>, TB; // GR8 = overflow def SETOm : I<0x90, MRM0m, (outs), (ins i8mem:$dst), "seto\t$dst", [(store (X86setcc X86_COND_O, EFLAGS), addr:$dst)]>, TB; // [mem8] = overflow def SETNOr : I<0x91, MRM0r, (outs GR8 :$dst), (ins), "setno\t$dst", [(set GR8:$dst, (X86setcc X86_COND_NO, EFLAGS))]>, TB; // GR8 = not overflow def SETNOm : I<0x91, MRM0m, (outs), (ins i8mem:$dst), "setno\t$dst", [(store (X86setcc X86_COND_NO, EFLAGS), addr:$dst)]>, TB; // [mem8] = not overflow } // Uses = [EFLAGS] // Integer comparisons let Defs = [EFLAGS] in { def CMP8i8 : Ii8<0x3C, RawFrm, (outs), (ins i8imm:$src), "cmp{b}\t{$src, %al|%al, $src}", []>; def CMP16i16 : Ii16<0x3D, RawFrm, (outs), (ins i16imm:$src), "cmp{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def CMP32i32 : Ii32<0x3D, RawFrm, (outs), (ins i32imm:$src), "cmp{l}\t{$src, %eax|%eax, $src}", []>; def CMP8rr : I<0x38, MRMDestReg, (outs), (ins GR8 :$src1, GR8 :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR8:$src1, GR8:$src2))]>; def CMP16rr : I<0x39, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR16:$src1, GR16:$src2))]>, OpSize; def CMP32rr : I<0x39, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR32:$src1, GR32:$src2))]>; def CMP8mr : I<0x38, MRMDestMem, (outs), (ins i8mem :$src1, GR8 :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi8 addr:$src1), GR8:$src2))]>; def CMP16mr : I<0x39, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi16 addr:$src1), GR16:$src2))]>, OpSize; def CMP32mr : I<0x39, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi32 addr:$src1), GR32:$src2))]>; def CMP8rm : I<0x3A, MRMSrcMem, (outs), (ins GR8 :$src1, i8mem :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR8:$src1, (loadi8 addr:$src2)))]>; def CMP16rm : I<0x3B, MRMSrcMem, (outs), (ins GR16:$src1, i16mem:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR16:$src1, (loadi16 addr:$src2)))]>, OpSize; def CMP32rm : I<0x3B, MRMSrcMem, (outs), (ins GR32:$src1, i32mem:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR32:$src1, (loadi32 addr:$src2)))]>; // These are alternate spellings for use by the disassembler, we mark them as // code gen only to ensure they aren't matched by the assembler. let isCodeGenOnly = 1 in { def CMP8rr_alt : I<0x3A, MRMSrcReg, (outs), (ins GR8:$src1, GR8:$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", []>; def CMP16rr_alt : I<0x3B, MRMSrcReg, (outs), (ins GR16:$src1, GR16:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize; def CMP32rr_alt : I<0x3B, MRMSrcReg, (outs), (ins GR32:$src1, GR32:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", []>; } def CMP8ri : Ii8<0x80, MRM7r, (outs), (ins GR8:$src1, i8imm:$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR8:$src1, imm:$src2))]>; def CMP16ri : Ii16<0x81, MRM7r, (outs), (ins GR16:$src1, i16imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR16:$src1, imm:$src2))]>, OpSize; def CMP32ri : Ii32<0x81, MRM7r, (outs), (ins GR32:$src1, i32imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR32:$src1, imm:$src2))]>; def CMP8mi : Ii8 <0x80, MRM7m, (outs), (ins i8mem :$src1, i8imm :$src2), "cmp{b}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi8 addr:$src1), imm:$src2))]>; def CMP16mi : Ii16<0x81, MRM7m, (outs), (ins i16mem:$src1, i16imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi16 addr:$src1), imm:$src2))]>, OpSize; def CMP32mi : Ii32<0x81, MRM7m, (outs), (ins i32mem:$src1, i32imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi32 addr:$src1), imm:$src2))]>; def CMP16ri8 : Ii8<0x83, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR16:$src1, i16immSExt8:$src2))]>, OpSize; def CMP16mi8 : Ii8<0x83, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "cmp{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi16 addr:$src1), i16immSExt8:$src2))]>, OpSize; def CMP32mi8 : Ii8<0x83, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp (loadi32 addr:$src1), i32immSExt8:$src2))]>; def CMP32ri8 : Ii8<0x83, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2), "cmp{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86cmp GR32:$src1, i32immSExt8:$src2))]>; } // Defs = [EFLAGS] // Bit tests. // TODO: BTC, BTR, and BTS let Defs = [EFLAGS] in { def BT16rr : I<0xA3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, GR16:$src2))]>, OpSize, TB; def BT32rr : I<0xA3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, GR32:$src2))]>, TB; // Unlike with the register+register form, the memory+register form of the // bt instruction does not ignore the high bits of the index. From ISel's // perspective, this is pretty bizarre. Make these instructions disassembly // only for now. def BT16mr : I<0xA3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi16 addr:$src1), GR16:$src2), // (implicit EFLAGS)] [] >, OpSize, TB, Requires<[FastBTMem]>; def BT32mr : I<0xA3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", // [(X86bt (loadi32 addr:$src1), GR32:$src2), // (implicit EFLAGS)] [] >, TB, Requires<[FastBTMem]>; def BT16ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR16:$src1, i16immSExt8:$src2))]>, OpSize, TB; def BT32ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt GR32:$src1, i32immSExt8:$src2))]>, TB; // Note that these instructions don't need FastBTMem because that // only applies when the other operand is in a register. When it's // an immediate, bt is still fast. def BT16mi8 : Ii8<0xBA, MRM4m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bt{w}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi16 addr:$src1), i16immSExt8:$src2)) ]>, OpSize, TB; def BT32mi8 : Ii8<0xBA, MRM4m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bt{l}\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86bt (loadi32 addr:$src1), i32immSExt8:$src2)) ]>, TB; def BTC16rr : I<0xBB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTC32rr : I<0xBB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTC16mr : I<0xBB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTC32mr : I<0xBB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTC16ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTC32ri8 : Ii8<0xBA, MRM7r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTC16mi8 : Ii8<0xBA, MRM7m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btc{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTC32mi8 : Ii8<0xBA, MRM7m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btc{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTR16rr : I<0xB3, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTR32rr : I<0xB3, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTR16mr : I<0xB3, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTR32mr : I<0xB3, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTR16ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR16:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTR32ri8 : Ii8<0xBA, MRM6r, (outs), (ins GR32:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTR16mi8 : Ii8<0xBA, MRM6m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "btr{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTR32mi8 : Ii8<0xBA, MRM6m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "btr{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTS16rr : I<0xAB, MRMDestReg, (outs), (ins GR16:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTS32rr : I<0xAB, MRMDestReg, (outs), (ins GR32:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTS16mr : I<0xAB, MRMDestMem, (outs), (ins i16mem:$src1, GR16:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTS32mr : I<0xAB, MRMDestMem, (outs), (ins i32mem:$src1, GR32:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTS16ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR16:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTS32ri8 : Ii8<0xBA, MRM5r, (outs), (ins GR32:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB; def BTS16mi8 : Ii8<0xBA, MRM5m, (outs), (ins i16mem:$src1, i16i8imm:$src2), "bts{w}\t{$src2, $src1|$src1, $src2}", []>, OpSize, TB; def BTS32mi8 : Ii8<0xBA, MRM5m, (outs), (ins i32mem:$src1, i32i8imm:$src2), "bts{l}\t{$src2, $src1|$src1, $src2}", []>, TB; } // Defs = [EFLAGS] // Sign/Zero extenders // Use movsbl intead of movsbw; we don't care about the high 16 bits // of the register here. This has a smaller encoding and avoids a // partial-register update. Actual movsbw included for the disassembler. def MOVSX16rr8W : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def MOVSX16rm8W : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movs{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src), "", [(set GR16:$dst, (sext GR8:$src))]>, TB; def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src), "", [(set GR16:$dst, (sextloadi16i8 addr:$src))]>, TB; def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR8:$src))]>, TB; def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movs{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB; def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sext GR16:$src))]>, TB; def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movs{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (sextloadi32i16 addr:$src))]>, TB; // Use movzbl intead of movzbw; we don't care about the high 16 bits // of the register here. This has a smaller encoding and avoids a // partial-register update. Actual movzbw included for the disassembler. def MOVZX16rr8W : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def MOVZX16rm8W : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src), "movz{bw|x}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8 :$src), "", [(set GR16:$dst, (zext GR8:$src))]>, TB; def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem :$src), "", [(set GR16:$dst, (zextloadi16i8 addr:$src))]>, TB; def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR8:$src))]>, TB; def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src), "movz{bl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB; def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zext GR16:$src))]>, TB; def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "movz{wl|x}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (zextloadi32i16 addr:$src))]>, TB; // These are the same as the regular MOVZX32rr8 and MOVZX32rm8 // except that they use GR32_NOREX for the output operand register class // instead of GR32. This allows them to operate on h registers on x86-64. def MOVZX32_NOREXrr8 : I<0xB6, MRMSrcReg, (outs GR32_NOREX:$dst), (ins GR8:$src), "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX", []>, TB; let mayLoad = 1 in def MOVZX32_NOREXrm8 : I<0xB6, MRMSrcMem, (outs GR32_NOREX:$dst), (ins i8mem:$src), "movz{bl|x}\t{$src, $dst|$dst, $src} # NOREX", []>, TB; let neverHasSideEffects = 1 in { let Defs = [AX], Uses = [AL] in def CBW : I<0x98, RawFrm, (outs), (ins), "{cbtw|cbw}", []>, OpSize; // AX = signext(AL) let Defs = [EAX], Uses = [AX] in def CWDE : I<0x98, RawFrm, (outs), (ins), "{cwtl|cwde}", []>; // EAX = signext(AX) let Defs = [AX,DX], Uses = [AX] in def CWD : I<0x99, RawFrm, (outs), (ins), "{cwtd|cwd}", []>, OpSize; // DX:AX = signext(AX) let Defs = [EAX,EDX], Uses = [EAX] in def CDQ : I<0x99, RawFrm, (outs), (ins), "{cltd|cdq}", []>; // EDX:EAX = signext(EAX) } //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map movr0 to xor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. // FIXME: Set encoding to pseudo. let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in { def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "", [(set GR8:$dst, 0)]>; // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller // encoding and avoids a partial-register update sometimes, but doing so // at isel time interferes with rematerialization in the current register // allocator. For now, this is rewritten when the instruction is lowered // to an MCInst. def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins), "", [(set GR16:$dst, 0)]>, OpSize; // FIXME: Set encoding to pseudo. def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", [(set GR32:$dst, 0)]>; } //===----------------------------------------------------------------------===// // Thread Local Storage Instructions // // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in def TLS_addr32 : I<0, Pseudo, (outs), (ins lea32mem:$sym), "leal\t$sym, %eax; " "call\t___tls_get_addr@PLT", [(X86tlsaddr tls32addr:$sym)]>, Requires<[In32BitMode]>; // FIXME: Not true for darwin let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP], usesCustomInserter = 1 in def TLSCall_32 : I<0, Pseudo, (outs), (ins GR32:$sym), "# Fixme into a call", [(X86TLSCall GR32:$sym)]>, Requires<[In32BitMode]>; let AddedComplexity = 5, isCodeGenOnly = 1 in def GS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movl\t%gs:$src, $dst", [(set GR32:$dst, (gsload addr:$src))]>, SegGS; let AddedComplexity = 5, isCodeGenOnly = 1 in def FS_MOV32rm : I<0x8B, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "movl\t%fs:$src, $dst", [(set GR32:$dst, (fsload addr:$src))]>, SegFS; //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR32:$addr)]>; } //===----------------------------------------------------------------------===// // Atomic support // // Atomic swap. These are just normal xchg instructions. But since a memory // operand is referenced, the atomicity is ensured. let Constraints = "$val = $dst" in { def XCHG32rm : I<0x87, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr), "xchg{l}\t{$val, $ptr|$ptr, $val}", [(set GR32:$dst, (atomic_swap_32 addr:$ptr, GR32:$val))]>; def XCHG16rm : I<0x87, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr), "xchg{w}\t{$val, $ptr|$ptr, $val}", [(set GR16:$dst, (atomic_swap_16 addr:$ptr, GR16:$val))]>, OpSize; def XCHG8rm : I<0x86, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr), "xchg{b}\t{$val, $ptr|$ptr, $val}", [(set GR8:$dst, (atomic_swap_8 addr:$ptr, GR8:$val))]>; def XCHG32rr : I<0x87, MRMSrcReg, (outs GR32:$dst), (ins GR32:$val, GR32:$src), "xchg{l}\t{$val, $src|$src, $val}", []>; def XCHG16rr : I<0x87, MRMSrcReg, (outs GR16:$dst), (ins GR16:$val, GR16:$src), "xchg{w}\t{$val, $src|$src, $val}", []>, OpSize; def XCHG8rr : I<0x86, MRMSrcReg, (outs GR8:$dst), (ins GR8:$val, GR8:$src), "xchg{b}\t{$val, $src|$src, $val}", []>; } def XCHG16ar : I<0x90, AddRegFrm, (outs), (ins GR16:$src), "xchg{w}\t{$src, %ax|%ax, $src}", []>, OpSize; def XCHG32ar : I<0x90, AddRegFrm, (outs), (ins GR32:$src), "xchg{l}\t{$src, %eax|%eax, $src}", []>; // Atomic compare and swap. let Defs = [EAX, EFLAGS], Uses = [EAX] in { def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap), "lock\n\t" "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK; } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in { def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr), "lock\n\t" "cmpxchg8b\t$ptr", [(X86cas8 addr:$ptr)]>, TB, LOCK; } let Defs = [AX, EFLAGS], Uses = [AX] in { def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap), "lock\n\t" "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK; } let Defs = [AL, EFLAGS], Uses = [AL] in { def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap), "lock\n\t" "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}", [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK; } // Atomic exchange and add let Constraints = "$val = $dst", Defs = [EFLAGS] in { def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr), "lock\n\t" "xadd{l}\t{$val, $ptr|$ptr, $val}", [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>, TB, LOCK; def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr), "lock\n\t" "xadd{w}\t{$val, $ptr|$ptr, $val}", [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>, TB, OpSize, LOCK; def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr), "lock\n\t" "xadd{b}\t{$val, $ptr|$ptr, $val}", [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>, TB, LOCK; } def XADD8rr : I<0xC0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", []>, TB; def XADD16rr : I<0xC1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def XADD32rr : I<0xC1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "xadd{l}\t{$src, $dst|$dst, $src}", []>, TB; let mayLoad = 1, mayStore = 1 in { def XADD8rm : I<0xC0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "xadd{b}\t{$src, $dst|$dst, $src}", []>, TB; def XADD16rm : I<0xC1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "xadd{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def XADD32rm : I<0xC1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "xadd{l}\t{$src, $dst|$dst, $src}", []>, TB; } def CMPXCHG8rr : I<0xB0, MRMDestReg, (outs GR8:$dst), (ins GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB; def CMPXCHG16rr : I<0xB1, MRMDestReg, (outs GR16:$dst), (ins GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def CMPXCHG32rr : I<0xB1, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB; let mayLoad = 1, mayStore = 1 in { def CMPXCHG8rm : I<0xB0, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src), "cmpxchg{b}\t{$src, $dst|$dst, $src}", []>, TB; def CMPXCHG16rm : I<0xB1, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src), "cmpxchg{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def CMPXCHG32rm : I<0xB1, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "cmpxchg{l}\t{$src, $dst|$dst, $src}", []>, TB; } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in def CMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$dst), "cmpxchg8b\t$dst", []>, TB; // Optimized codegen when the non-memory output is not used. // FIXME: Use normal add / sub instructions and add lock prefix dynamically. let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in { def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), "lock\n\t" "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2), "lock\n\t" "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "lock\n\t" "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "lock\n\t" "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "lock\n\t" "inc{b}\t$dst", []>, LOCK; def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "lock\n\t" "inc{w}\t$dst", []>, OpSize, LOCK; def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "lock\n\t" "inc{l}\t$dst", []>, LOCK; def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2), "lock\n\t" "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2), "lock\n\t" "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2), "lock\n\t" "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK; def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2), "lock\n\t" "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK; def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "lock\n\t" "dec{b}\t$dst", []>, LOCK; def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "lock\n\t" "dec{w}\t$dst", []>, OpSize, LOCK; def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "lock\n\t" "dec{l}\t$dst", []>, LOCK; } // Atomic exchange, and, or, xor let Constraints = "$val = $dst", Defs = [EFLAGS], usesCustomInserter = 1 in { def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMAND32 PSEUDO!", [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>; def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMOR32 PSEUDO!", [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>; def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMXOR32 PSEUDO!", [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>; def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMNAND32 PSEUDO!", [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>; def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), "#ATOMMIN32 PSEUDO!", [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>; def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMMAX32 PSEUDO!", [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>; def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMUMIN32 PSEUDO!", [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>; def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val), "#ATOMUMAX32 PSEUDO!", [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>; def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMAND16 PSEUDO!", [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>; def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMOR16 PSEUDO!", [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>; def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMXOR16 PSEUDO!", [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>; def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMNAND16 PSEUDO!", [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>; def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), "#ATOMMIN16 PSEUDO!", [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>; def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMMAX16 PSEUDO!", [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>; def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMUMIN16 PSEUDO!", [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>; def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val), "#ATOMUMAX16 PSEUDO!", [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>; def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMAND8 PSEUDO!", [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>; def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMOR8 PSEUDO!", [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>; def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMXOR8 PSEUDO!", [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>; def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val), "#ATOMNAND8 PSEUDO!", [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>; } let Constraints = "$val1 = $dst1, $val2 = $dst2", Defs = [EFLAGS, EAX, EBX, ECX, EDX], Uses = [EAX, EBX, ECX, EDX], mayLoad = 1, mayStore = 1, usesCustomInserter = 1 in { def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMAND6432 PSEUDO!", []>; def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMOR6432 PSEUDO!", []>; def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMXOR6432 PSEUDO!", []>; def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMNAND6432 PSEUDO!", []>; def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMADD6432 PSEUDO!", []>; def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMSUB6432 PSEUDO!", []>; def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), "#ATOMSWAP6432 PSEUDO!", []>; } // Segmentation support instructions. def LAR16rm : I<0x02, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LAR16rr : I<0x02, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "lar{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; // i16mem operand in LAR32rm and GR32 operand in LAR32rr is not a typo. def LAR32rm : I<0x02, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src), "lar{l}\t{$src, $dst|$dst, $src}", []>, TB; def LAR32rr : I<0x02, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "lar{l}\t{$src, $dst|$dst, $src}", []>, TB; def LSL16rm : I<0x03, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "lsl{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LSL16rr : I<0x03, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "lsl{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LSL32rm : I<0x03, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "lsl{l}\t{$src, $dst|$dst, $src}", []>, TB; def LSL32rr : I<0x03, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "lsl{l}\t{$src, $dst|$dst, $src}", []>, TB; def INVLPG : I<0x01, MRM7m, (outs), (ins i8mem:$addr), "invlpg\t$addr", []>, TB; def STRr : I<0x00, MRM1r, (outs GR16:$dst), (ins), "str{w}\t{$dst}", []>, TB; def STRm : I<0x00, MRM1m, (outs i16mem:$dst), (ins), "str{w}\t{$dst}", []>, TB; def LTRr : I<0x00, MRM3r, (outs), (ins GR16:$src), "ltr{w}\t{$src}", []>, TB; def LTRm : I<0x00, MRM3m, (outs), (ins i16mem:$src), "ltr{w}\t{$src}", []>, TB; def PUSHFS16 : I<0xa0, RawFrm, (outs), (ins), "push{w}\t%fs", []>, OpSize, TB; def PUSHFS32 : I<0xa0, RawFrm, (outs), (ins), "push{l}\t%fs", []>, TB; def PUSHGS16 : I<0xa8, RawFrm, (outs), (ins), "push{w}\t%gs", []>, OpSize, TB; def PUSHGS32 : I<0xa8, RawFrm, (outs), (ins), "push{l}\t%gs", []>, TB; def POPFS16 : I<0xa1, RawFrm, (outs), (ins), "pop{w}\t%fs", []>, OpSize, TB; def POPFS32 : I<0xa1, RawFrm, (outs), (ins), "pop{l}\t%fs", []>, TB; def POPGS16 : I<0xa9, RawFrm, (outs), (ins), "pop{w}\t%gs", []>, OpSize, TB; def POPGS32 : I<0xa9, RawFrm, (outs), (ins), "pop{l}\t%gs", []>, TB; def LDS16rm : I<0xc5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src), "lds{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def LDS32rm : I<0xc5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src), "lds{l}\t{$src, $dst|$dst, $src}", []>; def LSS16rm : I<0xb2, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src), "lss{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LSS32rm : I<0xb2, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src), "lss{l}\t{$src, $dst|$dst, $src}", []>, TB; def LES16rm : I<0xc4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src), "les{w}\t{$src, $dst|$dst, $src}", []>, OpSize; def LES32rm : I<0xc4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src), "les{l}\t{$src, $dst|$dst, $src}", []>; def LFS16rm : I<0xb4, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src), "lfs{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LFS32rm : I<0xb4, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src), "lfs{l}\t{$src, $dst|$dst, $src}", []>, TB; def LGS16rm : I<0xb5, MRMSrcMem, (outs GR16:$dst), (ins opaque32mem:$src), "lgs{w}\t{$src, $dst|$dst, $src}", []>, TB, OpSize; def LGS32rm : I<0xb5, MRMSrcMem, (outs GR32:$dst), (ins opaque48mem:$src), "lgs{l}\t{$src, $dst|$dst, $src}", []>, TB; def VERRr : I<0x00, MRM4r, (outs), (ins GR16:$seg), "verr\t$seg", []>, TB; def VERRm : I<0x00, MRM4m, (outs), (ins i16mem:$seg), "verr\t$seg", []>, TB; def VERWr : I<0x00, MRM5r, (outs), (ins GR16:$seg), "verw\t$seg", []>, TB; def VERWm : I<0x00, MRM5m, (outs), (ins i16mem:$seg), "verw\t$seg", []>, TB; // Descriptor-table support instructions def SGDTm : I<0x01, MRM0m, (outs opaque48mem:$dst), (ins), "sgdt\t$dst", []>, TB; def SIDTm : I<0x01, MRM1m, (outs opaque48mem:$dst), (ins), "sidt\t$dst", []>, TB; def SLDT16r : I<0x00, MRM0r, (outs GR16:$dst), (ins), "sldt{w}\t$dst", []>, TB; def SLDT16m : I<0x00, MRM0m, (outs i16mem:$dst), (ins), "sldt{w}\t$dst", []>, TB; def LGDTm : I<0x01, MRM2m, (outs), (ins opaque48mem:$src), "lgdt\t$src", []>, TB; def LIDTm : I<0x01, MRM3m, (outs), (ins opaque48mem:$src), "lidt\t$src", []>, TB; def LLDT16r : I<0x00, MRM2r, (outs), (ins GR16:$src), "lldt{w}\t$src", []>, TB; def LLDT16m : I<0x00, MRM2m, (outs), (ins i16mem:$src), "lldt{w}\t$src", []>, TB; // Lock instruction prefix def LOCK_PREFIX : I<0xF0, RawFrm, (outs), (ins), "lock", []>; // Repeat string operation instruction prefixes // These uses the DF flag in the EFLAGS register to inc or dec ECX let Defs = [ECX], Uses = [ECX,EFLAGS] in { // Repeat (used with INS, OUTS, MOVS, LODS and STOS) def REP_PREFIX : I<0xF3, RawFrm, (outs), (ins), "rep", []>; // Repeat while not equal (used with CMPS and SCAS) def REPNE_PREFIX : I<0xF2, RawFrm, (outs), (ins), "repne", []>; } // Segment override instruction prefixes def CS_PREFIX : I<0x2E, RawFrm, (outs), (ins), "cs", []>; def SS_PREFIX : I<0x36, RawFrm, (outs), (ins), "ss", []>; def DS_PREFIX : I<0x3E, RawFrm, (outs), (ins), "ds", []>; def ES_PREFIX : I<0x26, RawFrm, (outs), (ins), "es", []>; def FS_PREFIX : I<0x64, RawFrm, (outs), (ins), "fs", []>; def GS_PREFIX : I<0x65, RawFrm, (outs), (ins), "gs", []>; // String manipulation instructions def LODSB : I<0xAC, RawFrm, (outs), (ins), "lodsb", []>; def LODSW : I<0xAD, RawFrm, (outs), (ins), "lodsw", []>, OpSize; def LODSD : I<0xAD, RawFrm, (outs), (ins), "lods{l|d}", []>; def OUTSB : I<0x6E, RawFrm, (outs), (ins), "outsb", []>; def OUTSW : I<0x6F, RawFrm, (outs), (ins), "outsw", []>, OpSize; def OUTSD : I<0x6F, RawFrm, (outs), (ins), "outs{l|d}", []>; // CPU flow control instructions def HLT : I<0xF4, RawFrm, (outs), (ins), "hlt", []>; def RSM : I<0xAA, RawFrm, (outs), (ins), "rsm", []>, TB; // FPU control instructions def FNINIT : I<0xE3, RawFrm, (outs), (ins), "fninit", []>, DB; // Flag instructions def CLC : I<0xF8, RawFrm, (outs), (ins), "clc", []>; def STC : I<0xF9, RawFrm, (outs), (ins), "stc", []>; def CLI : I<0xFA, RawFrm, (outs), (ins), "cli", []>; def STI : I<0xFB, RawFrm, (outs), (ins), "sti", []>; def CLD : I<0xFC, RawFrm, (outs), (ins), "cld", []>; def STD : I<0xFD, RawFrm, (outs), (ins), "std", []>; def CMC : I<0xF5, RawFrm, (outs), (ins), "cmc", []>; def CLTS : I<0x06, RawFrm, (outs), (ins), "clts", []>, TB; // Table lookup instructions def XLAT : I<0xD7, RawFrm, (outs), (ins), "xlatb", []>; // Specialized register support def WRMSR : I<0x30, RawFrm, (outs), (ins), "wrmsr", []>, TB; def RDMSR : I<0x32, RawFrm, (outs), (ins), "rdmsr", []>, TB; def RDPMC : I<0x33, RawFrm, (outs), (ins), "rdpmc", []>, TB; def SMSW16r : I<0x01, MRM4r, (outs GR16:$dst), (ins), "smsw{w}\t$dst", []>, OpSize, TB; def SMSW32r : I<0x01, MRM4r, (outs GR32:$dst), (ins), "smsw{l}\t$dst", []>, TB; // For memory operands, there is only a 16-bit form def SMSW16m : I<0x01, MRM4m, (outs i16mem:$dst), (ins), "smsw{w}\t$dst", []>, TB; def LMSW16r : I<0x01, MRM6r, (outs), (ins GR16:$src), "lmsw{w}\t$src", []>, TB; def LMSW16m : I<0x01, MRM6m, (outs), (ins i16mem:$src), "lmsw{w}\t$src", []>, TB; def CPUID : I<0xA2, RawFrm, (outs), (ins), "cpuid", []>, TB; // Cache instructions def INVD : I<0x08, RawFrm, (outs), (ins), "invd", []>, TB; def WBINVD : I<0x09, RawFrm, (outs), (ins), "wbinvd", []>, TB; // VMX instructions // 66 0F 38 80 def INVEPT : I<0x80, RawFrm, (outs), (ins), "invept", []>, OpSize, T8; // 66 0F 38 81 def INVVPID : I<0x81, RawFrm, (outs), (ins), "invvpid", []>, OpSize, T8; // 0F 01 C1 def VMCALL : I<0x01, MRM_C1, (outs), (ins), "vmcall", []>, TB; def VMCLEARm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs), "vmclear\t$vmcs", []>, OpSize, TB; // 0F 01 C2 def VMLAUNCH : I<0x01, MRM_C2, (outs), (ins), "vmlaunch", []>, TB; // 0F 01 C3 def VMRESUME : I<0x01, MRM_C3, (outs), (ins), "vmresume", []>, TB; def VMPTRLDm : I<0xC7, MRM6m, (outs), (ins i64mem:$vmcs), "vmptrld\t$vmcs", []>, TB; def VMPTRSTm : I<0xC7, MRM7m, (outs i64mem:$vmcs), (ins), "vmptrst\t$vmcs", []>, TB; def VMREAD64rm : I<0x78, MRMDestMem, (outs i64mem:$dst), (ins GR64:$src), "vmread{q}\t{$src, $dst|$dst, $src}", []>, TB; def VMREAD64rr : I<0x78, MRMDestReg, (outs GR64:$dst), (ins GR64:$src), "vmread{q}\t{$src, $dst|$dst, $src}", []>, TB; def VMREAD32rm : I<0x78, MRMDestMem, (outs i32mem:$dst), (ins GR32:$src), "vmread{l}\t{$src, $dst|$dst, $src}", []>, TB; def VMREAD32rr : I<0x78, MRMDestReg, (outs GR32:$dst), (ins GR32:$src), "vmread{l}\t{$src, $dst|$dst, $src}", []>, TB; def VMWRITE64rm : I<0x79, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "vmwrite{q}\t{$src, $dst|$dst, $src}", []>, TB; def VMWRITE64rr : I<0x79, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "vmwrite{q}\t{$src, $dst|$dst, $src}", []>, TB; def VMWRITE32rm : I<0x79, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "vmwrite{l}\t{$src, $dst|$dst, $src}", []>, TB; def VMWRITE32rr : I<0x79, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "vmwrite{l}\t{$src, $dst|$dst, $src}", []>, TB; // 0F 01 C4 def VMXOFF : I<0x01, MRM_C4, (outs), (ins), "vmxoff", []>, TB; def VMXON : I<0xC7, MRM6m, (outs), (ins i64mem:$vmxon), "vmxon\t{$vmxon}", []>, XS; //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), (ADD32ri GR32:$src1, tconstpool:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), (ADD32ri GR32:$src1, tjumptable:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), (ADD32ri GR32:$src1, tglobaladdr:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), (ADD32ri GR32:$src1, texternalsym:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), (ADD32ri GR32:$src1, tblockaddress:$src2)>; def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV32mi addr:$dst, tglobaladdr:$src)>; def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV32mi addr:$dst, texternalsym:$src)>; def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV32mi addr:$dst, tblockaddress:$src)>; // Calls // tailcall stuff def : Pat<(X86tcret GR32_TC:$dst, imm:$off), (TCRETURNri GR32_TC:$dst, imm:$off)>, Requires<[In32BitMode]>; // FIXME: This is disabled for 32-bit PIC mode because the global base // register which is part of the address mode may be assigned a // callee-saved register. def : Pat<(X86tcret (load addr:$dst), imm:$off), (TCRETURNmi addr:$dst, imm:$off)>, Requires<[In32BitMode, IsNotPIC]>; def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; // Normal calls, with various flavors of addresses. def : Pat<(X86call (i32 tglobaladdr:$dst)), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i32 texternalsym:$dst)), (CALLpcrel32 texternalsym:$dst)>; def : Pat<(X86call (i32 imm:$dst)), (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; // X86 specific add which produces a flag. def : Pat<(addc GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; def : Pat<(addc GR32:$src1, (load addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; def : Pat<(addc GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(addc GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(subc GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; def : Pat<(subc GR32:$src1, (load addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; def : Pat<(subc GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(subc GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(X86cmp GR8:$src1, 0), (TEST8rr GR8:$src1, GR8:$src1)>; def : Pat<(X86cmp GR16:$src1, 0), (TEST16rr GR16:$src1, GR16:$src1)>; def : Pat<(X86cmp GR32:$src1, 0), (TEST32rr GR32:$src1, GR32:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_B, EFLAGS), (CMOVAE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_B, EFLAGS), (CMOVAE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_AE, EFLAGS), (CMOVB16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_AE, EFLAGS), (CMOVB32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_E, EFLAGS), (CMOVNE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_E, EFLAGS), (CMOVNE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NE, EFLAGS), (CMOVE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NE, EFLAGS), (CMOVE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_BE, EFLAGS), (CMOVA16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_BE, EFLAGS), (CMOVA32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_A, EFLAGS), (CMOVBE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_A, EFLAGS), (CMOVBE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_L, EFLAGS), (CMOVGE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_L, EFLAGS), (CMOVGE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_GE, EFLAGS), (CMOVL16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_GE, EFLAGS), (CMOVL32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_LE, EFLAGS), (CMOVG16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_LE, EFLAGS), (CMOVG32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_G, EFLAGS), (CMOVLE16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_G, EFLAGS), (CMOVLE32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_P, EFLAGS), (CMOVNP16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_P, EFLAGS), (CMOVNP32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NP, EFLAGS), (CMOVP16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NP, EFLAGS), (CMOVP32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_S, EFLAGS), (CMOVNS16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_S, EFLAGS), (CMOVNS32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NS, EFLAGS), (CMOVS16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NS, EFLAGS), (CMOVS32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_O, EFLAGS), (CMOVNO16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_O, EFLAGS), (CMOVNO32rm GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, X86_COND_NO, EFLAGS), (CMOVO16rm GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, X86_COND_NO, EFLAGS), (CMOVO32rm GR32:$src2, addr:$src1)>; // zextload bool -> zextload byte def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; // extload bool -> extload byte def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; // anyext. Define these to do an explicit zero-extend to // avoid partial-register updates. def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>; def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. def : Pat<(i32 (anyext GR16:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR16:$src1, 128), (SUB16ri8 GR16:$src1, -128)>; def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), (SUB16mi8 addr:$dst, -128)>; def : Pat<(add GR32:$src1, 128), (SUB32ri8 GR32:$src1, -128)>; def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), (SUB32mi8 addr:$dst, -128)>; // r & (2^16-1) ==> movz def : Pat<(and GR32:$src1, 0xffff), (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; // sext_inreg patterns def : Pat<(sext_inreg GR32:$src, i16), (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; // trunc patterns def : Pat<(i16 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_16bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; // h-register tricks def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; // (shl x, 1) ==> (add x, x) def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; // (shl x (and y, 31)) ==> (shl x, y) def : Pat<(shl GR8:$src1, (and CL, 31)), (SHL8rCL GR8:$src1)>; def : Pat<(shl GR16:$src1, (and CL, 31)), (SHL16rCL GR16:$src1)>; def : Pat<(shl GR32:$src1, (and CL, 31)), (SHL32rCL GR32:$src1)>; def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst), (SHL8mCL addr:$dst)>; def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst), (SHL16mCL addr:$dst)>; def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst), (SHL32mCL addr:$dst)>; def : Pat<(srl GR8:$src1, (and CL, 31)), (SHR8rCL GR8:$src1)>; def : Pat<(srl GR16:$src1, (and CL, 31)), (SHR16rCL GR16:$src1)>; def : Pat<(srl GR32:$src1, (and CL, 31)), (SHR32rCL GR32:$src1)>; def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst), (SHR8mCL addr:$dst)>; def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst), (SHR16mCL addr:$dst)>; def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst), (SHR32mCL addr:$dst)>; def : Pat<(sra GR8:$src1, (and CL, 31)), (SAR8rCL GR8:$src1)>; def : Pat<(sra GR16:$src1, (and CL, 31)), (SAR16rCL GR16:$src1)>; def : Pat<(sra GR32:$src1, (and CL, 31)), (SAR32rCL GR32:$src1)>; def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst), (SAR8mCL addr:$dst)>; def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst), (SAR16mCL addr:$dst)>; def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst), (SAR32mCL addr:$dst)>; // (anyext (setcc_carry)) -> (setcc_carry) def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. let AddedComplexity = 5 in { // Try this before the selecting to OR def : Pat<(or_is_add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(or_is_add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(or_is_add GR16:$src1, i16immSExt8:$src2), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(or_is_add GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(or_is_add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(or_is_add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; } // AddedComplexity //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // add reg, reg def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; // add reg, mem def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), (ADD8rm GR8:$src1, addr:$src2)>; def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), (ADD16rm GR16:$src1, addr:$src2)>; def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; // add reg, imm def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(add GR16:$src1, i16immSExt8:$src2), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(add GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub reg, reg def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; // sub reg, mem def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), (SUB8rm GR8:$src1, addr:$src2)>; def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), (SUB16rm GR16:$src1, addr:$src2)>; def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; // sub reg, imm def : Pat<(sub GR8:$src1, imm:$src2), (SUB8ri GR8:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, imm:$src2), (SUB16ri GR16:$src1, imm:$src2)>; def : Pat<(sub GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, i16immSExt8:$src2), (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(sub GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // mul reg, reg def : Pat<(mul GR16:$src1, GR16:$src2), (IMUL16rr GR16:$src1, GR16:$src2)>; def : Pat<(mul GR32:$src1, GR32:$src2), (IMUL32rr GR32:$src1, GR32:$src2)>; // mul reg, mem def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), (IMUL16rm GR16:$src1, addr:$src2)>; def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), (IMUL32rm GR32:$src1, addr:$src2)>; // mul reg, imm def : Pat<(mul GR16:$src1, imm:$src2), (IMUL16rri GR16:$src1, imm:$src2)>; def : Pat<(mul GR32:$src1, imm:$src2), (IMUL32rri GR32:$src1, imm:$src2)>; def : Pat<(mul GR16:$src1, i16immSExt8:$src2), (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(mul GR32:$src1, i32immSExt8:$src2), (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; // reg = mul mem, imm def : Pat<(mul (loadi16 addr:$src1), imm:$src2), (IMUL16rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi32 addr:$src1), imm:$src2), (IMUL32rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; // Optimize multiply by 2 with EFLAGS result. let AddedComplexity = 2 in { def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>; } // Patterns for nodes that do not produce flags, for instructions that do. // Increment reg. def : Pat<(add GR8:$src , 1), (INC8r GR8:$src)>; def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>; // Decrement reg. def : Pat<(add GR8:$src , -1), (DEC8r GR8:$src)>; def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; // or reg/reg. def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; // or reg/mem def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), (OR8rm GR8:$src1, addr:$src2)>; def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), (OR16rm GR16:$src1, addr:$src2)>; def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), (OR32rm GR32:$src1, addr:$src2)>; // or reg/imm def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; def : Pat<(or GR16:$src1, i16immSExt8:$src2), (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(or GR32:$src1, i32immSExt8:$src2), (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; // xor reg/reg def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; // xor reg/mem def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), (XOR8rm GR8:$src1, addr:$src2)>; def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), (XOR16rm GR16:$src1, addr:$src2)>; def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), (XOR32rm GR32:$src1, addr:$src2)>; // xor reg/imm def : Pat<(xor GR8:$src1, imm:$src2), (XOR8ri GR8:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, imm:$src2), (XOR16ri GR16:$src1, imm:$src2)>; def : Pat<(xor GR32:$src1, imm:$src2), (XOR32ri GR32:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, i16immSExt8:$src2), (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(xor GR32:$src1, i32immSExt8:$src2), (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; // and reg/reg def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; // and reg/mem def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), (AND8rm GR8:$src1, addr:$src2)>; def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), (AND16rm GR16:$src1, addr:$src2)>; def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), (AND32rm GR32:$src1, addr:$src2)>; // and reg/imm def : Pat<(and GR8:$src1, imm:$src2), (AND8ri GR8:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, imm:$src2), (AND16ri GR16:$src1, imm:$src2)>; def : Pat<(and GR32:$src1, imm:$src2), (AND32ri GR32:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, i16immSExt8:$src2), (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(and GR32:$src1, i32immSExt8:$src2), (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; //===----------------------------------------------------------------------===// // Floating Point Stack Support //===----------------------------------------------------------------------===// include "X86InstrFPStack.td" //===----------------------------------------------------------------------===// // X86-64 Support //===----------------------------------------------------------------------===// include "X86Instr64bit.td" //===----------------------------------------------------------------------===// // SIMD support (SSE, MMX and AVX) //===----------------------------------------------------------------------===// include "X86InstrFragmentsSIMD.td" //===----------------------------------------------------------------------===// // XMM Floating point support (requires SSE / SSE2) //===----------------------------------------------------------------------===// include "X86InstrSSE.td" //===----------------------------------------------------------------------===// // MMX and XMM Packed Integer support (requires MMX, SSE, and SSE2) //===----------------------------------------------------------------------===// include "X86InstrMMX.td"