//====- X86InstrSSE.td - Describe the X86 Instruction Set --*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 SSE instruction set, defining the instructions, // and properties of the instructions which are needed for code generation, // machine code emission, and analysis. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SSE 1 & 2 Instructions Classes //===----------------------------------------------------------------------===// /// sse12_fp_scalar - SSE 1 & 2 scalar instructions class multiclass sse12_fp_scalar opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, X86MemOperand x86memop, bit Is2Addr = 1> { let isCommutable = 1 in { def rr : SI; } def rm : SI; } /// sse12_fp_scalar_int - SSE 1 & 2 scalar instructions intrinsics class multiclass sse12_fp_scalar_int opc, string OpcodeStr, RegisterClass RC, string asm, string SSEVer, string FPSizeStr, Operand memopr, ComplexPattern mem_cpat, bit Is2Addr = 1> { def rr_Int : SI( !strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr)) RC:$src1, RC:$src2))]>; def rm_Int : SI(!strconcat("int_x86_sse", SSEVer, "_", OpcodeStr, FPSizeStr)) RC:$src1, mem_cpat:$src2))]>; } /// sse12_fp_packed - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed opc, string OpcodeStr, SDNode OpNode, RegisterClass RC, ValueType vt, X86MemOperand x86memop, PatFrag mem_frag, Domain d, bit Is2Addr = 1> { let isCommutable = 1 in def rr : PI; let mayLoad = 1 in def rm : PI; } /// sse12_fp_packed_logical_rm - SSE 1 & 2 packed instructions class multiclass sse12_fp_packed_logical_rm opc, RegisterClass RC, Domain d, string OpcodeStr, X86MemOperand x86memop, list pat_rr, list pat_rm, bit Is2Addr = 1> { let isCommutable = 1 in def rr : PI; def rm : PI; } /// sse12_fp_packed_int - SSE 1 & 2 packed instructions intrinsics class multiclass sse12_fp_packed_int opc, string OpcodeStr, RegisterClass RC, string asm, string SSEVer, string FPSizeStr, X86MemOperand x86memop, PatFrag mem_frag, Domain d, bit Is2Addr = 1> { def rr_Int : PI( !strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr)) RC:$src1, RC:$src2))], d>; def rm_Int : PI( !strconcat("int_x86_", SSEVer, "_", OpcodeStr, FPSizeStr)) RC:$src1, (mem_frag addr:$src2)))], d>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Move Instructions //===----------------------------------------------------------------------===// class sse12_move_rr : SI<0x10, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, RC:$src2), asm, [(set (vt VR128:$dst), (movl VR128:$src1, (scalar_to_vector RC:$src2)))]>; // Loading from memory automatically zeroing upper bits. class sse12_move_rm : SI<0x10, MRMSrcMem, (outs RC:$dst), (ins x86memop:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set RC:$dst, (mem_pat addr:$src))]>; // Move Instructions. Register-to-register movss/movsd is not used for FR32/64 // register copies because it's a partial register update; FsMOVAPSrr/FsMOVAPDrr // is used instead. Register-to-register movss/movsd is not modeled as an // INSERT_SUBREG because INSERT_SUBREG requires that the insert be implementable // in terms of a copy, and just mentioned, we don't use movss/movsd for copies. def VMOVSSrr : sse12_move_rr, XS, VEX_4V; def VMOVSDrr : sse12_move_rr, XD, VEX_4V; let canFoldAsLoad = 1, isReMaterializable = 1 in { def VMOVSSrm : sse12_move_rm, XS, VEX; let AddedComplexity = 20 in def VMOVSDrm : sse12_move_rm, XD, VEX; } let Constraints = "$src1 = $dst" in { def MOVSSrr : sse12_move_rr, XS; def MOVSDrr : sse12_move_rr, XD; } let canFoldAsLoad = 1, isReMaterializable = 1 in { def MOVSSrm : sse12_move_rm, XS; let AddedComplexity = 20 in def MOVSDrm : sse12_move_rm, XD; } let AddedComplexity = 15 in { // Extract the low 32-bit value from one vector and insert it into another. def : Pat<(v4f32 (movl VR128:$src1, VR128:$src2)), (MOVSSrr (v4f32 VR128:$src1), (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>; // Extract the low 64-bit value from one vector and insert it into another. def : Pat<(v2f64 (movl VR128:$src1, VR128:$src2)), (MOVSDrr (v2f64 VR128:$src1), (EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>; } // Implicitly promote a 32-bit scalar to a vector. def : Pat<(v4f32 (scalar_to_vector FR32:$src)), (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>; // Implicitly promote a 64-bit scalar to a vector. def : Pat<(v2f64 (scalar_to_vector FR64:$src)), (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>; // Implicitly promote a 32-bit scalar to a vector. def : Pat<(v8f32 (scalar_to_vector FR32:$src)), (INSERT_SUBREG (v8f32 (IMPLICIT_DEF)), FR32:$src, sub_ss)>; // Implicitly promote a 64-bit scalar to a vector. def : Pat<(v4f64 (scalar_to_vector FR64:$src)), (INSERT_SUBREG (v4f64 (IMPLICIT_DEF)), FR64:$src, sub_sd)>; let AddedComplexity = 20 in { // MOVSSrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector (loadf32 addr:$src))))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (scalar_to_vector (loadf32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; def : Pat<(v4f32 (X86vzmovl (loadv4f32 addr:$src))), (SUBREG_TO_REG (i32 0), (MOVSSrm addr:$src), sub_ss)>; // MOVSDrm zeros the high parts of the register; represent this // with SUBREG_TO_REG. def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector (loadf64 addr:$src))))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (scalar_to_vector (loadf64 addr:$src))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzmovl (loadv2f64 addr:$src))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzmovl (bc_v2f64 (loadv4f32 addr:$src)))), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; def : Pat<(v2f64 (X86vzload addr:$src)), (SUBREG_TO_REG (i64 0), (MOVSDrm addr:$src), sub_sd)>; } // Store scalar value to memory. def MOVSSmr : SSI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>; def MOVSDmr : SDI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>; def VMOVSSmr : SI<0x11, MRMDestMem, (outs), (ins f32mem:$dst, FR32:$src), "movss\t{$src, $dst|$dst, $src}", [(store FR32:$src, addr:$dst)]>, XS, VEX; def VMOVSDmr : SI<0x11, MRMDestMem, (outs), (ins f64mem:$dst, FR64:$src), "movsd\t{$src, $dst|$dst, $src}", [(store FR64:$src, addr:$dst)]>, XD, VEX; // Extract and store. def : Pat<(store (f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), addr:$dst), (MOVSSmr addr:$dst, (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; def : Pat<(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst), (MOVSDmr addr:$dst, (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; // Move Aligned/Unaligned floating point values multiclass sse12_mov_packed opc, RegisterClass RC, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d, bit IsReMaterializable = 1> { let neverHasSideEffects = 1 in def rr : PI; let canFoldAsLoad = 1, isReMaterializable = IsReMaterializable in def rm : PI; } defm VMOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, VEX; defm VMOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble>, OpSize, VEX; defm VMOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle>, VEX; defm VMOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, 0>, OpSize, VEX; defm VMOVAPSY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv8f32, "movaps", SSEPackedSingle>, VEX; defm VMOVAPDY : sse12_mov_packed<0x28, VR256, f256mem, alignedloadv4f64, "movapd", SSEPackedDouble>, OpSize, VEX; defm VMOVUPSY : sse12_mov_packed<0x10, VR256, f256mem, loadv8f32, "movups", SSEPackedSingle>, VEX; defm VMOVUPDY : sse12_mov_packed<0x10, VR256, f256mem, loadv4f64, "movupd", SSEPackedDouble, 0>, OpSize, VEX; defm MOVAPS : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv4f32, "movaps", SSEPackedSingle>, TB; defm MOVAPD : sse12_mov_packed<0x28, VR128, f128mem, alignedloadv2f64, "movapd", SSEPackedDouble>, TB, OpSize; defm MOVUPS : sse12_mov_packed<0x10, VR128, f128mem, loadv4f32, "movups", SSEPackedSingle>, TB; defm MOVUPD : sse12_mov_packed<0x10, VR128, f128mem, loadv2f64, "movupd", SSEPackedDouble, 0>, TB, OpSize; def VMOVAPSmr : VPSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>, VEX; def VMOVAPDmr : VPDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>, VEX; def VMOVUPSmr : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>, VEX; def VMOVUPDmr : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>, VEX; def VMOVAPSYmr : VPSI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v8f32 VR256:$src), addr:$dst)]>, VEX; def VMOVAPDYmr : VPDI<0x29, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v4f64 VR256:$src), addr:$dst)]>, VEX; def VMOVUPSYmr : VPSI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v8f32 VR256:$src), addr:$dst)]>, VEX; def VMOVUPDYmr : VPDI<0x11, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v4f64 VR256:$src), addr:$dst)]>, VEX; def : Pat<(int_x86_avx_loadu_ps_256 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(int_x86_avx_storeu_ps_256 addr:$dst, VR256:$src), (VMOVUPSYmr addr:$dst, VR256:$src)>; def : Pat<(int_x86_avx_loadu_pd_256 addr:$src), (VMOVUPDYrm addr:$src)>; def : Pat<(int_x86_avx_storeu_pd_256 addr:$dst, VR256:$src), (VMOVUPDYmr addr:$dst, VR256:$src)>; def MOVAPSmr : PSI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movaps\t{$src, $dst|$dst, $src}", [(alignedstore (v4f32 VR128:$src), addr:$dst)]>; def MOVAPDmr : PDI<0x29, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movapd\t{$src, $dst|$dst, $src}", [(alignedstore (v2f64 VR128:$src), addr:$dst)]>; def MOVUPSmr : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(store (v4f32 VR128:$src), addr:$dst)]>; def MOVUPDmr : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(store (v2f64 VR128:$src), addr:$dst)]>; // Intrinsic forms of MOVUPS/D load and store def VMOVUPSmr_Int : VPSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>, VEX; def VMOVUPDmr_Int : VPDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>, VEX; def MOVUPSmr_Int : PSI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movups\t{$src, $dst|$dst, $src}", [(int_x86_sse_storeu_ps addr:$dst, VR128:$src)]>; def MOVUPDmr_Int : PDI<0x11, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movupd\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_pd addr:$dst, VR128:$src)]>; // Move Low/High packed floating point values multiclass sse12_mov_hilo_packedopc, RegisterClass RC, PatFrag mov_frag, string base_opc, string asm_opr> { def PSrm : PI, TB; def PDrm : PI, TB, OpSize; } let AddedComplexity = 20 in { defm VMOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; defm VMOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", "\t{$src2, $src1, $dst|$dst, $src1, $src2}">, VEX_4V; } let Constraints = "$src1 = $dst", AddedComplexity = 20 in { defm MOVL : sse12_mov_hilo_packed<0x12, VR128, movlp, "movlp", "\t{$src2, $dst|$dst, $src2}">; defm MOVH : sse12_mov_hilo_packed<0x16, VR128, movlhps, "movhp", "\t{$src2, $dst|$dst, $src2}">; } def VMOVLPSmr : VPSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>, VEX; def VMOVLPDmr : VPDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; def MOVLPSmr : PSI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (bc_v2f64 (v4f32 VR128:$src)), (iPTR 0))), addr:$dst)]>; def MOVLPDmr : PDI<0x13, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movlpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), addr:$dst)]>; // v2f64 extract element 1 is always custom lowered to unpack high to low // and extract element 0 so the non-store version isn't too horrible. def VMOVHPSmr : VPSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (unpckh (bc_v2f64 (v4f32 VR128:$src)), (undef)), (iPTR 0))), addr:$dst)]>, VEX; def VMOVHPDmr : VPDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>, VEX; def MOVHPSmr : PSI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhps\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (unpckh (bc_v2f64 (v4f32 VR128:$src)), (undef)), (iPTR 0))), addr:$dst)]>; def MOVHPDmr : PDI<0x17, MRMDestMem, (outs), (ins f64mem:$dst, VR128:$src), "movhpd\t{$src, $dst|$dst, $src}", [(store (f64 (vector_extract (v2f64 (unpckh VR128:$src, (undef))), (iPTR 0))), addr:$dst)]>; let AddedComplexity = 20 in { def VMOVLHPSrr : VPSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>, VEX_4V; def VMOVHLPSrr : VPSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>, VEX_4V; } let Constraints = "$src1 = $dst", AddedComplexity = 20 in { def MOVLHPSrr : PSI<0x16, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movlhps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (movlhps VR128:$src1, VR128:$src2)))]>; def MOVHLPSrr : PSI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "movhlps\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v4f32 (movhlps VR128:$src1, VR128:$src2)))]>; } def : Pat<(movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))), (MOVHPSrm (v4i32 VR128:$src1), addr:$src2)>; let AddedComplexity = 20 in { def : Pat<(v4f32 (movddup VR128:$src, (undef))), (MOVLHPSrr (v4f32 VR128:$src), (v4f32 VR128:$src))>; def : Pat<(v2i64 (movddup VR128:$src, (undef))), (MOVLHPSrr (v2i64 VR128:$src), (v2i64 VR128:$src))>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Conversion Instructions //===----------------------------------------------------------------------===// multiclass sse12_cvt_s opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } multiclass sse12_cvt_s_np opc, RegisterClass SrcRC, RegisterClass DstRC, X86MemOperand x86memop, string asm> { def rr : SI; def rm : SI; } multiclass sse12_cvt_p opc, RegisterClass SrcRC, RegisterClass DstRC, SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag, string asm, Domain d> { def rr : PI; def rm : PI; } multiclass sse12_vcvt_avx opc, RegisterClass SrcRC, RegisterClass DstRC, X86MemOperand x86memop, string asm> { def rr : SI; def rm : SI; } defm VCVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS, VEX, VEX_W; defm VCVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; defm VCVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}">, XD, VEX, VEX_W; // The assembler can recognize rr 64-bit instructions by seeing a rxx // register, but the same isn't true when only using memory operands, // provide other assembly "l" and "q" forms to address this explicitly // where appropriate to do so. defm VCVTSI2SS : sse12_vcvt_avx<0x2A, GR32, FR32, i32mem, "cvtsi2ss">, XS, VEX_4V; defm VCVTSI2SS64 : sse12_vcvt_avx<0x2A, GR64, FR32, i64mem, "cvtsi2ss{q}">, XS, VEX_4V, VEX_W; defm VCVTSI2SD : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd">, XD, VEX_4V; defm VCVTSI2SDL : sse12_vcvt_avx<0x2A, GR32, FR64, i32mem, "cvtsi2sd{l}">, XD, VEX_4V; defm VCVTSI2SD64 : sse12_vcvt_avx<0x2A, GR64, FR64, i64mem, "cvtsi2sd{q}">, XD, VEX_4V, VEX_W; let Predicates = [HasAVX] in { def : Pat<(f32 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SSrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp (loadi64 addr:$src))), (VCVTSI2SS64rm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi32 addr:$src))), (VCVTSI2SDrm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f64 (sint_to_fp (loadi64 addr:$src))), (VCVTSI2SD64rm (f64 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(f32 (sint_to_fp GR32:$src)), (VCVTSI2SSrr (f32 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f32 (sint_to_fp GR64:$src)), (VCVTSI2SS64rr (f32 (IMPLICIT_DEF)), GR64:$src)>; def : Pat<(f64 (sint_to_fp GR32:$src)), (VCVTSI2SDrr (f64 (IMPLICIT_DEF)), GR32:$src)>; def : Pat<(f64 (sint_to_fp GR64:$src)), (VCVTSI2SD64rr (f64 (IMPLICIT_DEF)), GR64:$src)>; } defm CVTTSS2SI : sse12_cvt_s<0x2C, FR32, GR32, fp_to_sint, f32mem, loadf32, "cvttss2si\t{$src, $dst|$dst, $src}">, XS; defm CVTTSS2SI64 : sse12_cvt_s<0x2C, FR32, GR64, fp_to_sint, f32mem, loadf32, "cvttss2si{q}\t{$src, $dst|$dst, $src}">, XS, REX_W; defm CVTTSD2SI : sse12_cvt_s<0x2C, FR64, GR32, fp_to_sint, f64mem, loadf64, "cvttsd2si\t{$src, $dst|$dst, $src}">, XD; defm CVTTSD2SI64 : sse12_cvt_s<0x2C, FR64, GR64, fp_to_sint, f64mem, loadf64, "cvttsd2si{q}\t{$src, $dst|$dst, $src}">, XD, REX_W; defm CVTSI2SS : sse12_cvt_s<0x2A, GR32, FR32, sint_to_fp, i32mem, loadi32, "cvtsi2ss\t{$src, $dst|$dst, $src}">, XS; defm CVTSI2SS64 : sse12_cvt_s<0x2A, GR64, FR32, sint_to_fp, i64mem, loadi64, "cvtsi2ss{q}\t{$src, $dst|$dst, $src}">, XS, REX_W; defm CVTSI2SD : sse12_cvt_s<0x2A, GR32, FR64, sint_to_fp, i32mem, loadi32, "cvtsi2sd\t{$src, $dst|$dst, $src}">, XD; defm CVTSI2SD64 : sse12_cvt_s<0x2A, GR64, FR64, sint_to_fp, i64mem, loadi64, "cvtsi2sd{q}\t{$src, $dst|$dst, $src}">, XD, REX_W; // Conversion Instructions Intrinsics - Match intrinsics which expect MM // and/or XMM operand(s). multiclass sse12_cvt_sint opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm> { def rr : SI; def rm : SI; } multiclass sse12_cvt_sint_3addr opc, RegisterClass SrcRC, RegisterClass DstRC, Intrinsic Int, X86MemOperand x86memop, PatFrag ld_frag, string asm, bit Is2Addr = 1> { def rr : SI; def rm : SI; } defm Int_VCVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, f32mem, load, "cvtss2si">, XS, VEX; defm Int_VCVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, f32mem, load, "cvtss2si">, XS, VEX, VEX_W; defm Int_VCVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, f128mem, load, "cvtsd2si">, XD, VEX; defm Int_VCVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si">, XD, VEX, VEX_W; // FIXME: The asm matcher has a hack to ignore instructions with _Int and Int_ // Get rid of this hack or rename the intrinsics, there are several // intructions that only match with the intrinsic form, why create duplicates // to let them be recognized by the assembler? defm VCVTSD2SI_alt : sse12_cvt_s_np<0x2D, FR64, GR32, f64mem, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX; defm VCVTSD2SI64 : sse12_cvt_s_np<0x2D, FR64, GR64, f64mem, "cvtsd2si\t{$src, $dst|$dst, $src}">, XD, VEX, VEX_W; defm Int_CVTSS2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse_cvtss2si, f32mem, load, "cvtss2si">, XS; defm Int_CVTSS2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse_cvtss2si64, f32mem, load, "cvtss2si{q}">, XS, REX_W; defm CVTSD2SI : sse12_cvt_sint<0x2D, VR128, GR32, int_x86_sse2_cvtsd2si, f128mem, load, "cvtsd2si{l}">, XD; defm CVTSD2SI64 : sse12_cvt_sint<0x2D, VR128, GR64, int_x86_sse2_cvtsd2si64, f128mem, load, "cvtsd2si{q}">, XD, REX_W; defm Int_VCVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss", 0>, XS, VEX_4V; defm Int_VCVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss", 0>, XS, VEX_4V, VEX_W; defm Int_VCVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd", 0>, XD, VEX_4V; defm Int_VCVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd", 0>, XD, VEX_4V, VEX_W; let Constraints = "$src1 = $dst" in { defm Int_CVTSI2SS : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse_cvtsi2ss, i32mem, loadi32, "cvtsi2ss">, XS; defm Int_CVTSI2SS64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse_cvtsi642ss, i64mem, loadi64, "cvtsi2ss{q}">, XS, REX_W; defm Int_CVTSI2SD : sse12_cvt_sint_3addr<0x2A, GR32, VR128, int_x86_sse2_cvtsi2sd, i32mem, loadi32, "cvtsi2sd">, XD; defm Int_CVTSI2SD64 : sse12_cvt_sint_3addr<0x2A, GR64, VR128, int_x86_sse2_cvtsi642sd, i64mem, loadi64, "cvtsi2sd">, XD, REX_W; } /// SSE 1 Only // Aliases for intrinsics defm Int_VCVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si">, XS, VEX; defm Int_VCVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse_cvttss2si64, f32mem, load, "cvttss2si">, XS, VEX, VEX_W; defm Int_VCVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, f128mem, load, "cvttsd2si">, XD, VEX; defm Int_VCVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, f128mem, load, "cvttsd2si">, XD, VEX, VEX_W; defm Int_CVTTSS2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse_cvttss2si, f32mem, load, "cvttss2si">, XS; defm Int_CVTTSS2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse_cvttss2si64, f32mem, load, "cvttss2si{q}">, XS, REX_W; defm Int_CVTTSD2SI : sse12_cvt_sint<0x2C, VR128, GR32, int_x86_sse2_cvttsd2si, f128mem, load, "cvttsd2si">, XD; defm Int_CVTTSD2SI64 : sse12_cvt_sint<0x2C, VR128, GR64, int_x86_sse2_cvttsd2si64, f128mem, load, "cvttsd2si{q}">, XD, REX_W; let Pattern = [] in { defm VCVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load, "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS, VEX; defm VCVTSS2SI64 : sse12_cvt_s<0x2D, FR32, GR64, undef, f32mem, load, "cvtss2si\t{$src, $dst|$dst, $src}">, XS, VEX, VEX_W; defm VCVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, i128mem, load, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB, VEX; defm VCVTDQ2PSY : sse12_cvt_p<0x5B, VR256, VR256, undef, i256mem, load, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB, VEX; } let Pattern = [] in { defm CVTSS2SI : sse12_cvt_s<0x2D, FR32, GR32, undef, f32mem, load /*dummy*/, "cvtss2si{l}\t{$src, $dst|$dst, $src}">, XS; defm CVTSS2SI64 : sse12_cvt_s<0x2D, FR32, GR64, undef, f32mem, load /*dummy*/, "cvtss2si{q}\t{$src, $dst|$dst, $src}">, XS, REX_W; defm CVTDQ2PS : sse12_cvt_p<0x5B, VR128, VR128, undef, i128mem, load /*dummy*/, "cvtdq2ps\t{$src, $dst|$dst, $src}", SSEPackedSingle>, TB; /* PD SSE3 form is avaiable */ } /// SSE 2 Only // Convert scalar double to scalar single def VCVTSD2SSrr : VSDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src1, FR64:$src2), "cvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX_4V; def VCVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins FR64:$src1, f64mem:$src2), "vcvtsd2ss\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XD, Requires<[HasAVX, OptForSize]>, VEX_4V; def : Pat<(f32 (fround FR64:$src)), (VCVTSD2SSrr FR64:$src, FR64:$src)>, Requires<[HasAVX]>; def CVTSD2SSrr : SDI<0x5A, MRMSrcReg, (outs FR32:$dst), (ins FR64:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround FR64:$src))]>; def CVTSD2SSrm : I<0x5A, MRMSrcMem, (outs FR32:$dst), (ins f64mem:$src), "cvtsd2ss\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (fround (loadf64 addr:$src)))]>, XD, Requires<[HasSSE2, OptForSize]>; defm Int_VCVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss", 0>, XS, VEX_4V; let Constraints = "$src1 = $dst" in defm Int_CVTSD2SS: sse12_cvt_sint_3addr<0x5A, VR128, VR128, int_x86_sse2_cvtsd2ss, f64mem, load, "cvtsd2ss">, XS; // Convert scalar single to scalar double // SSE2 instructions with XS prefix def VCVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src1, FR32:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, Requires<[HasAVX]>, VEX_4V; def VCVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins FR32:$src1, f32mem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, XS, VEX_4V, Requires<[HasAVX, OptForSize]>; let Predicates = [HasAVX] in { def : Pat<(f64 (fextend FR32:$src)), (VCVTSS2SDrr FR32:$src, FR32:$src)>; def : Pat<(fextend (loadf32 addr:$src)), (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>; def : Pat<(extloadf32 addr:$src), (VCVTSS2SDrm (f32 (IMPLICIT_DEF)), addr:$src)>; } def CVTSS2SDrr : I<0x5A, MRMSrcReg, (outs FR64:$dst), (ins FR32:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (fextend FR32:$src))]>, XS, Requires<[HasSSE2]>; def CVTSS2SDrm : I<0x5A, MRMSrcMem, (outs FR64:$dst), (ins f32mem:$src), "cvtss2sd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (extloadf32 addr:$src))]>, XS, Requires<[HasSSE2, OptForSize]>; def Int_VCVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>, XS, VEX_4V, Requires<[HasAVX]>; def Int_VCVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), "vcvtss2sd\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, (load addr:$src2)))]>, XS, VEX_4V, Requires<[HasAVX]>; let Constraints = "$src1 = $dst" in { // SSE2 instructions with XS prefix def Int_CVTSS2SDrr: I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, VR128:$src2))]>, XS, Requires<[HasSSE2]>; def Int_CVTSS2SDrm: I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src2), "cvtss2sd\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (int_x86_sse2_cvtss2sd VR128:$src1, (load addr:$src2)))]>, XS, Requires<[HasSSE2]>; } def : Pat<(extloadf32 addr:$src), (CVTSS2SDrr (MOVSSrm addr:$src))>, Requires<[HasSSE2, OptForSpeed]>; // Convert doubleword to packed single/double fp // SSE2 instructions without OpSize prefix def Int_VCVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, TB, VEX, Requires<[HasAVX]>; def Int_VCVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vcvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps (bitconvert (memopv2i64 addr:$src))))]>, TB, VEX, Requires<[HasAVX]>; def Int_CVTDQ2PSrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTDQ2PSrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "cvtdq2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2ps (bitconvert (memopv2i64 addr:$src))))]>, TB, Requires<[HasSSE2]>; // FIXME: why the non-intrinsic version is described as SSE3? // SSE2 instructions with XS prefix def Int_VCVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, XS, VEX, Requires<[HasAVX]>; def Int_VCVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd (bitconvert (memopv2i64 addr:$src))))]>, XS, VEX, Requires<[HasAVX]>; def Int_CVTDQ2PDrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd VR128:$src))]>, XS, Requires<[HasSSE2]>; def Int_CVTDQ2PDrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtdq2pd (bitconvert (memopv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; // Convert packed single/double fp to doubleword def VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2DQYrr : VPDI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2DQYrm : VPDI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; def CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", []>; def Int_VCVTPS2DQrr : VPDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>, VEX; def Int_VCVTPS2DQrm : VPDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>, VEX; def Int_CVTPS2DQrr : PDI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq VR128:$src))]>; def Int_CVTPS2DQrm : PDI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2dq (memop addr:$src)))]>; // SSE2 packed instructions with XD prefix def Int_VCVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, XD, VEX, Requires<[HasAVX]>; def Int_VCVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (memop addr:$src)))]>, XD, VEX, Requires<[HasAVX]>; def Int_CVTPD2DQrr : I<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq VR128:$src))]>, XD, Requires<[HasSSE2]>; def Int_CVTPD2DQrm : I<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2dq (memop addr:$src)))]>, XD, Requires<[HasSSE2]>; // Convert with truncation packed single/double fp to doubleword // SSE2 packed instructions with XS prefix def VCVTTPS2DQrr : VSSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPS2DQrm : VSSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPS2DQYrr : VSSI<0x5B, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPS2DQYrm : VSSI<0x5B, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", []>, VEX; def CVTTPS2DQrr : SSI<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>; def CVTTPS2DQrm : SSI<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memop addr:$src)))]>; def Int_VCVTTPS2DQrr : I<0x5B, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq VR128:$src))]>, XS, VEX, Requires<[HasAVX]>; def Int_VCVTTPS2DQrm : I<0x5B, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvttps2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttps2dq (memop addr:$src)))]>, XS, VEX, Requires<[HasAVX]>; def Int_VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>, VEX; def Int_VCVTTPD2DQrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>, VEX; def CVTTPD2DQrr : PDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq VR128:$src))]>; def CVTTPD2DQrm : PDI<0xE6, MRMSrcMem, (outs VR128:$dst),(ins f128mem:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvttpd2dq (memop addr:$src)))]>; // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. def VCVTTPD2DQrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPD2DQXrYr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvttpd2dq\t{$src, $dst|$dst, $src}", []>, VEX; // XMM only def VCVTTPD2DQXrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvttpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPD2DQXrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvttpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX; // YMM only def VCVTTPD2DQYrr : VPDI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTTPD2DQYrm : VPDI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvttpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L; // Convert packed single to packed double let Predicates = [HasAVX] in { // SSE2 instructions without OpSize prefix def VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2PDYrr : I<0x5A, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPS2PDYrm : I<0x5A, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", []>, VEX; } def CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; def CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", []>, TB; def Int_VCVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, VEX, Requires<[HasAVX]>; def Int_VCVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "vcvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd (load addr:$src)))]>, VEX, Requires<[HasAVX]>; def Int_CVTPS2PDrr : I<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd VR128:$src))]>, TB, Requires<[HasSSE2]>; def Int_CVTPS2PDrm : I<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), "cvtps2pd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtps2pd (load addr:$src)))]>, TB, Requires<[HasSSE2]>; // Convert packed double to packed single // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. def VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2PSXrYr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>, VEX; // XMM only def VCVTPD2PSXrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2psx\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2PSXrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2psx\t{$src, $dst|$dst, $src}", []>, VEX; // YMM only def VCVTPD2PSYrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2PSYrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "cvtpd2psy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L; def CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", []>; def Int_VCVTPD2PSrr : VPDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; def Int_VCVTPD2PSrm : VPDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memop addr:$src)))]>; def Int_CVTPD2PSrr : PDI<0x5A, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps VR128:$src))]>; def Int_CVTPD2PSrm : PDI<0x5A, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2ps\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse2_cvtpd2ps (memop addr:$src)))]>; // AVX 256-bit register conversion intrinsics // FIXME: Migrate SSE conversion intrinsics matching to use patterns as below // whenever possible to avoid declaring two versions of each one. def : Pat<(int_x86_avx_cvtdq2_ps_256 VR256:$src), (VCVTDQ2PSYrr VR256:$src)>; def : Pat<(int_x86_avx_cvtdq2_ps_256 (memopv8i32 addr:$src)), (VCVTDQ2PSYrm addr:$src)>; def : Pat<(int_x86_avx_cvt_pd2_ps_256 VR256:$src), (VCVTPD2PSYrr VR256:$src)>; def : Pat<(int_x86_avx_cvt_pd2_ps_256 (memopv4f64 addr:$src)), (VCVTPD2PSYrm addr:$src)>; def : Pat<(int_x86_avx_cvt_ps2dq_256 VR256:$src), (VCVTPS2DQYrr VR256:$src)>; def : Pat<(int_x86_avx_cvt_ps2dq_256 (memopv8f32 addr:$src)), (VCVTPS2DQYrm addr:$src)>; def : Pat<(int_x86_avx_cvt_ps2_pd_256 VR128:$src), (VCVTPS2PDYrr VR128:$src)>; def : Pat<(int_x86_avx_cvt_ps2_pd_256 (memopv4f32 addr:$src)), (VCVTPS2PDYrm addr:$src)>; def : Pat<(int_x86_avx_cvtt_pd2dq_256 VR256:$src), (VCVTTPD2DQYrr VR256:$src)>; def : Pat<(int_x86_avx_cvtt_pd2dq_256 (memopv4f64 addr:$src)), (VCVTTPD2DQYrm addr:$src)>; def : Pat<(int_x86_avx_cvtt_ps2dq_256 VR256:$src), (VCVTTPS2DQYrr VR256:$src)>; def : Pat<(int_x86_avx_cvtt_ps2dq_256 (memopv8f32 addr:$src)), (VCVTTPS2DQYrm addr:$src)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Compare Instructions //===----------------------------------------------------------------------===// // sse12_cmp_scalar - sse 1 & 2 compare scalar instructions multiclass sse12_cmp_scalar { let isAsmParserOnly = 1 in { def rr : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, []>; let mayLoad = 1 in def rm : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src, SSECC:$cc), asm, []>; } // Accept explicit immediate argument form instead of comparison code. def rr_alt : SIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), asm_alt, []>; let mayLoad = 1 in def rm_alt : SIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src, i8imm:$src2), asm_alt, []>; } let neverHasSideEffects = 1 in { defm VCMPSS : sse12_cmp_scalar, XS, VEX_4V; defm VCMPSD : sse12_cmp_scalar, XD, VEX_4V; } let Constraints = "$src1 = $dst" in { def CMPSSrr : SIi8<0xC2, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2, SSECC:$cc), "cmp${cc}ss\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86cmpss (f32 FR32:$src1), FR32:$src2, imm:$cc))]>, XS; def CMPSSrm : SIi8<0xC2, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src2, SSECC:$cc), "cmp${cc}ss\t{$src2, $dst|$dst, $src2}", [(set FR32:$dst, (X86cmpss (f32 FR32:$src1), (loadf32 addr:$src2), imm:$cc))]>, XS; def CMPSDrr : SIi8<0xC2, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2, SSECC:$cc), "cmp${cc}sd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86cmpsd (f64 FR64:$src1), FR64:$src2, imm:$cc))]>, XD; def CMPSDrm : SIi8<0xC2, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f64mem:$src2, SSECC:$cc), "cmp${cc}sd\t{$src2, $dst|$dst, $src2}", [(set FR64:$dst, (X86cmpsd (f64 FR64:$src1), (loadf64 addr:$src2), imm:$cc))]>, XD; } let Constraints = "$src1 = $dst", neverHasSideEffects = 1 in { def CMPSSrr_alt : SIi8<0xC2, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src, i8imm:$src2), "cmpss\t{$src2, $src, $dst|$dst, $src, $src2}", []>, XS; def CMPSSrm_alt : SIi8<0xC2, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1, f32mem:$src, i8imm:$src2), "cmpss\t{$src2, $src, $dst|$dst, $src, $src2}", []>, XS; def CMPSDrr_alt : SIi8<0xC2, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src, i8imm:$src2), "cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}", []>, XD; def CMPSDrm_alt : SIi8<0xC2, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1, f64mem:$src, i8imm:$src2), "cmpsd\t{$src2, $src, $dst|$dst, $src, $src2}", []>, XD; } multiclass sse12_cmp_scalar_int { def rr : SIi8<0xC2, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src, SSECC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, VR128:$src, imm:$cc))]>; def rm : SIi8<0xC2, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, f32mem:$src, SSECC:$cc), asm, [(set VR128:$dst, (Int VR128:$src1, (load addr:$src), imm:$cc))]>; } // Aliases to match intrinsics which expect XMM operand(s). defm Int_VCMPSS : sse12_cmp_scalar_int, XS, VEX_4V; defm Int_VCMPSD : sse12_cmp_scalar_int, XD, VEX_4V; let Constraints = "$src1 = $dst" in { defm Int_CMPSS : sse12_cmp_scalar_int, XS; defm Int_CMPSD : sse12_cmp_scalar_int, XD; } // sse12_ord_cmp - Unordered/Ordered scalar fp compare and set EFLAGS multiclass sse12_ord_cmp opc, RegisterClass RC, SDNode OpNode, ValueType vt, X86MemOperand x86memop, PatFrag ld_frag, string OpcodeStr, Domain d> { def rr: PI; def rm: PI; } let Defs = [EFLAGS] in { defm VUCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, VEX; defm VUCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, OpSize, VEX; let Pattern = [] in { defm VCOMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, "comiss", SSEPackedSingle>, VEX; defm VCOMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, "comisd", SSEPackedDouble>, OpSize, VEX; } defm Int_VUCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, load, "ucomiss", SSEPackedSingle>, VEX; defm Int_VUCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, load, "ucomisd", SSEPackedDouble>, OpSize, VEX; defm Int_VCOMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load, "comiss", SSEPackedSingle>, VEX; defm Int_VCOMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load, "comisd", SSEPackedDouble>, OpSize, VEX; defm UCOMISS : sse12_ord_cmp<0x2E, FR32, X86cmp, f32, f32mem, loadf32, "ucomiss", SSEPackedSingle>, TB; defm UCOMISD : sse12_ord_cmp<0x2E, FR64, X86cmp, f64, f64mem, loadf64, "ucomisd", SSEPackedDouble>, TB, OpSize; let Pattern = [] in { defm COMISS : sse12_ord_cmp<0x2F, VR128, undef, v4f32, f128mem, load, "comiss", SSEPackedSingle>, TB; defm COMISD : sse12_ord_cmp<0x2F, VR128, undef, v2f64, f128mem, load, "comisd", SSEPackedDouble>, TB, OpSize; } defm Int_UCOMISS : sse12_ord_cmp<0x2E, VR128, X86ucomi, v4f32, f128mem, load, "ucomiss", SSEPackedSingle>, TB; defm Int_UCOMISD : sse12_ord_cmp<0x2E, VR128, X86ucomi, v2f64, f128mem, load, "ucomisd", SSEPackedDouble>, TB, OpSize; defm Int_COMISS : sse12_ord_cmp<0x2F, VR128, X86comi, v4f32, f128mem, load, "comiss", SSEPackedSingle>, TB; defm Int_COMISD : sse12_ord_cmp<0x2F, VR128, X86comi, v2f64, f128mem, load, "comisd", SSEPackedDouble>, TB, OpSize; } // Defs = [EFLAGS] // sse12_cmp_packed - sse 1 & 2 compared packed instructions multiclass sse12_cmp_packed { let isAsmParserOnly = 1 in { def rri : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, SSECC:$cc), asm, [(set RC:$dst, (Int RC:$src1, RC:$src, imm:$cc))], d>; def rmi : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, f128mem:$src, SSECC:$cc), asm, [(set RC:$dst, (Int RC:$src1, (memop addr:$src), imm:$cc))], d>; } // Accept explicit immediate argument form instead of comparison code. def rri_alt : PIi8<0xC2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src, i8imm:$src2), asm_alt, [], d>; def rmi_alt : PIi8<0xC2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, f128mem:$src, i8imm:$src2), asm_alt, [], d>; } defm VCMPPS : sse12_cmp_packed, VEX_4V; defm VCMPPD : sse12_cmp_packed, OpSize, VEX_4V; defm VCMPPSY : sse12_cmp_packed, VEX_4V; defm VCMPPDY : sse12_cmp_packed, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm CMPPS : sse12_cmp_packed, TB; defm CMPPD : sse12_cmp_packed, TB, OpSize; } def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), VR128:$src2, imm:$cc)), (CMPPSrri (v4f32 VR128:$src1), (v4f32 VR128:$src2), imm:$cc)>; def : Pat<(v4i32 (X86cmpps (v4f32 VR128:$src1), (memop addr:$src2), imm:$cc)), (CMPPSrmi (v4f32 VR128:$src1), addr:$src2, imm:$cc)>; def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), VR128:$src2, imm:$cc)), (CMPPDrri VR128:$src1, VR128:$src2, imm:$cc)>; def : Pat<(v2i64 (X86cmppd (v2f64 VR128:$src1), (memop addr:$src2), imm:$cc)), (CMPPDrmi VR128:$src1, addr:$src2, imm:$cc)>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Shuffle Instructions //===----------------------------------------------------------------------===// /// sse12_shuffle - sse 1 & 2 shuffle instructions multiclass sse12_shuffle { def rmi : PIi8<0xC6, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, f128mem:$src2, i8imm:$src3), asm, [(set RC:$dst, (vt (shufp:$src3 RC:$src1, (mem_frag addr:$src2))))], d>; let isConvertibleToThreeAddress = IsConvertibleToThreeAddress in def rri : PIi8<0xC6, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2, i8imm:$src3), asm, [(set RC:$dst, (vt (shufp:$src3 RC:$src1, RC:$src2)))], d>; } defm VSHUFPS : sse12_shuffle, TB, VEX_4V; defm VSHUFPSY : sse12_shuffle, TB, VEX_4V; defm VSHUFPD : sse12_shuffle, TB, OpSize, VEX_4V; defm VSHUFPDY : sse12_shuffle, TB, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm SHUFPS : sse12_shuffle, TB; defm SHUFPD : sse12_shuffle, TB, OpSize; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Unpack Instructions //===----------------------------------------------------------------------===// /// sse12_unpack_interleave - sse 1 & 2 unpack and interleave multiclass sse12_unpack_interleave opc, PatFrag OpNode, ValueType vt, PatFrag mem_frag, RegisterClass RC, X86MemOperand x86memop, string asm, Domain d> { def rr : PI; def rm : PI; } let AddedComplexity = 10 in { defm VUNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, VR128, f128mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, VR128, f128mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; defm VUNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, VR128, f128mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, VR128, f128mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; defm VUNPCKHPSY: sse12_unpack_interleave<0x15, unpckh, v8f32, memopv8f32, VR256, f256mem, "unpckhps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKHPDY: sse12_unpack_interleave<0x15, unpckh, v4f64, memopv4f64, VR256, f256mem, "unpckhpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; defm VUNPCKLPSY: sse12_unpack_interleave<0x14, unpckl, v8f32, memopv8f32, VR256, f256mem, "unpcklps\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedSingle>, VEX_4V; defm VUNPCKLPDY: sse12_unpack_interleave<0x14, unpckl, v4f64, memopv4f64, VR256, f256mem, "unpcklpd\t{$src2, $src1, $dst|$dst, $src1, $src2}", SSEPackedDouble>, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm UNPCKHPS: sse12_unpack_interleave<0x15, unpckh, v4f32, memopv4f32, VR128, f128mem, "unpckhps\t{$src2, $dst|$dst, $src2}", SSEPackedSingle>, TB; defm UNPCKHPD: sse12_unpack_interleave<0x15, unpckh, v2f64, memopv2f64, VR128, f128mem, "unpckhpd\t{$src2, $dst|$dst, $src2}", SSEPackedDouble>, TB, OpSize; defm UNPCKLPS: sse12_unpack_interleave<0x14, unpckl, v4f32, memopv4f32, VR128, f128mem, "unpcklps\t{$src2, $dst|$dst, $src2}", SSEPackedSingle>, TB; defm UNPCKLPD: sse12_unpack_interleave<0x14, unpckl, v2f64, memopv2f64, VR128, f128mem, "unpcklpd\t{$src2, $dst|$dst, $src2}", SSEPackedDouble>, TB, OpSize; } // Constraints = "$src1 = $dst" } // AddedComplexity //===----------------------------------------------------------------------===// // SSE 1 & 2 - Extract Floating-Point Sign mask //===----------------------------------------------------------------------===// /// sse12_extr_sign_mask - sse 1 & 2 unpack and interleave multiclass sse12_extr_sign_mask { def rr32 : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [(set GR32:$dst, (Int RC:$src))], d>; def rr64 : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins RC:$src), !strconcat(asm, "\t{$src, $dst|$dst, $src}"), [], d>, REX_W; } // Mask creation defm VMOVMSKPS : sse12_extr_sign_mask, VEX; defm VMOVMSKPD : sse12_extr_sign_mask, OpSize, VEX; defm VMOVMSKPSY : sse12_extr_sign_mask, VEX; defm VMOVMSKPDY : sse12_extr_sign_mask, OpSize, VEX; defm MOVMSKPS : sse12_extr_sign_mask, TB; defm MOVMSKPD : sse12_extr_sign_mask, TB, OpSize; // X86fgetsign def MOVMSKPDrr32_alt : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins FR64:$src), "movmskpd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86fgetsign FR64:$src))], SSEPackedDouble>, TB, OpSize; def MOVMSKPDrr64_alt : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src), "movmskpd\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86fgetsign FR64:$src))], SSEPackedDouble>, TB, OpSize; def MOVMSKPSrr32_alt : PI<0x50, MRMSrcReg, (outs GR32:$dst), (ins FR32:$src), "movmskps\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (X86fgetsign FR32:$src))], SSEPackedSingle>, TB; def MOVMSKPSrr64_alt : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src), "movmskps\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (X86fgetsign FR32:$src))], SSEPackedSingle>, TB; // Assembler Only def VMOVMSKPSr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; def VMOVMSKPDr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, VEX; def VMOVMSKPSYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), "movmskps\t{$src, $dst|$dst, $src}", [], SSEPackedSingle>, VEX; def VMOVMSKPDYr64r : PI<0x50, MRMSrcReg, (outs GR64:$dst), (ins VR256:$src), "movmskpd\t{$src, $dst|$dst, $src}", [], SSEPackedDouble>, OpSize, VEX; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Misc aliasing of packed SSE 1 & 2 instructions //===----------------------------------------------------------------------===// // Aliases of packed SSE1 & SSE2 instructions for scalar use. These all have // names that start with 'Fs'. // Alias instructions that map fld0 to pxor for sse. let isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1, canFoldAsLoad = 1 in { // FIXME: Set encoding to pseudo! def FsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "", [(set FR32:$dst, fp32imm0)]>, Requires<[HasSSE1]>, TB, OpSize; def FsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "", [(set FR64:$dst, fpimm0)]>, Requires<[HasSSE2]>, TB, OpSize; def VFsFLD0SS : I<0xEF, MRMInitReg, (outs FR32:$dst), (ins), "", [(set FR32:$dst, fp32imm0)]>, Requires<[HasAVX]>, TB, OpSize, VEX_4V; def VFsFLD0SD : I<0xEF, MRMInitReg, (outs FR64:$dst), (ins), "", [(set FR64:$dst, fpimm0)]>, Requires<[HasAVX]>, TB, OpSize, VEX_4V; } // Alias instruction to do FR32 or FR64 reg-to-reg copy using movaps. Upper // bits are disregarded. let neverHasSideEffects = 1 in { def FsMOVAPSrr : PSI<0x28, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src), "movaps\t{$src, $dst|$dst, $src}", []>; def FsMOVAPDrr : PDI<0x28, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src), "movapd\t{$src, $dst|$dst, $src}", []>; } // Alias instruction to load FR32 or FR64 from f128mem using movaps. Upper // bits are disregarded. let canFoldAsLoad = 1, isReMaterializable = 1 in { def FsMOVAPSrm : PSI<0x28, MRMSrcMem, (outs FR32:$dst), (ins f128mem:$src), "movaps\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (alignedloadfsf32 addr:$src))]>; def FsMOVAPDrm : PDI<0x28, MRMSrcMem, (outs FR64:$dst), (ins f128mem:$src), "movapd\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (alignedloadfsf64 addr:$src))]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Logical Instructions //===----------------------------------------------------------------------===// /// sse12_fp_alias_pack_logical - SSE 1 & 2 aliased packed FP logical ops /// multiclass sse12_fp_alias_pack_logical opc, string OpcodeStr, SDNode OpNode> { defm V#NAME#PS : sse12_fp_packed, VEX_4V; defm V#NAME#PD : sse12_fp_packed, OpSize, VEX_4V; let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed, TB; defm PD : sse12_fp_packed, TB, OpSize; } } // Alias bitwise logical operations using SSE logical ops on packed FP values. let mayLoad = 0 in { defm FsAND : sse12_fp_alias_pack_logical<0x54, "and", X86fand>; defm FsOR : sse12_fp_alias_pack_logical<0x56, "or", X86for>; defm FsXOR : sse12_fp_alias_pack_logical<0x57, "xor", X86fxor>; } let neverHasSideEffects = 1, Pattern = [], isCommutable = 0 in defm FsANDN : sse12_fp_alias_pack_logical<0x55, "andn", undef>; /// sse12_fp_packed_logical - SSE 1 & 2 packed FP logical ops /// multiclass sse12_fp_packed_logical opc, string OpcodeStr, SDNode OpNode> { let Pattern = [] in { defm V#NAME#PS : sse12_fp_packed_logical_rm, VEX_4V; defm V#NAME#PD : sse12_fp_packed_logical_rm, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PS : sse12_fp_packed_logical_rm, TB; defm PD : sse12_fp_packed_logical_rm, TB, OpSize; } } /// sse12_fp_packed_logical_y - AVX 256-bit SSE 1 & 2 logical ops forms /// multiclass sse12_fp_packed_logical_y opc, string OpcodeStr, SDNode OpNode> { defm PSY : sse12_fp_packed_logical_rm, VEX_4V; defm PDY : sse12_fp_packed_logical_rm, OpSize, VEX_4V; } // AVX 256-bit packed logical ops forms defm VAND : sse12_fp_packed_logical_y<0x54, "and", and>; defm VOR : sse12_fp_packed_logical_y<0x56, "or", or>; defm VXOR : sse12_fp_packed_logical_y<0x57, "xor", xor>; defm VANDN : sse12_fp_packed_logical_y<0x55, "andn", X86andnp>; defm AND : sse12_fp_packed_logical<0x54, "and", and>; defm OR : sse12_fp_packed_logical<0x56, "or", or>; defm XOR : sse12_fp_packed_logical<0x57, "xor", xor>; let isCommutable = 0 in defm ANDN : sse12_fp_packed_logical<0x55, "andn", X86andnp>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Arithmetic Instructions //===----------------------------------------------------------------------===// /// basic_sse12_fp_binop_xxx - SSE 1 & 2 binops come in both scalar and /// vector forms. /// /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a scalar) /// and leaves the top elements unmodified (therefore these cannot be commuted). /// /// These three forms can each be reg+reg or reg+mem. /// /// FIXME: once all 256-bit intrinsics are matched, cleanup and refactor those /// classes below multiclass basic_sse12_fp_binop_s opc, string OpcodeStr, SDNode OpNode, bit Is2Addr = 1> { defm SS : sse12_fp_scalar, XS; defm SD : sse12_fp_scalar, XD; } multiclass basic_sse12_fp_binop_p opc, string OpcodeStr, SDNode OpNode, bit Is2Addr = 1> { let mayLoad = 0 in { defm PS : sse12_fp_packed, TB; defm PD : sse12_fp_packed, TB, OpSize; } } multiclass basic_sse12_fp_binop_p_y opc, string OpcodeStr, SDNode OpNode> { let mayLoad = 0 in { defm PSY : sse12_fp_packed, TB; defm PDY : sse12_fp_packed, TB, OpSize; } } multiclass basic_sse12_fp_binop_s_int opc, string OpcodeStr, bit Is2Addr = 1> { defm SS : sse12_fp_scalar_int, XS; defm SD : sse12_fp_scalar_int, XD; } multiclass basic_sse12_fp_binop_p_int opc, string OpcodeStr, bit Is2Addr = 1> { defm PS : sse12_fp_packed_int, TB; defm PD : sse12_fp_packed_int, TB, OpSize; } multiclass basic_sse12_fp_binop_p_y_int opc, string OpcodeStr> { defm PSY : sse12_fp_packed_int, TB; defm PDY : sse12_fp_packed_int, TB, OpSize; } // Binary Arithmetic instructions defm VADD : basic_sse12_fp_binop_s<0x58, "add", fadd, 0>, basic_sse12_fp_binop_s_int<0x58, "add", 0>, basic_sse12_fp_binop_p<0x58, "add", fadd, 0>, basic_sse12_fp_binop_p_y<0x58, "add", fadd>, VEX_4V; defm VMUL : basic_sse12_fp_binop_s<0x59, "mul", fmul, 0>, basic_sse12_fp_binop_s_int<0x59, "mul", 0>, basic_sse12_fp_binop_p<0x59, "mul", fmul, 0>, basic_sse12_fp_binop_p_y<0x59, "mul", fmul>, VEX_4V; let isCommutable = 0 in { defm VSUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub, 0>, basic_sse12_fp_binop_s_int<0x5C, "sub", 0>, basic_sse12_fp_binop_p<0x5C, "sub", fsub, 0>, basic_sse12_fp_binop_p_y<0x5C, "sub", fsub>, VEX_4V; defm VDIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv, 0>, basic_sse12_fp_binop_s_int<0x5E, "div", 0>, basic_sse12_fp_binop_p<0x5E, "div", fdiv, 0>, basic_sse12_fp_binop_p_y<0x5E, "div", fdiv>, VEX_4V; defm VMAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax, 0>, basic_sse12_fp_binop_s_int<0x5F, "max", 0>, basic_sse12_fp_binop_p<0x5F, "max", X86fmax, 0>, basic_sse12_fp_binop_p_int<0x5F, "max", 0>, basic_sse12_fp_binop_p_y<0x5F, "max", X86fmax>, basic_sse12_fp_binop_p_y_int<0x5F, "max">, VEX_4V; defm VMIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin, 0>, basic_sse12_fp_binop_s_int<0x5D, "min", 0>, basic_sse12_fp_binop_p<0x5D, "min", X86fmin, 0>, basic_sse12_fp_binop_p_int<0x5D, "min", 0>, basic_sse12_fp_binop_p_y_int<0x5D, "min">, basic_sse12_fp_binop_p_y<0x5D, "min", X86fmin>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm ADD : basic_sse12_fp_binop_s<0x58, "add", fadd>, basic_sse12_fp_binop_p<0x58, "add", fadd>, basic_sse12_fp_binop_s_int<0x58, "add">; defm MUL : basic_sse12_fp_binop_s<0x59, "mul", fmul>, basic_sse12_fp_binop_p<0x59, "mul", fmul>, basic_sse12_fp_binop_s_int<0x59, "mul">; let isCommutable = 0 in { defm SUB : basic_sse12_fp_binop_s<0x5C, "sub", fsub>, basic_sse12_fp_binop_p<0x5C, "sub", fsub>, basic_sse12_fp_binop_s_int<0x5C, "sub">; defm DIV : basic_sse12_fp_binop_s<0x5E, "div", fdiv>, basic_sse12_fp_binop_p<0x5E, "div", fdiv>, basic_sse12_fp_binop_s_int<0x5E, "div">; defm MAX : basic_sse12_fp_binop_s<0x5F, "max", X86fmax>, basic_sse12_fp_binop_p<0x5F, "max", X86fmax>, basic_sse12_fp_binop_s_int<0x5F, "max">, basic_sse12_fp_binop_p_int<0x5F, "max">; defm MIN : basic_sse12_fp_binop_s<0x5D, "min", X86fmin>, basic_sse12_fp_binop_p<0x5D, "min", X86fmin>, basic_sse12_fp_binop_s_int<0x5D, "min">, basic_sse12_fp_binop_p_int<0x5D, "min">; } } /// Unop Arithmetic /// In addition, we also have a special variant of the scalar form here to /// represent the associated intrinsic operation. This form is unlike the /// plain scalar form, in that it takes an entire vector (instead of a /// scalar) and leaves the top elements undefined. /// /// And, we have a special variant form for a full-vector intrinsic form. /// sse1_fp_unop_s - SSE1 unops in scalar form. multiclass sse1_fp_unop_s opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int> { def SSr : SSI; // For scalar unary operations, fold a load into the operation // only in OptForSize mode. It eliminates an instruction, but it also // eliminates a whole-register clobber (the load), so it introduces a // partial register update condition. def SSm : I, XS, Requires<[HasSSE1, OptForSize]>; def SSr_Int : SSI; def SSm_Int : SSI; } /// sse1_fp_unop_s_avx - AVX SSE1 unops in scalar form. multiclass sse1_fp_unop_s_avx opc, string OpcodeStr, SDNode OpNode, Intrinsic F32Int> { def SSr : SSI; def SSm : I, XS, Requires<[HasAVX, OptForSize]>; def SSr_Int : SSI; def SSm_Int : SSI; } /// sse1_fp_unop_p - SSE1 unops in packed form. multiclass sse1_fp_unop_p opc, string OpcodeStr, SDNode OpNode> { def PSr : PSI; def PSm : PSI; } /// sse1_fp_unop_p_y - AVX 256-bit SSE1 unops in packed form. multiclass sse1_fp_unop_p_y opc, string OpcodeStr, SDNode OpNode> { def PSYr : PSI; def PSYm : PSI; } /// sse1_fp_unop_p_int - SSE1 intrinsics unops in packed forms. multiclass sse1_fp_unop_p_int opc, string OpcodeStr, Intrinsic V4F32Int> { def PSr_Int : PSI; def PSm_Int : PSI; } /// sse1_fp_unop_p_y_int - AVX 256-bit intrinsics unops in packed forms. multiclass sse1_fp_unop_p_y_int opc, string OpcodeStr, Intrinsic V4F32Int> { def PSYr_Int : PSI; def PSYm_Int : PSI; } /// sse2_fp_unop_s - SSE2 unops in scalar form. multiclass sse2_fp_unop_s opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int> { def SDr : SDI; // See the comments in sse1_fp_unop_s for why this is OptForSize. def SDm : I, XD, Requires<[HasSSE2, OptForSize]>; def SDr_Int : SDI; def SDm_Int : SDI; } /// sse2_fp_unop_s_avx - AVX SSE2 unops in scalar form. multiclass sse2_fp_unop_s_avx opc, string OpcodeStr, SDNode OpNode, Intrinsic F64Int> { def SDr : SDI; def SDm : SDI; def SDr_Int : SDI; def SDm_Int : SDI; } /// sse2_fp_unop_p - SSE2 unops in vector forms. multiclass sse2_fp_unop_p opc, string OpcodeStr, SDNode OpNode> { def PDr : PDI; def PDm : PDI; } /// sse2_fp_unop_p_y - AVX SSE2 256-bit unops in vector forms. multiclass sse2_fp_unop_p_y opc, string OpcodeStr, SDNode OpNode> { def PDYr : PDI; def PDYm : PDI; } /// sse2_fp_unop_p_int - SSE2 intrinsic unops in vector forms. multiclass sse2_fp_unop_p_int opc, string OpcodeStr, Intrinsic V2F64Int> { def PDr_Int : PDI; def PDm_Int : PDI; } /// sse2_fp_unop_p_y_int - AVX 256-bit intrinsic unops in vector forms. multiclass sse2_fp_unop_p_y_int opc, string OpcodeStr, Intrinsic V2F64Int> { def PDYr_Int : PDI; def PDYm_Int : PDI; } let Predicates = [HasAVX] in { // Square root. defm VSQRT : sse1_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse_sqrt_ss>, sse2_fp_unop_s_avx<0x51, "vsqrt", fsqrt, int_x86_sse2_sqrt_sd>, VEX_4V; defm VSQRT : sse1_fp_unop_p<0x51, "vsqrt", fsqrt>, sse2_fp_unop_p<0x51, "vsqrt", fsqrt>, sse1_fp_unop_p_y<0x51, "vsqrt", fsqrt>, sse2_fp_unop_p_y<0x51, "vsqrt", fsqrt>, sse1_fp_unop_p_int<0x51, "vsqrt", int_x86_sse_sqrt_ps>, sse2_fp_unop_p_int<0x51, "vsqrt", int_x86_sse2_sqrt_pd>, sse1_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_ps_256>, sse2_fp_unop_p_y_int<0x51, "vsqrt", int_x86_avx_sqrt_pd_256>, VEX; // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. defm VRSQRT : sse1_fp_unop_s_avx<0x52, "vrsqrt", X86frsqrt, int_x86_sse_rsqrt_ss>, VEX_4V; defm VRSQRT : sse1_fp_unop_p<0x52, "vrsqrt", X86frsqrt>, sse1_fp_unop_p_y<0x52, "vrsqrt", X86frsqrt>, sse1_fp_unop_p_y_int<0x52, "vrsqrt", int_x86_avx_rsqrt_ps_256>, sse1_fp_unop_p_int<0x52, "vrsqrt", int_x86_sse_rsqrt_ps>, VEX; defm VRCP : sse1_fp_unop_s_avx<0x53, "vrcp", X86frcp, int_x86_sse_rcp_ss>, VEX_4V; defm VRCP : sse1_fp_unop_p<0x53, "vrcp", X86frcp>, sse1_fp_unop_p_y<0x53, "vrcp", X86frcp>, sse1_fp_unop_p_y_int<0x53, "vrcp", int_x86_avx_rcp_ps_256>, sse1_fp_unop_p_int<0x53, "vrcp", int_x86_sse_rcp_ps>, VEX; } def : Pat<(f32 (fsqrt FR32:$src)), (VSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>; def : Pat<(f64 (fsqrt FR64:$src)), (VSQRTSDr (f64 (IMPLICIT_DEF)), FR64:$src)>, Requires<[HasAVX]>; def : Pat<(f64 (fsqrt (load addr:$src))), (VSQRTSDm (f64 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX, OptForSize]>; def : Pat<(f32 (fsqrt (load addr:$src))), (VSQRTSSm (f32 (IMPLICIT_DEF)), addr:$src)>, Requires<[HasAVX, OptForSize]>; // Square root. defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss>, sse1_fp_unop_p<0x51, "sqrt", fsqrt>, sse1_fp_unop_p_int<0x51, "sqrt", int_x86_sse_sqrt_ps>, sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd>, sse2_fp_unop_p<0x51, "sqrt", fsqrt>, sse2_fp_unop_p_int<0x51, "sqrt", int_x86_sse2_sqrt_pd>; // Reciprocal approximations. Note that these typically require refinement // in order to obtain suitable precision. defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss>, sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt>, sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps>; defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss>, sse1_fp_unop_p<0x53, "rcp", X86frcp>, sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps>; // There is no f64 version of the reciprocal approximation instructions. //===----------------------------------------------------------------------===// // SSE 1 & 2 - Non-temporal stores //===----------------------------------------------------------------------===// let AddedComplexity = 400 in { // Prefer non-temporal versions def VMOVNTPSmr : VPSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>, VEX; def VMOVNTPDmr : VPDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>, VEX; def VMOVNTDQ_64mr : VPDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>, VEX; let ExeDomain = SSEPackedInt in def VMOVNTDQmr : VPDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>, VEX; def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), (VMOVNTDQmr addr:$dst, VR128:$src)>, Requires<[HasAVX]>; def VMOVNTPSYmr : VPSI<0x2B, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v8f32 VR256:$src), addr:$dst)]>, VEX; def VMOVNTPDYmr : VPDI<0x2B, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f64 VR256:$src), addr:$dst)]>, VEX; def VMOVNTDQY_64mr : VPDI<0xE7, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f64 VR256:$src), addr:$dst)]>, VEX; let ExeDomain = SSEPackedInt in def VMOVNTDQYmr : VPDI<0xE7, MRMDestMem, (outs), (ins f256mem:$dst, VR256:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v8f32 VR256:$src), addr:$dst)]>, VEX; } def : Pat<(int_x86_avx_movnt_dq_256 addr:$dst, VR256:$src), (VMOVNTDQYmr addr:$dst, VR256:$src)>; def : Pat<(int_x86_avx_movnt_pd_256 addr:$dst, VR256:$src), (VMOVNTPDYmr addr:$dst, VR256:$src)>; def : Pat<(int_x86_avx_movnt_ps_256 addr:$dst, VR256:$src), (VMOVNTPSYmr addr:$dst, VR256:$src)>; let AddedComplexity = 400 in { // Prefer non-temporal versions def MOVNTPSmr : PSI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntps\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; def MOVNTPDmr : PDI<0x2B, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntpd\t{$src, $dst|$dst, $src}", [(alignednontemporalstore(v2f64 VR128:$src), addr:$dst)]>; def MOVNTDQ_64mr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v2f64 VR128:$src), addr:$dst)]>; let ExeDomain = SSEPackedInt in def MOVNTDQmr : PDI<0xE7, MRMDestMem, (outs), (ins f128mem:$dst, VR128:$src), "movntdq\t{$src, $dst|$dst, $src}", [(alignednontemporalstore (v4f32 VR128:$src), addr:$dst)]>; def : Pat<(alignednontemporalstore (v2i64 VR128:$src), addr:$dst), (MOVNTDQmr addr:$dst, VR128:$src)>; // There is no AVX form for instructions below this point def MOVNTImr : I<0xC3, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src), "movnti{l}\t{$src, $dst|$dst, $src}", [(nontemporalstore (i32 GR32:$src), addr:$dst)]>, TB, Requires<[HasSSE2]>; def MOVNTI_64mr : RI<0xC3, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src), "movnti{q}\t{$src, $dst|$dst, $src}", [(nontemporalstore (i64 GR64:$src), addr:$dst)]>, TB, Requires<[HasSSE2]>; } //===----------------------------------------------------------------------===// // SSE 1 & 2 - Misc Instructions (No AVX form) //===----------------------------------------------------------------------===// // Prefetch intrinsic. def PREFETCHT0 : PSI<0x18, MRM1m, (outs), (ins i8mem:$src), "prefetcht0\t$src", [(prefetch addr:$src, imm, (i32 3), (i32 1))]>; def PREFETCHT1 : PSI<0x18, MRM2m, (outs), (ins i8mem:$src), "prefetcht1\t$src", [(prefetch addr:$src, imm, (i32 2), (i32 1))]>; def PREFETCHT2 : PSI<0x18, MRM3m, (outs), (ins i8mem:$src), "prefetcht2\t$src", [(prefetch addr:$src, imm, (i32 1), (i32 1))]>; def PREFETCHNTA : PSI<0x18, MRM0m, (outs), (ins i8mem:$src), "prefetchnta\t$src", [(prefetch addr:$src, imm, (i32 0), (i32 1))]>; // Load, store, and memory fence def SFENCE : I<0xAE, MRM_F8, (outs), (ins), "sfence", [(int_x86_sse_sfence)]>, TB, Requires<[HasSSE1]>; def : Pat<(X86SFence), (SFENCE)>; // Alias instructions that map zero vector to pxor / xorp* for sse. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-zeros value if folding it would be beneficial. // FIXME: Change encoding to pseudo! This is blocked right now by the x86 // JIT implementation, it does not expand the instructions below like // X86MCInstLower does. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isCodeGenOnly = 1 in { def V_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4f32 immAllZerosV))]>; def V_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v2f64 immAllZerosV))]>; let ExeDomain = SSEPackedInt in def V_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllZerosV))]>; } // The same as done above but for AVX. The 128-bit versions are the // same, but re-encoded. The 256-bit does not support PI version, and // doesn't need it because on sandy bridge the register is set to zero // at the rename stage without using any execution unit, so SET0PSY // and SET0PDY can be used for vector int instructions without penalty // FIXME: Change encoding to pseudo! This is blocked right now by the x86 // JIT implementatioan, it does not expand the instructions below like // X86MCInstLower does. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isCodeGenOnly = 1, Predicates = [HasAVX] in { def AVX_SET0PS : PSI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4f32 immAllZerosV))]>, VEX_4V; def AVX_SET0PD : PDI<0x57, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v2f64 immAllZerosV))]>, VEX_4V; def AVX_SET0PSY : PSI<0x57, MRMInitReg, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v8f32 immAllZerosV))]>, VEX_4V; def AVX_SET0PDY : PDI<0x57, MRMInitReg, (outs VR256:$dst), (ins), "", [(set VR256:$dst, (v4f64 immAllZerosV))]>, VEX_4V; let ExeDomain = SSEPackedInt in def AVX_SET0PI : PDI<0xEF, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllZerosV))]>; } def : Pat<(v2i64 immAllZerosV), (V_SET0PI)>; def : Pat<(v8i16 immAllZerosV), (V_SET0PI)>; def : Pat<(v16i8 immAllZerosV), (V_SET0PI)>; def : Pat<(f32 (vector_extract (v4f32 VR128:$src), (iPTR 0))), (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss))>; //===----------------------------------------------------------------------===// // SSE 1 & 2 - Load/Store XCSR register //===----------------------------------------------------------------------===// def VLDMXCSR : VPSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>, VEX; def VSTMXCSR : VPSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>, VEX; def LDMXCSR : PSI<0xAE, MRM2m, (outs), (ins i32mem:$src), "ldmxcsr\t$src", [(int_x86_sse_ldmxcsr addr:$src)]>; def STMXCSR : PSI<0xAE, MRM3m, (outs), (ins i32mem:$dst), "stmxcsr\t$dst", [(int_x86_sse_stmxcsr addr:$dst)]>; //===---------------------------------------------------------------------===// // SSE2 - Move Aligned/Unaligned Packed Integer Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { // SSE integer instructions let neverHasSideEffects = 1 in { def VMOVDQArr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; def VMOVDQAYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; } def VMOVDQUrr : VPDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; def VMOVDQUYrr : VPDI<0x6F, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, XS, VEX; let canFoldAsLoad = 1, mayLoad = 1 in { def VMOVDQArm : VPDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; def VMOVDQAYrm : VPDI<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; let Predicates = [HasAVX] in { def VMOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; def VMOVDQUYrm : I<0x6F, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; } } let mayStore = 1 in { def VMOVDQAmr : VPDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; def VMOVDQAYmr : VPDI<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), "movdqa\t{$src, $dst|$dst, $src}", []>, VEX; let Predicates = [HasAVX] in { def VMOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; def VMOVDQUYmr : I<0x7F, MRMDestMem, (outs), (ins i256mem:$dst, VR256:$src), "vmovdqu\t{$src, $dst|$dst, $src}",[]>, XS, VEX; } } let neverHasSideEffects = 1 in def MOVDQArr : PDI<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", []>; def MOVDQUrr : I<0x6F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", []>, XS, Requires<[HasSSE2]>; let canFoldAsLoad = 1, mayLoad = 1 in { def MOVDQArm : PDI<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (alignedloadv2i64 addr:$src))*/]>; def MOVDQUrm : I<0x6F, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(set VR128:$dst, (loadv2i64 addr:$src))*/]>, XS, Requires<[HasSSE2]>; } let mayStore = 1 in { def MOVDQAmr : PDI<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqa\t{$src, $dst|$dst, $src}", [/*(alignedstore (v2i64 VR128:$src), addr:$dst)*/]>; def MOVDQUmr : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [/*(store (v2i64 VR128:$src), addr:$dst)*/]>, XS, Requires<[HasSSE2]>; } // Intrinsic forms of MOVDQU load and store def VMOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "vmovdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, VEX, Requires<[HasAVX]>; def MOVDQUmr_Int : I<0x7F, MRMDestMem, (outs), (ins i128mem:$dst, VR128:$src), "movdqu\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storeu_dq addr:$dst, VR128:$src)]>, XS, Requires<[HasSSE2]>; } // ExeDomain = SSEPackedInt def : Pat<(int_x86_avx_loadu_dq_256 addr:$src), (VMOVDQUYrm addr:$src)>; def : Pat<(int_x86_avx_storeu_dq_256 addr:$dst, VR256:$src), (VMOVDQUYmr addr:$dst, VR256:$src)>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Arithmetic Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { // SSE integer instructions multiclass PDI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId, bit IsCommutable = 0, bit Is2Addr = 1> { let isCommutable = IsCommutable in def rr : PDI; def rm : PDI; } multiclass PDI_binop_rmi_int opc, bits<8> opc2, Format ImmForm, string OpcodeStr, Intrinsic IntId, Intrinsic IntId2, bit Is2Addr = 1> { def rr : PDI; def rm : PDI; def ri : PDIi8; } /// PDI_binop_rm - Simple SSE2 binary operator. multiclass PDI_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit IsCommutable = 0, bit Is2Addr = 1> { let isCommutable = IsCommutable in def rr : PDI; def rm : PDI; } /// PDI_binop_rm_v2i64 - Simple SSE2 binary operator whose type is v2i64. /// /// FIXME: we could eliminate this and use PDI_binop_rm instead if tblgen knew /// to collapse (bitconvert VT to VT) into its operand. /// multiclass PDI_binop_rm_v2i64 opc, string OpcodeStr, SDNode OpNode, bit IsCommutable = 0, bit Is2Addr = 1> { let isCommutable = IsCommutable in def rr : PDI; def rm : PDI; } } // ExeDomain = SSEPackedInt // 128-bit Integer Arithmetic let Predicates = [HasAVX] in { defm VPADDB : PDI_binop_rm<0xFC, "vpaddb", add, v16i8, 1, 0 /*3addr*/>, VEX_4V; defm VPADDW : PDI_binop_rm<0xFD, "vpaddw", add, v8i16, 1, 0>, VEX_4V; defm VPADDD : PDI_binop_rm<0xFE, "vpaddd", add, v4i32, 1, 0>, VEX_4V; defm VPADDQ : PDI_binop_rm_v2i64<0xD4, "vpaddq", add, 1, 0>, VEX_4V; defm VPMULLW : PDI_binop_rm<0xD5, "vpmullw", mul, v8i16, 1, 0>, VEX_4V; defm VPSUBB : PDI_binop_rm<0xF8, "vpsubb", sub, v16i8, 0, 0>, VEX_4V; defm VPSUBW : PDI_binop_rm<0xF9, "vpsubw", sub, v8i16, 0, 0>, VEX_4V; defm VPSUBD : PDI_binop_rm<0xFA, "vpsubd", sub, v4i32, 0, 0>, VEX_4V; defm VPSUBQ : PDI_binop_rm_v2i64<0xFB, "vpsubq", sub, 0, 0>, VEX_4V; // Intrinsic forms defm VPSUBSB : PDI_binop_rm_int<0xE8, "vpsubsb" , int_x86_sse2_psubs_b, 0, 0>, VEX_4V; defm VPSUBSW : PDI_binop_rm_int<0xE9, "vpsubsw" , int_x86_sse2_psubs_w, 0, 0>, VEX_4V; defm VPSUBUSB : PDI_binop_rm_int<0xD8, "vpsubusb", int_x86_sse2_psubus_b, 0, 0>, VEX_4V; defm VPSUBUSW : PDI_binop_rm_int<0xD9, "vpsubusw", int_x86_sse2_psubus_w, 0, 0>, VEX_4V; defm VPADDSB : PDI_binop_rm_int<0xEC, "vpaddsb" , int_x86_sse2_padds_b, 1, 0>, VEX_4V; defm VPADDSW : PDI_binop_rm_int<0xED, "vpaddsw" , int_x86_sse2_padds_w, 1, 0>, VEX_4V; defm VPADDUSB : PDI_binop_rm_int<0xDC, "vpaddusb", int_x86_sse2_paddus_b, 1, 0>, VEX_4V; defm VPADDUSW : PDI_binop_rm_int<0xDD, "vpaddusw", int_x86_sse2_paddus_w, 1, 0>, VEX_4V; defm VPMULHUW : PDI_binop_rm_int<0xE4, "vpmulhuw", int_x86_sse2_pmulhu_w, 1, 0>, VEX_4V; defm VPMULHW : PDI_binop_rm_int<0xE5, "vpmulhw" , int_x86_sse2_pmulh_w, 1, 0>, VEX_4V; defm VPMULUDQ : PDI_binop_rm_int<0xF4, "vpmuludq", int_x86_sse2_pmulu_dq, 1, 0>, VEX_4V; defm VPMADDWD : PDI_binop_rm_int<0xF5, "vpmaddwd", int_x86_sse2_pmadd_wd, 1, 0>, VEX_4V; defm VPAVGB : PDI_binop_rm_int<0xE0, "vpavgb", int_x86_sse2_pavg_b, 1, 0>, VEX_4V; defm VPAVGW : PDI_binop_rm_int<0xE3, "vpavgw", int_x86_sse2_pavg_w, 1, 0>, VEX_4V; defm VPMINUB : PDI_binop_rm_int<0xDA, "vpminub", int_x86_sse2_pminu_b, 1, 0>, VEX_4V; defm VPMINSW : PDI_binop_rm_int<0xEA, "vpminsw", int_x86_sse2_pmins_w, 1, 0>, VEX_4V; defm VPMAXUB : PDI_binop_rm_int<0xDE, "vpmaxub", int_x86_sse2_pmaxu_b, 1, 0>, VEX_4V; defm VPMAXSW : PDI_binop_rm_int<0xEE, "vpmaxsw", int_x86_sse2_pmaxs_w, 1, 0>, VEX_4V; defm VPSADBW : PDI_binop_rm_int<0xF6, "vpsadbw", int_x86_sse2_psad_bw, 1, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PADDB : PDI_binop_rm<0xFC, "paddb", add, v16i8, 1>; defm PADDW : PDI_binop_rm<0xFD, "paddw", add, v8i16, 1>; defm PADDD : PDI_binop_rm<0xFE, "paddd", add, v4i32, 1>; defm PADDQ : PDI_binop_rm_v2i64<0xD4, "paddq", add, 1>; defm PMULLW : PDI_binop_rm<0xD5, "pmullw", mul, v8i16, 1>; defm PSUBB : PDI_binop_rm<0xF8, "psubb", sub, v16i8>; defm PSUBW : PDI_binop_rm<0xF9, "psubw", sub, v8i16>; defm PSUBD : PDI_binop_rm<0xFA, "psubd", sub, v4i32>; defm PSUBQ : PDI_binop_rm_v2i64<0xFB, "psubq", sub>; // Intrinsic forms defm PSUBSB : PDI_binop_rm_int<0xE8, "psubsb" , int_x86_sse2_psubs_b>; defm PSUBSW : PDI_binop_rm_int<0xE9, "psubsw" , int_x86_sse2_psubs_w>; defm PSUBUSB : PDI_binop_rm_int<0xD8, "psubusb", int_x86_sse2_psubus_b>; defm PSUBUSW : PDI_binop_rm_int<0xD9, "psubusw", int_x86_sse2_psubus_w>; defm PADDSB : PDI_binop_rm_int<0xEC, "paddsb" , int_x86_sse2_padds_b, 1>; defm PADDSW : PDI_binop_rm_int<0xED, "paddsw" , int_x86_sse2_padds_w, 1>; defm PADDUSB : PDI_binop_rm_int<0xDC, "paddusb", int_x86_sse2_paddus_b, 1>; defm PADDUSW : PDI_binop_rm_int<0xDD, "paddusw", int_x86_sse2_paddus_w, 1>; defm PMULHUW : PDI_binop_rm_int<0xE4, "pmulhuw", int_x86_sse2_pmulhu_w, 1>; defm PMULHW : PDI_binop_rm_int<0xE5, "pmulhw" , int_x86_sse2_pmulh_w, 1>; defm PMULUDQ : PDI_binop_rm_int<0xF4, "pmuludq", int_x86_sse2_pmulu_dq, 1>; defm PMADDWD : PDI_binop_rm_int<0xF5, "pmaddwd", int_x86_sse2_pmadd_wd, 1>; defm PAVGB : PDI_binop_rm_int<0xE0, "pavgb", int_x86_sse2_pavg_b, 1>; defm PAVGW : PDI_binop_rm_int<0xE3, "pavgw", int_x86_sse2_pavg_w, 1>; defm PMINUB : PDI_binop_rm_int<0xDA, "pminub", int_x86_sse2_pminu_b, 1>; defm PMINSW : PDI_binop_rm_int<0xEA, "pminsw", int_x86_sse2_pmins_w, 1>; defm PMAXUB : PDI_binop_rm_int<0xDE, "pmaxub", int_x86_sse2_pmaxu_b, 1>; defm PMAXSW : PDI_binop_rm_int<0xEE, "pmaxsw", int_x86_sse2_pmaxs_w, 1>; defm PSADBW : PDI_binop_rm_int<0xF6, "psadbw", int_x86_sse2_psad_bw, 1>; } // Constraints = "$src1 = $dst" //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Logical Instructions //===---------------------------------------------------------------------===// let Predicates = [HasAVX] in { defm VPSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "vpsllw", int_x86_sse2_psll_w, int_x86_sse2_pslli_w, 0>, VEX_4V; defm VPSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "vpslld", int_x86_sse2_psll_d, int_x86_sse2_pslli_d, 0>, VEX_4V; defm VPSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "vpsllq", int_x86_sse2_psll_q, int_x86_sse2_pslli_q, 0>, VEX_4V; defm VPSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "vpsrlw", int_x86_sse2_psrl_w, int_x86_sse2_psrli_w, 0>, VEX_4V; defm VPSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "vpsrld", int_x86_sse2_psrl_d, int_x86_sse2_psrli_d, 0>, VEX_4V; defm VPSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "vpsrlq", int_x86_sse2_psrl_q, int_x86_sse2_psrli_q, 0>, VEX_4V; defm VPSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "vpsraw", int_x86_sse2_psra_w, int_x86_sse2_psrai_w, 0>, VEX_4V; defm VPSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "vpsrad", int_x86_sse2_psra_d, int_x86_sse2_psrai_d, 0>, VEX_4V; defm VPAND : PDI_binop_rm_v2i64<0xDB, "vpand", and, 1, 0>, VEX_4V; defm VPOR : PDI_binop_rm_v2i64<0xEB, "vpor" , or, 1, 0>, VEX_4V; defm VPXOR : PDI_binop_rm_v2i64<0xEF, "vpxor", xor, 1, 0>, VEX_4V; let ExeDomain = SSEPackedInt in { let neverHasSideEffects = 1 in { // 128-bit logical shifts. def VPSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpslldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX_4V; def VPSRLDQri : PDIi8<0x73, MRM3r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpsrldq\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX_4V; // PSRADQri doesn't exist in SSE[1-3]. } def VPANDNrr : PDI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), VR128:$src2)))]>, VEX_4V; def VPANDNrm : PDI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "vpandn\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (and (vnot VR128:$src1), (memopv2i64 addr:$src2))))]>, VEX_4V; } } let Constraints = "$src1 = $dst" in { defm PSLLW : PDI_binop_rmi_int<0xF1, 0x71, MRM6r, "psllw", int_x86_sse2_psll_w, int_x86_sse2_pslli_w>; defm PSLLD : PDI_binop_rmi_int<0xF2, 0x72, MRM6r, "pslld", int_x86_sse2_psll_d, int_x86_sse2_pslli_d>; defm PSLLQ : PDI_binop_rmi_int<0xF3, 0x73, MRM6r, "psllq", int_x86_sse2_psll_q, int_x86_sse2_pslli_q>; defm PSRLW : PDI_binop_rmi_int<0xD1, 0x71, MRM2r, "psrlw", int_x86_sse2_psrl_w, int_x86_sse2_psrli_w>; defm PSRLD : PDI_binop_rmi_int<0xD2, 0x72, MRM2r, "psrld", int_x86_sse2_psrl_d, int_x86_sse2_psrli_d>; defm PSRLQ : PDI_binop_rmi_int<0xD3, 0x73, MRM2r, "psrlq", int_x86_sse2_psrl_q, int_x86_sse2_psrli_q>; defm PSRAW : PDI_binop_rmi_int<0xE1, 0x71, MRM4r, "psraw", int_x86_sse2_psra_w, int_x86_sse2_psrai_w>; defm PSRAD : PDI_binop_rmi_int<0xE2, 0x72, MRM4r, "psrad", int_x86_sse2_psra_d, int_x86_sse2_psrai_d>; defm PAND : PDI_binop_rm_v2i64<0xDB, "pand", and, 1>; defm POR : PDI_binop_rm_v2i64<0xEB, "por" , or, 1>; defm PXOR : PDI_binop_rm_v2i64<0xEF, "pxor", xor, 1>; let ExeDomain = SSEPackedInt in { let neverHasSideEffects = 1 in { // 128-bit logical shifts. def PSLLDQri : PDIi8<0x73, MRM7r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "pslldq\t{$src2, $dst|$dst, $src2}", []>; def PSRLDQri : PDIi8<0x73, MRM3r, (outs VR128:$dst), (ins VR128:$src1, i32i8imm:$src2), "psrldq\t{$src2, $dst|$dst, $src2}", []>; // PSRADQri doesn't exist in SSE[1-3]. } def PANDNrr : PDI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "pandn\t{$src2, $dst|$dst, $src2}", []>; def PANDNrm : PDI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "pandn\t{$src2, $dst|$dst, $src2}", []>; } } // Constraints = "$src1 = $dst" let Predicates = [HasAVX] in { def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2), (v2i64 (VPSLLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2), (v2i64 (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2), (v2i64 (VPSLLDQri VR128:$src1, imm:$src2))>; def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2), (v2i64 (VPSRLDQri VR128:$src1, imm:$src2))>; def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)), (v2f64 (VPSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; // Shift up / down and insert zero's. def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))), (v2i64 (VPSLLDQri VR128:$src, (BYTE_imm imm:$amt)))>; def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))), (v2i64 (VPSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>; } let Predicates = [HasSSE2] in { def : Pat<(int_x86_sse2_psll_dq VR128:$src1, imm:$src2), (v2i64 (PSLLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psrl_dq VR128:$src1, imm:$src2), (v2i64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; def : Pat<(int_x86_sse2_psll_dq_bs VR128:$src1, imm:$src2), (v2i64 (PSLLDQri VR128:$src1, imm:$src2))>; def : Pat<(int_x86_sse2_psrl_dq_bs VR128:$src1, imm:$src2), (v2i64 (PSRLDQri VR128:$src1, imm:$src2))>; def : Pat<(v2f64 (X86fsrl VR128:$src1, i32immSExt8:$src2)), (v2f64 (PSRLDQri VR128:$src1, (BYTE_imm imm:$src2)))>; // Shift up / down and insert zero's. def : Pat<(v2i64 (X86vshl VR128:$src, (i8 imm:$amt))), (v2i64 (PSLLDQri VR128:$src, (BYTE_imm imm:$amt)))>; def : Pat<(v2i64 (X86vshr VR128:$src, (i8 imm:$amt))), (v2i64 (PSRLDQri VR128:$src, (BYTE_imm imm:$amt)))>; } //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Comparison Instructions //===---------------------------------------------------------------------===// let Predicates = [HasAVX] in { defm VPCMPEQB : PDI_binop_rm_int<0x74, "vpcmpeqb", int_x86_sse2_pcmpeq_b, 1, 0>, VEX_4V; defm VPCMPEQW : PDI_binop_rm_int<0x75, "vpcmpeqw", int_x86_sse2_pcmpeq_w, 1, 0>, VEX_4V; defm VPCMPEQD : PDI_binop_rm_int<0x76, "vpcmpeqd", int_x86_sse2_pcmpeq_d, 1, 0>, VEX_4V; defm VPCMPGTB : PDI_binop_rm_int<0x64, "vpcmpgtb", int_x86_sse2_pcmpgt_b, 0, 0>, VEX_4V; defm VPCMPGTW : PDI_binop_rm_int<0x65, "vpcmpgtw", int_x86_sse2_pcmpgt_w, 0, 0>, VEX_4V; defm VPCMPGTD : PDI_binop_rm_int<0x66, "vpcmpgtd", int_x86_sse2_pcmpgt_d, 0, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PCMPEQB : PDI_binop_rm_int<0x74, "pcmpeqb", int_x86_sse2_pcmpeq_b, 1>; defm PCMPEQW : PDI_binop_rm_int<0x75, "pcmpeqw", int_x86_sse2_pcmpeq_w, 1>; defm PCMPEQD : PDI_binop_rm_int<0x76, "pcmpeqd", int_x86_sse2_pcmpeq_d, 1>; defm PCMPGTB : PDI_binop_rm_int<0x64, "pcmpgtb", int_x86_sse2_pcmpgt_b>; defm PCMPGTW : PDI_binop_rm_int<0x65, "pcmpgtw", int_x86_sse2_pcmpgt_w>; defm PCMPGTD : PDI_binop_rm_int<0x66, "pcmpgtd", int_x86_sse2_pcmpgt_d>; } // Constraints = "$src1 = $dst" def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, VR128:$src2)), (PCMPEQBrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86pcmpeqb VR128:$src1, (memop addr:$src2))), (PCMPEQBrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, VR128:$src2)), (PCMPEQWrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86pcmpeqw VR128:$src1, (memop addr:$src2))), (PCMPEQWrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, VR128:$src2)), (PCMPEQDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86pcmpeqd VR128:$src1, (memop addr:$src2))), (PCMPEQDrm VR128:$src1, addr:$src2)>; def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, VR128:$src2)), (PCMPGTBrr VR128:$src1, VR128:$src2)>; def : Pat<(v16i8 (X86pcmpgtb VR128:$src1, (memop addr:$src2))), (PCMPGTBrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, VR128:$src2)), (PCMPGTWrr VR128:$src1, VR128:$src2)>; def : Pat<(v8i16 (X86pcmpgtw VR128:$src1, (memop addr:$src2))), (PCMPGTWrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, VR128:$src2)), (PCMPGTDrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86pcmpgtd VR128:$src1, (memop addr:$src2))), (PCMPGTDrm VR128:$src1, addr:$src2)>; //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Pack Instructions //===---------------------------------------------------------------------===// let Predicates = [HasAVX] in { defm VPACKSSWB : PDI_binop_rm_int<0x63, "vpacksswb", int_x86_sse2_packsswb_128, 0, 0>, VEX_4V; defm VPACKSSDW : PDI_binop_rm_int<0x6B, "vpackssdw", int_x86_sse2_packssdw_128, 0, 0>, VEX_4V; defm VPACKUSWB : PDI_binop_rm_int<0x67, "vpackuswb", int_x86_sse2_packuswb_128, 0, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PACKSSWB : PDI_binop_rm_int<0x63, "packsswb", int_x86_sse2_packsswb_128>; defm PACKSSDW : PDI_binop_rm_int<0x6B, "packssdw", int_x86_sse2_packssdw_128>; defm PACKUSWB : PDI_binop_rm_int<0x67, "packuswb", int_x86_sse2_packuswb_128>; } // Constraints = "$src1 = $dst" //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Shuffle Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_pshuffle { def ri : Ii8<0x70, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt (pshuf_frag:$src2 VR128:$src1, (undef))))]>; def mi : Ii8<0x70, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"), [(set VR128:$dst, (vt (pshuf_frag:$src2 (bc_frag (memopv2i64 addr:$src1)), (undef))))]>; } } // ExeDomain = SSEPackedInt let Predicates = [HasAVX] in { let AddedComplexity = 5 in defm VPSHUFD : sse2_pshuffle<"vpshufd", v4i32, pshufd, bc_v4i32>, OpSize, VEX; // SSE2 with ImmT == Imm8 and XS prefix. defm VPSHUFHW : sse2_pshuffle<"vpshufhw", v8i16, pshufhw, bc_v8i16>, XS, VEX; // SSE2 with ImmT == Imm8 and XD prefix. defm VPSHUFLW : sse2_pshuffle<"vpshuflw", v8i16, pshuflw, bc_v8i16>, XD, VEX; } let Predicates = [HasSSE2] in { let AddedComplexity = 5 in defm PSHUFD : sse2_pshuffle<"pshufd", v4i32, pshufd, bc_v4i32>, TB, OpSize; // SSE2 with ImmT == Imm8 and XS prefix. defm PSHUFHW : sse2_pshuffle<"pshufhw", v8i16, pshufhw, bc_v8i16>, XS; // SSE2 with ImmT == Imm8 and XD prefix. defm PSHUFLW : sse2_pshuffle<"pshuflw", v8i16, pshuflw, bc_v8i16>, XD; } //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Unpack Instructions //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_unpack opc, string OpcodeStr, ValueType vt, PatFrag unp_frag, PatFrag bc_frag, bit Is2Addr = 1> { def rr : PDI; def rm : PDI; } let Predicates = [HasAVX] in { defm VPUNPCKLBW : sse2_unpack<0x60, "vpunpcklbw", v16i8, unpckl, bc_v16i8, 0>, VEX_4V; defm VPUNPCKLWD : sse2_unpack<0x61, "vpunpcklwd", v8i16, unpckl, bc_v8i16, 0>, VEX_4V; defm VPUNPCKLDQ : sse2_unpack<0x62, "vpunpckldq", v4i32, unpckl, bc_v4i32, 0>, VEX_4V; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def VPUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, VR128:$src2)))]>, VEX_4V; def VPUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "vpunpcklqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, (memopv2i64 addr:$src2))))]>, VEX_4V; defm VPUNPCKHBW : sse2_unpack<0x68, "vpunpckhbw", v16i8, unpckh, bc_v16i8, 0>, VEX_4V; defm VPUNPCKHWD : sse2_unpack<0x69, "vpunpckhwd", v8i16, unpckh, bc_v8i16, 0>, VEX_4V; defm VPUNPCKHDQ : sse2_unpack<0x6A, "vpunpckhdq", v4i32, unpckh, bc_v4i32, 0>, VEX_4V; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def VPUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, VR128:$src2)))]>, VEX_4V; def VPUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "vpunpckhqdq\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, (memopv2i64 addr:$src2))))]>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm PUNPCKLBW : sse2_unpack<0x60, "punpcklbw", v16i8, unpckl, bc_v16i8>; defm PUNPCKLWD : sse2_unpack<0x61, "punpcklwd", v8i16, unpckl, bc_v8i16>; defm PUNPCKLDQ : sse2_unpack<0x62, "punpckldq", v4i32, unpckl, bc_v4i32>; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKLQDQrr : PDI<0x6C, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, VR128:$src2)))]>; def PUNPCKLQDQrm : PDI<0x6C, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpcklqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckl VR128:$src1, (memopv2i64 addr:$src2))))]>; defm PUNPCKHBW : sse2_unpack<0x68, "punpckhbw", v16i8, unpckh, bc_v16i8>; defm PUNPCKHWD : sse2_unpack<0x69, "punpckhwd", v8i16, unpckh, bc_v8i16>; defm PUNPCKHDQ : sse2_unpack<0x6A, "punpckhdq", v4i32, unpckh, bc_v4i32>; /// FIXME: we could eliminate this and use sse2_unpack instead if tblgen /// knew to collapse (bitconvert VT to VT) into its operand. def PUNPCKHQDQrr : PDI<0x6D, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, VR128:$src2)))]>; def PUNPCKHQDQrm : PDI<0x6D, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2), "punpckhqdq\t{$src2, $dst|$dst, $src2}", [(set VR128:$dst, (v2i64 (unpckh VR128:$src1, (memopv2i64 addr:$src2))))]>; } } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Integer Extract and Insert //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { multiclass sse2_pinsrw { def rri : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR32:$src2, i32i8imm:$src3), !if(Is2Addr, "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (X86pinsrw VR128:$src1, GR32:$src2, imm:$src3))]>; def rmi : Ii8<0xC4, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i16mem:$src2, i32i8imm:$src3), !if(Is2Addr, "pinsrw\t{$src3, $src2, $dst|$dst, $src2, $src3}", "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}"), [(set VR128:$dst, (X86pinsrw VR128:$src1, (extloadi16 addr:$src2), imm:$src3))]>; } // Extract let Predicates = [HasAVX] in def VPEXTRWri : Ii8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>, OpSize, VEX; def PEXTRWri : PDIi8<0xC5, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src1, i32i8imm:$src2), "pextrw\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set GR32:$dst, (X86pextrw (v8i16 VR128:$src1), imm:$src2))]>; // Insert let Predicates = [HasAVX] in { defm VPINSRW : sse2_pinsrw<0>, OpSize, VEX_4V; def VPINSRWrr64i : Ii8<0xC4, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, GR64:$src2, i32i8imm:$src3), "vpinsrw\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, OpSize, VEX_4V; } let Constraints = "$src1 = $dst" in defm PINSRW : sse2_pinsrw, TB, OpSize, Requires<[HasSSE2]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Packed Mask Creation //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { def VPMOVMSKBrr : VPDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>, VEX; def VPMOVMSKBr64r : VPDI<0xD7, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", []>, VEX; def PMOVMSKBrr : PDI<0xD7, MRMSrcReg, (outs GR32:$dst), (ins VR128:$src), "pmovmskb\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (int_x86_sse2_pmovmskb_128 VR128:$src))]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Conditional Store //===---------------------------------------------------------------------===// let ExeDomain = SSEPackedInt in { let Uses = [EDI] in def VMASKMOVDQU : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>, VEX; let Uses = [RDI] in def VMASKMOVDQU64 : VPDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>, VEX; let Uses = [EDI] in def MASKMOVDQU : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, EDI)]>; let Uses = [RDI] in def MASKMOVDQU64 : PDI<0xF7, MRMSrcReg, (outs), (ins VR128:$src, VR128:$mask), "maskmovdqu\t{$mask, $src|$src, $mask}", [(int_x86_sse2_maskmov_dqu VR128:$src, VR128:$mask, RDI)]>; } // ExeDomain = SSEPackedInt //===---------------------------------------------------------------------===// // SSE2 - Move Doubleword //===---------------------------------------------------------------------===// // Move Int Doubleword to Packed Double Int def VMOVDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>, VEX; def VMOVDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>, VEX; def MOVDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector GR32:$src)))]>; def MOVDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (scalar_to_vector (loadi32 addr:$src))))]>; def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector GR64:$src)))]>; def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert GR64:$src))]>; // Move Int Doubleword to Single Scalar def VMOVDI2SSrr : VPDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>, VEX; def VMOVDI2SSrm : VPDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>, VEX; def MOVDI2SSrr : PDI<0x6E, MRMSrcReg, (outs FR32:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert GR32:$src))]>; def MOVDI2SSrm : PDI<0x6E, MRMSrcMem, (outs FR32:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set FR32:$dst, (bitconvert (loadi32 addr:$src)))]>; // Move Packed Doubleword Int to Packed Double Int def VMOVPDI2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), (iPTR 0)))]>, VEX; def VMOVPDI2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; def MOVPDI2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (vector_extract (v4i32 VR128:$src), (iPTR 0)))]>; def MOVPDI2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, VR128:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (vector_extract (v4i32 VR128:$src), (iPTR 0))), addr:$dst)]>; def MOVPQIto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (vector_extract (v2i64 VR128:$src), (iPTR 0)))]>; def MOV64toSDrm : S3SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>; def MOVSDto64rr : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (bitconvert FR64:$src))]>; def MOVSDto64mr : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>; // Move Scalar Single to Double Int def VMOVSS2DIrr : VPDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>, VEX; def VMOVSS2DImr : VPDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>, VEX; def MOVSS2DIrr : PDI<0x7E, MRMDestReg, (outs GR32:$dst), (ins FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (bitconvert FR32:$src))]>; def MOVSS2DImr : PDI<0x7E, MRMDestMem, (outs), (ins i32mem:$dst, FR32:$src), "movd\t{$src, $dst|$dst, $src}", [(store (i32 (bitconvert FR32:$src)), addr:$dst)]>; // movd / movq to XMM register zero-extends let AddedComplexity = 15 in { def VMOVZDI2PDIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))))]>, VEX; def VMOVZQI2PQIrr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))))]>, VEX, VEX_W; } let AddedComplexity = 15 in { def MOVZDI2PDIrr : PDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR32:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector GR32:$src)))))]>; def MOVZQI2PQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "mov{d|q}\t{$src, $dst|$dst, $src}", // X86-64 only [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector GR64:$src)))))]>; } let AddedComplexity = 20 in { def VMOVZDI2PDIrm : VPDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>, VEX; def MOVZDI2PDIrm : PDI<0x6E, MRMSrcMem, (outs VR128:$dst), (ins i32mem:$src), "movd\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))]>; def : Pat<(v4i32 (X86vzmovl (loadv4i32 addr:$src))), (MOVZDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv4f32 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; def : Pat<(v4i32 (X86vzmovl (bc_v4i32 (loadv2i64 addr:$src)))), (MOVZDI2PDIrm addr:$src)>; } // These are the correct encodings of the instructions so that we know how to // read correct assembly, even though we continue to emit the wrong ones for // compatibility with Darwin's buggy assembler. def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (MOV64toPQIrr VR128:$dst, GR64:$src), 0>; def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (MOV64toSDrr FR64:$dst, GR64:$src), 0>; def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (MOVPQIto64rr GR64:$dst, VR128:$src), 0>; def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (MOVSDto64rr GR64:$dst, FR64:$src), 0>; def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (VMOVZQI2PQIrr VR128:$dst, GR64:$src), 0>; def : InstAlias<"movq\t{$src, $dst|$dst, $src}", (MOVZQI2PQIrr VR128:$dst, GR64:$src), 0>; //===---------------------------------------------------------------------===// // SSE2 - Move Quadword //===---------------------------------------------------------------------===// // Move Quadword Int to Packed Quadword Int def VMOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, VEX, Requires<[HasAVX]>; def MOVQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (scalar_to_vector (loadi64 addr:$src))))]>, XS, Requires<[HasSSE2]>; // SSE2 instruction with XS Prefix // Move Packed Quadword Int to Quadword Int def VMOVPQI2QImr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>, VEX; def MOVPQI2QImr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(store (i64 (vector_extract (v2i64 VR128:$src), (iPTR 0))), addr:$dst)]>; def : Pat<(f64 (vector_extract (v2f64 VR128:$src), (iPTR 0))), (f64 (EXTRACT_SUBREG (v2f64 VR128:$src), sub_sd))>; // Store / copy lower 64-bits of a XMM register. def VMOVLQ128mr : VPDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>, VEX; def MOVLQ128mr : PDI<0xD6, MRMDestMem, (outs), (ins i64mem:$dst, VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(int_x86_sse2_storel_dq addr:$dst, VR128:$src)]>; let AddedComplexity = 20 in def VMOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>, XS, VEX, Requires<[HasAVX]>; let AddedComplexity = 20 in { def MOVZQI2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i64mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 addr:$src))))))]>, XS, Requires<[HasSSE2]>; def : Pat<(v2i64 (X86vzmovl (loadv2i64 addr:$src))), (MOVZQI2PQIrm addr:$src)>; def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4f32 addr:$src)))), (MOVZQI2PQIrm addr:$src)>; def : Pat<(v2i64 (X86vzload addr:$src)), (MOVZQI2PQIrm addr:$src)>; } // Moving from XMM to XMM and clear upper 64 bits. Note, there is a bug in // IA32 document. movq xmm1, xmm2 does clear the high bits. let AddedComplexity = 15 in def VMOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, VEX, Requires<[HasAVX]>; let AddedComplexity = 15 in def MOVZPQILo2PQIrr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (v2i64 VR128:$src))))]>, XS, Requires<[HasSSE2]>; let AddedComplexity = 20 in def VMOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (loadv2i64 addr:$src))))]>, XS, VEX, Requires<[HasAVX]>; let AddedComplexity = 20 in { def MOVZPQILo2PQIrm : I<0x7E, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movq\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (v2i64 (X86vzmovl (loadv2i64 addr:$src))))]>, XS, Requires<[HasSSE2]>; def : Pat<(v2i64 (X86vzmovl (bc_v2i64 (loadv4i32 addr:$src)))), (MOVZPQILo2PQIrm addr:$src)>; } // Instructions to match in the assembler def VMOVQs64rr : VPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; def VMOVQd64rr : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; // Recognize "movd" with GR64 destination, but encode as a "movq" def VMOVQd64rr_alt : VPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src), "movd\t{$src, $dst|$dst, $src}", []>, VEX, VEX_W; // Instructions for the disassembler // xr = XMM register // xm = mem64 let Predicates = [HasAVX] in def VMOVQxrxr: I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vmovq\t{$src, $dst|$dst, $src}", []>, VEX, XS; def MOVQxrxr : I<0x7E, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "movq\t{$src, $dst|$dst, $src}", []>, XS; //===---------------------------------------------------------------------===// // SSE2 - Misc Instructions //===---------------------------------------------------------------------===// // Flush cache def CLFLUSH : I<0xAE, MRM7m, (outs), (ins i8mem:$src), "clflush\t$src", [(int_x86_sse2_clflush addr:$src)]>, TB, Requires<[HasSSE2]>; // Load, store, and memory fence def LFENCE : I<0xAE, MRM_E8, (outs), (ins), "lfence", [(int_x86_sse2_lfence)]>, TB, Requires<[HasSSE2]>; def MFENCE : I<0xAE, MRM_F0, (outs), (ins), "mfence", [(int_x86_sse2_mfence)]>, TB, Requires<[HasSSE2]>; def : Pat<(X86LFence), (LFENCE)>; def : Pat<(X86MFence), (MFENCE)>; // Pause. This "instruction" is encoded as "rep; nop", so even though it // was introduced with SSE2, it's backward compatible. def PAUSE : I<0x90, RawFrm, (outs), (ins), "pause", []>, REP; // Alias instructions that map zero vector to pxor / xorp* for sse. // We set canFoldAsLoad because this can be converted to a constant-pool // load of an all-ones value if folding it would be beneficial. let isReMaterializable = 1, isAsCheapAsAMove = 1, canFoldAsLoad = 1, isCodeGenOnly = 1, ExeDomain = SSEPackedInt in // FIXME: Change encoding to pseudo. def V_SETALLONES : PDI<0x76, MRMInitReg, (outs VR128:$dst), (ins), "", [(set VR128:$dst, (v4i32 immAllOnesV))]>; //===---------------------------------------------------------------------===// // SSE3 - Conversion Instructions //===---------------------------------------------------------------------===// // Convert Packed Double FP to Packed DW Integers let Predicates = [HasAVX] in { // The assembler can recognize rr 256-bit instructions by seeing a ymm // register, but the same isn't true when using memory operands instead. // Provide other assembly rr and rm forms to address this explicitly. def VCVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2DQXrYr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "vcvtpd2dq\t{$src, $dst|$dst, $src}", []>, VEX; // XMM only def VCVTPD2DQXrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2DQXrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtpd2dqx\t{$src, $dst|$dst, $src}", []>, VEX; // YMM only def VCVTPD2DQYrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR256:$src), "vcvtpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTPD2DQYrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f256mem:$src), "vcvtpd2dqy\t{$src, $dst|$dst, $src}", []>, VEX, VEX_L; } def CVTPD2DQrm : S3DI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; def CVTPD2DQrr : S3DI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtpd2dq\t{$src, $dst|$dst, $src}", []>; // Convert Packed DW Integers to Packed Double FP let Predicates = [HasAVX] in { def VCVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTDQ2PDYrm : S3SI<0xE6, MRMSrcMem, (outs VR256:$dst), (ins f128mem:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; def VCVTDQ2PDYrr : S3SI<0xE6, MRMSrcReg, (outs VR256:$dst), (ins VR128:$src), "vcvtdq2pd\t{$src, $dst|$dst, $src}", []>, VEX; } def CVTDQ2PDrm : S3SI<0xE6, MRMSrcMem, (outs VR128:$dst), (ins f128mem:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; def CVTDQ2PDrr : S3SI<0xE6, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), "cvtdq2pd\t{$src, $dst|$dst, $src}", []>; // AVX 256-bit register conversion intrinsics def : Pat<(int_x86_avx_cvtdq2_pd_256 VR128:$src), (VCVTDQ2PDYrr VR128:$src)>; def : Pat<(int_x86_avx_cvtdq2_pd_256 (memopv4i32 addr:$src)), (VCVTDQ2PDYrm addr:$src)>; def : Pat<(int_x86_avx_cvt_pd2dq_256 VR256:$src), (VCVTPD2DQYrr VR256:$src)>; def : Pat<(int_x86_avx_cvt_pd2dq_256 (memopv4f64 addr:$src)), (VCVTPD2DQYrm addr:$src)>; //===---------------------------------------------------------------------===// // SSE3 - Move Instructions //===---------------------------------------------------------------------===// // Replicate Single FP multiclass sse3_replicate_sfp op, PatFrag rep_frag, string OpcodeStr> { def rr : S3SI; def rm : S3SI; } multiclass sse3_replicate_sfp_y op, PatFrag rep_frag, string OpcodeStr> { def rr : S3SI; def rm : S3SI; } let Predicates = [HasAVX] in { // FIXME: Merge above classes when we have patterns for the ymm version defm VMOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "vmovshdup">, VEX; defm VMOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "vmovsldup">, VEX; defm VMOVSHDUPY : sse3_replicate_sfp_y<0x16, movshdup, "vmovshdup">, VEX; defm VMOVSLDUPY : sse3_replicate_sfp_y<0x12, movsldup, "vmovsldup">, VEX; } defm MOVSHDUP : sse3_replicate_sfp<0x16, movshdup, "movshdup">; defm MOVSLDUP : sse3_replicate_sfp<0x12, movsldup, "movsldup">; // Replicate Double FP multiclass sse3_replicate_dfp { def rr : S3DI<0x12, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst,(v2f64 (movddup VR128:$src, (undef))))]>; def rm : S3DI<0x12, MRMSrcMem, (outs VR128:$dst), (ins f64mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), [(set VR128:$dst, (v2f64 (movddup (scalar_to_vector (loadf64 addr:$src)), (undef))))]>; } multiclass sse3_replicate_dfp_y { def rr : S3DI<0x12, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>; def rm : S3DI<0x12, MRMSrcMem, (outs VR256:$dst), (ins f256mem:$src), !strconcat(OpcodeStr, "\t{$src, $dst|$dst, $src}"), []>; } let Predicates = [HasAVX] in { // FIXME: Merge above classes when we have patterns for the ymm version defm VMOVDDUP : sse3_replicate_dfp<"vmovddup">, VEX; defm VMOVDDUPY : sse3_replicate_dfp_y<"vmovddup">, VEX; } defm MOVDDUP : sse3_replicate_dfp<"movddup">; // Move Unaligned Integer let Predicates = [HasAVX] in { def VLDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>, VEX; def VLDDQUYrm : S3DI<0xF0, MRMSrcMem, (outs VR256:$dst), (ins i256mem:$src), "vlddqu\t{$src, $dst|$dst, $src}", [(set VR256:$dst, (int_x86_avx_ldu_dq_256 addr:$src))]>, VEX; } def LDDQUrm : S3DI<0xF0, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "lddqu\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse3_ldu_dq addr:$src))]>; def : Pat<(movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src)))), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; // Several Move patterns let AddedComplexity = 5 in { def : Pat<(movddup (memopv2f64 addr:$src), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (bc_v4f32 (memopv2f64 addr:$src)), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (memopv2i64 addr:$src), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; def : Pat<(movddup (bc_v4i32 (memopv2i64 addr:$src)), (undef)), (MOVDDUPrm addr:$src)>, Requires<[HasSSE3]>; } // vector_shuffle v1, <1, 1, 3, 3> let AddedComplexity = 15 in def : Pat<(v4i32 (movshdup VR128:$src, (undef))), (MOVSHDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (movshdup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), (MOVSHDUPrm addr:$src)>, Requires<[HasSSE3]>; // vector_shuffle v1, <0, 0, 2, 2> let AddedComplexity = 15 in def : Pat<(v4i32 (movsldup VR128:$src, (undef))), (MOVSLDUPrr VR128:$src)>, Requires<[HasSSE3]>; let AddedComplexity = 20 in def : Pat<(v4i32 (movsldup (bc_v4i32 (memopv2i64 addr:$src)), (undef))), (MOVSLDUPrm addr:$src)>, Requires<[HasSSE3]>; //===---------------------------------------------------------------------===// // SSE3 - Arithmetic //===---------------------------------------------------------------------===// multiclass sse3_addsub { def rr : I<0xD0, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (Int RC:$src1, RC:$src2))]>; def rm : I<0xD0, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2), !if(Is2Addr, !strconcat(OpcodeStr, "\t{$src2, $dst|$dst, $src2}"), !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}")), [(set RC:$dst, (Int RC:$src1, (memop addr:$src2)))]>; } let Predicates = [HasAVX], ExeDomain = SSEPackedDouble in { defm VADDSUBPS : sse3_addsub, TB, XD, VEX_4V; defm VADDSUBPD : sse3_addsub, TB, OpSize, VEX_4V; defm VADDSUBPSY : sse3_addsub, TB, XD, VEX_4V; defm VADDSUBPDY : sse3_addsub, TB, OpSize, VEX_4V; } let Constraints = "$src1 = $dst", Predicates = [HasSSE3], ExeDomain = SSEPackedDouble in { defm ADDSUBPS : sse3_addsub, TB, XD; defm ADDSUBPD : sse3_addsub, TB, OpSize; } //===---------------------------------------------------------------------===// // SSE3 Instructions //===---------------------------------------------------------------------===// // Horizontal ops multiclass S3D_Int o, string OpcodeStr, ValueType vt, RegisterClass RC, X86MemOperand x86memop, Intrinsic IntId, bit Is2Addr = 1> { def rr : S3DI; def rm : S3DI; } multiclass S3_Int o, string OpcodeStr, ValueType vt, RegisterClass RC, X86MemOperand x86memop, Intrinsic IntId, bit Is2Addr = 1> { def rr : S3I; def rm : S3I; } let Predicates = [HasAVX] in { defm VHADDPS : S3D_Int<0x7C, "vhaddps", v4f32, VR128, f128mem, int_x86_sse3_hadd_ps, 0>, VEX_4V; defm VHADDPD : S3_Int <0x7C, "vhaddpd", v2f64, VR128, f128mem, int_x86_sse3_hadd_pd, 0>, VEX_4V; defm VHSUBPS : S3D_Int<0x7D, "vhsubps", v4f32, VR128, f128mem, int_x86_sse3_hsub_ps, 0>, VEX_4V; defm VHSUBPD : S3_Int <0x7D, "vhsubpd", v2f64, VR128, f128mem, int_x86_sse3_hsub_pd, 0>, VEX_4V; defm VHADDPSY : S3D_Int<0x7C, "vhaddps", v8f32, VR256, f256mem, int_x86_avx_hadd_ps_256, 0>, VEX_4V; defm VHADDPDY : S3_Int <0x7C, "vhaddpd", v4f64, VR256, f256mem, int_x86_avx_hadd_pd_256, 0>, VEX_4V; defm VHSUBPSY : S3D_Int<0x7D, "vhsubps", v8f32, VR256, f256mem, int_x86_avx_hsub_ps_256, 0>, VEX_4V; defm VHSUBPDY : S3_Int <0x7D, "vhsubpd", v4f64, VR256, f256mem, int_x86_avx_hsub_pd_256, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm HADDPS : S3D_Int<0x7C, "haddps", v4f32, VR128, f128mem, int_x86_sse3_hadd_ps>; defm HADDPD : S3_Int<0x7C, "haddpd", v2f64, VR128, f128mem, int_x86_sse3_hadd_pd>; defm HSUBPS : S3D_Int<0x7D, "hsubps", v4f32, VR128, f128mem, int_x86_sse3_hsub_ps>; defm HSUBPD : S3_Int<0x7D, "hsubpd", v2f64, VR128, f128mem, int_x86_sse3_hsub_pd>; } //===---------------------------------------------------------------------===// // SSSE3 - Packed Absolute Instructions //===---------------------------------------------------------------------===// /// SS3I_unop_rm_int - Simple SSSE3 unary op whose type can be v*{i8,i16,i32}. multiclass SS3I_unop_rm_int opc, string OpcodeStr, PatFrag mem_frag128, Intrinsic IntId128> { def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } let Predicates = [HasAVX] in { defm VPABSB : SS3I_unop_rm_int<0x1C, "vpabsb", memopv16i8, int_x86_ssse3_pabs_b_128>, VEX; defm VPABSW : SS3I_unop_rm_int<0x1D, "vpabsw", memopv8i16, int_x86_ssse3_pabs_w_128>, VEX; defm VPABSD : SS3I_unop_rm_int<0x1E, "vpabsd", memopv4i32, int_x86_ssse3_pabs_d_128>, VEX; } defm PABSB : SS3I_unop_rm_int<0x1C, "pabsb", memopv16i8, int_x86_ssse3_pabs_b_128>; defm PABSW : SS3I_unop_rm_int<0x1D, "pabsw", memopv8i16, int_x86_ssse3_pabs_w_128>; defm PABSD : SS3I_unop_rm_int<0x1E, "pabsd", memopv4i32, int_x86_ssse3_pabs_d_128>; //===---------------------------------------------------------------------===// // SSSE3 - Packed Binary Operator Instructions //===---------------------------------------------------------------------===// /// SS3I_binop_rm_int - Simple SSSE3 bin op whose type can be v*{i8,i16,i32}. multiclass SS3I_binop_rm_int opc, string OpcodeStr, PatFrag mem_frag128, Intrinsic IntId128, bit Is2Addr = 1> { let isCommutable = 1 in def rr128 : SS38I, OpSize; def rm128 : SS38I, OpSize; } let Predicates = [HasAVX] in { let isCommutable = 0 in { defm VPHADDW : SS3I_binop_rm_int<0x01, "vphaddw", memopv8i16, int_x86_ssse3_phadd_w_128, 0>, VEX_4V; defm VPHADDD : SS3I_binop_rm_int<0x02, "vphaddd", memopv4i32, int_x86_ssse3_phadd_d_128, 0>, VEX_4V; defm VPHADDSW : SS3I_binop_rm_int<0x03, "vphaddsw", memopv8i16, int_x86_ssse3_phadd_sw_128, 0>, VEX_4V; defm VPHSUBW : SS3I_binop_rm_int<0x05, "vphsubw", memopv8i16, int_x86_ssse3_phsub_w_128, 0>, VEX_4V; defm VPHSUBD : SS3I_binop_rm_int<0x06, "vphsubd", memopv4i32, int_x86_ssse3_phsub_d_128, 0>, VEX_4V; defm VPHSUBSW : SS3I_binop_rm_int<0x07, "vphsubsw", memopv8i16, int_x86_ssse3_phsub_sw_128, 0>, VEX_4V; defm VPMADDUBSW : SS3I_binop_rm_int<0x04, "vpmaddubsw", memopv16i8, int_x86_ssse3_pmadd_ub_sw_128, 0>, VEX_4V; defm VPSHUFB : SS3I_binop_rm_int<0x00, "vpshufb", memopv16i8, int_x86_ssse3_pshuf_b_128, 0>, VEX_4V; defm VPSIGNB : SS3I_binop_rm_int<0x08, "vpsignb", memopv16i8, int_x86_ssse3_psign_b_128, 0>, VEX_4V; defm VPSIGNW : SS3I_binop_rm_int<0x09, "vpsignw", memopv8i16, int_x86_ssse3_psign_w_128, 0>, VEX_4V; defm VPSIGND : SS3I_binop_rm_int<0x0A, "vpsignd", memopv4i32, int_x86_ssse3_psign_d_128, 0>, VEX_4V; } defm VPMULHRSW : SS3I_binop_rm_int<0x0B, "vpmulhrsw", memopv8i16, int_x86_ssse3_pmul_hr_sw_128, 0>, VEX_4V; } // None of these have i8 immediate fields. let ImmT = NoImm, Constraints = "$src1 = $dst" in { let isCommutable = 0 in { defm PHADDW : SS3I_binop_rm_int<0x01, "phaddw", memopv8i16, int_x86_ssse3_phadd_w_128>; defm PHADDD : SS3I_binop_rm_int<0x02, "phaddd", memopv4i32, int_x86_ssse3_phadd_d_128>; defm PHADDSW : SS3I_binop_rm_int<0x03, "phaddsw", memopv8i16, int_x86_ssse3_phadd_sw_128>; defm PHSUBW : SS3I_binop_rm_int<0x05, "phsubw", memopv8i16, int_x86_ssse3_phsub_w_128>; defm PHSUBD : SS3I_binop_rm_int<0x06, "phsubd", memopv4i32, int_x86_ssse3_phsub_d_128>; defm PHSUBSW : SS3I_binop_rm_int<0x07, "phsubsw", memopv8i16, int_x86_ssse3_phsub_sw_128>; defm PMADDUBSW : SS3I_binop_rm_int<0x04, "pmaddubsw", memopv16i8, int_x86_ssse3_pmadd_ub_sw_128>; defm PSHUFB : SS3I_binop_rm_int<0x00, "pshufb", memopv16i8, int_x86_ssse3_pshuf_b_128>; defm PSIGNB : SS3I_binop_rm_int<0x08, "psignb", memopv16i8, int_x86_ssse3_psign_b_128>; defm PSIGNW : SS3I_binop_rm_int<0x09, "psignw", memopv8i16, int_x86_ssse3_psign_w_128>; defm PSIGND : SS3I_binop_rm_int<0x0A, "psignd", memopv4i32, int_x86_ssse3_psign_d_128>; } defm PMULHRSW : SS3I_binop_rm_int<0x0B, "pmulhrsw", memopv8i16, int_x86_ssse3_pmul_hr_sw_128>; } def : Pat<(X86pshufb VR128:$src, VR128:$mask), (PSHUFBrr128 VR128:$src, VR128:$mask)>, Requires<[HasSSSE3]>; def : Pat<(X86pshufb VR128:$src, (bc_v16i8 (memopv2i64 addr:$mask))), (PSHUFBrm128 VR128:$src, addr:$mask)>, Requires<[HasSSSE3]>; def : Pat<(X86psignb VR128:$src1, VR128:$src2), (PSIGNBrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>; def : Pat<(X86psignw VR128:$src1, VR128:$src2), (PSIGNWrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>; def : Pat<(X86psignd VR128:$src1, VR128:$src2), (PSIGNDrr128 VR128:$src1, VR128:$src2)>, Requires<[HasSSSE3]>; //===---------------------------------------------------------------------===// // SSSE3 - Packed Align Instruction Patterns //===---------------------------------------------------------------------===// multiclass ssse3_palign { def R128rr : SS3AI<0x0F, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), !if(Is2Addr, !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), []>, OpSize; def R128rm : SS3AI<0x0F, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), !if(Is2Addr, !strconcat(asm, "\t{$src3, $src2, $dst|$dst, $src2, $src3}"), !strconcat(asm, "\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}")), []>, OpSize; } let Predicates = [HasAVX] in defm VPALIGN : ssse3_palign<"vpalignr", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PALIGN : ssse3_palign<"palignr">; let AddedComplexity = 5 in { def : Pat<(v4i32 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v4f32 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v8i16 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; def : Pat<(v16i8 (palign:$src3 VR128:$src1, VR128:$src2)), (PALIGNR128rr VR128:$src2, VR128:$src1, (SHUFFLE_get_palign_imm VR128:$src3))>, Requires<[HasSSSE3]>; } //===---------------------------------------------------------------------===// // SSSE3 Misc Instructions //===---------------------------------------------------------------------===// // Thread synchronization let usesCustomInserter = 1 in { def MONITOR : PseudoI<(outs), (ins i32mem:$src1, GR32:$src2, GR32:$src3), [(int_x86_sse3_monitor addr:$src1, GR32:$src2, GR32:$src3)]>; def MWAIT : PseudoI<(outs), (ins GR32:$src1, GR32:$src2), [(int_x86_sse3_mwait GR32:$src1, GR32:$src2)]>; } let Uses = [EAX, ECX, EDX] in def MONITORrrr : I<0x01, MRM_C8, (outs), (ins), "monitor", []>, TB, Requires<[HasSSE3]>; let Uses = [ECX, EAX] in def MWAITrr : I<0x01, MRM_C9, (outs), (ins), "mwait", []>, TB, Requires<[HasSSE3]>; def : InstAlias<"mwait %eax, %ecx", (MWAITrr)>, Requires<[In32BitMode]>; def : InstAlias<"mwait %rax, %rcx", (MWAITrr)>, Requires<[In64BitMode]>; def : InstAlias<"monitor %eax, %ecx, %edx", (MONITORrrr)>, Requires<[In32BitMode]>; def : InstAlias<"monitor %rax, %rcx, %rdx", (MONITORrrr)>, Requires<[In64BitMode]>; //===---------------------------------------------------------------------===// // Non-Instruction Patterns //===---------------------------------------------------------------------===// // extload f32 -> f64. This matches load+fextend because we have a hack in // the isel (PreprocessForFPConvert) that can introduce loads after dag // combine. // Since these loads aren't folded into the fextend, we have to match it // explicitly here. let Predicates = [HasSSE2] in def : Pat<(fextend (loadf32 addr:$src)), (CVTSS2SDrm addr:$src)>; // bit_convert let Predicates = [HasXMMInt] in { def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; } let Predicates = [HasAVX] in { def : Pat<(v4f64 (bitconvert (v8f32 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v4i64 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v4f64 (bitconvert (v32i8 VR256:$src))), (v4f64 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v4i64 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v4f64 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v8f32 (bitconvert (v32i8 VR256:$src))), (v8f32 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v8f32 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v4f64 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v4i64 (bitconvert (v32i8 VR256:$src))), (v4i64 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v4f64 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v4i64 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v8f32 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v32i8 (bitconvert (v8i32 VR256:$src))), (v32i8 VR256:$src)>; def : Pat<(v8i32 (bitconvert (v32i8 VR256:$src))), (v8i32 VR256:$src)>; } // Move scalar to XMM zero-extended // movd to XMM register zero-extends let AddedComplexity = 15 in { // Zeroing a VR128 then do a MOVS{S|D} to the lower bits. def : Pat<(v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))), (MOVSDrr (v2f64 (V_SET0PS)), FR64:$src)>; def : Pat<(v4f32 (X86vzmovl (v4f32 (scalar_to_vector FR32:$src)))), (MOVSSrr (v4f32 (V_SET0PS)), FR32:$src)>; def : Pat<(v4f32 (X86vzmovl (v4f32 VR128:$src))), (MOVSSrr (v4f32 (V_SET0PS)), (f32 (EXTRACT_SUBREG (v4f32 VR128:$src), sub_ss)))>; def : Pat<(v4i32 (X86vzmovl (v4i32 VR128:$src))), (MOVSSrr (v4i32 (V_SET0PI)), (EXTRACT_SUBREG (v4i32 VR128:$src), sub_ss))>; } // Splat v2f64 / v2i64 let AddedComplexity = 10 in { def : Pat<(splat_lo (v2f64 VR128:$src), (undef)), (UNPCKLPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(unpckh (v2f64 VR128:$src), (undef)), (UNPCKHPDrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(splat_lo (v2i64 VR128:$src), (undef)), (PUNPCKLQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(unpckh (v2i64 VR128:$src), (undef)), (PUNPCKHQDQrr VR128:$src, VR128:$src)>, Requires<[HasSSE2]>; } // Special unary SHUFPSrri case. def : Pat<(v4f32 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPSrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>; let AddedComplexity = 5 in def : Pat<(v4f32 (pshufd:$src2 VR128:$src1, (undef))), (PSHUFDri VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[HasSSE2]>; // Special unary SHUFPDrri case. def : Pat<(v2i64 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPDrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Special unary SHUFPDrri case. def : Pat<(v2f64 (pshufd:$src3 VR128:$src1, (undef))), (SHUFPDrri VR128:$src1, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Unary v4f32 shuffle with PSHUF* in order to fold a load. def : Pat<(pshufd:$src2 (bc_v4i32 (memopv4f32 addr:$src1)), (undef)), (PSHUFDmi addr:$src1, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[HasSSE2]>; // Special binary v4i32 shuffle cases with SHUFPS. def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (v4i32 VR128:$src2))), (SHUFPSrri VR128:$src1, VR128:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; def : Pat<(v4i32 (shufp:$src3 VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))), (SHUFPSrmi VR128:$src1, addr:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // Special binary v2i64 shuffle cases using SHUFPDrri. def : Pat<(v2i64 (shufp:$src3 VR128:$src1, VR128:$src2)), (SHUFPDrri VR128:$src1, VR128:$src2, (SHUFFLE_get_shuf_imm VR128:$src3))>, Requires<[HasSSE2]>; // vector_shuffle v1, , <0, 0, 1, 1, ...> let AddedComplexity = 15 in { def : Pat<(v4i32 (unpckl_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; def : Pat<(v4f32 (unpckl_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; } let AddedComplexity = 10 in { def : Pat<(v4f32 (unpckl_undef VR128:$src, (undef))), (UNPCKLPSrr VR128:$src, VR128:$src)>; def : Pat<(v16i8 (unpckl_undef VR128:$src, (undef))), (PUNPCKLBWrr VR128:$src, VR128:$src)>; def : Pat<(v8i16 (unpckl_undef VR128:$src, (undef))), (PUNPCKLWDrr VR128:$src, VR128:$src)>; def : Pat<(v4i32 (unpckl_undef VR128:$src, (undef))), (PUNPCKLDQrr VR128:$src, VR128:$src)>; } // vector_shuffle v1, , <2, 2, 3, 3, ...> let AddedComplexity = 15 in { def : Pat<(v4i32 (unpckh_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; def : Pat<(v4f32 (unpckh_undef:$src2 VR128:$src, (undef))), (PSHUFDri VR128:$src, (SHUFFLE_get_shuf_imm VR128:$src2))>, Requires<[OptForSpeed, HasSSE2]>; } let AddedComplexity = 10 in { def : Pat<(v4f32 (unpckh_undef VR128:$src, (undef))), (UNPCKHPSrr VR128:$src, VR128:$src)>; def : Pat<(v16i8 (unpckh_undef VR128:$src, (undef))), (PUNPCKHBWrr VR128:$src, VR128:$src)>; def : Pat<(v8i16 (unpckh_undef VR128:$src, (undef))), (PUNPCKHWDrr VR128:$src, VR128:$src)>; def : Pat<(v4i32 (unpckh_undef VR128:$src, (undef))), (PUNPCKHDQrr VR128:$src, VR128:$src)>; } let AddedComplexity = 20 in { // vector_shuffle v1, v2 <0, 1, 4, 5> using MOVLHPS def : Pat<(v4i32 (movlhps VR128:$src1, VR128:$src2)), (MOVLHPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, v2 <6, 7, 2, 3> using MOVHLPS def : Pat<(v4i32 (movhlps VR128:$src1, VR128:$src2)), (MOVHLPSrr VR128:$src1, VR128:$src2)>; // vector_shuffle v1, undef <2, ?, ?, ?> using MOVHLPS def : Pat<(v4f32 (movhlps_undef VR128:$src1, (undef))), (MOVHLPSrr VR128:$src1, VR128:$src1)>; def : Pat<(v4i32 (movhlps_undef VR128:$src1, (undef))), (MOVHLPSrr VR128:$src1, VR128:$src1)>; } let AddedComplexity = 20 in { // vector_shuffle v1, (load v2) <4, 5, 2, 3> using MOVLPS def : Pat<(v4f32 (movlp VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (movlp VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (movlp VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (movlp VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; } // (store (vector_shuffle (load addr), v2, <4, 5, 2, 3>), addr) using MOVLPS def : Pat<(store (v4f32 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2f64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>; def : Pat<(store (v4i32 (movlp (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2i64 (movlp (load addr:$src1), VR128:$src2)), addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>; let AddedComplexity = 15 in { // Setting the lowest element in the vector. def : Pat<(v4i32 (movl VR128:$src1, VR128:$src2)), (MOVSSrr (v4i32 VR128:$src1), (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_ss))>; def : Pat<(v2i64 (movl VR128:$src1, VR128:$src2)), (MOVSDrr (v2i64 VR128:$src1), (EXTRACT_SUBREG (v2i64 VR128:$src2), sub_sd))>; // vector_shuffle v1, v2 <4, 5, 2, 3> using movsd def : Pat<(v4f32 (movlp VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>, Requires<[HasSSE2]>; def : Pat<(v4i32 (movlp VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG VR128:$src2, sub_sd))>, Requires<[HasSSE2]>; } // vector_shuffle v1, v2 <4, 5, 2, 3> using SHUFPSrri (we prefer movsd, but // fall back to this for SSE1) def : Pat<(v4f32 (movlp:$src3 VR128:$src1, (v4f32 VR128:$src2))), (SHUFPSrri VR128:$src2, VR128:$src1, (SHUFFLE_get_shuf_imm VR128:$src3))>; // Set lowest element and zero upper elements. def : Pat<(v2f64 (X86vzmovl (v2f64 VR128:$src))), (MOVZPQILo2PQIrr VR128:$src)>, Requires<[HasSSE2]>; // vector -> vector casts def : Pat<(v4f32 (sint_to_fp (v4i32 VR128:$src))), (Int_CVTDQ2PSrr VR128:$src)>, Requires<[HasSSE2]>; def : Pat<(v4i32 (fp_to_sint (v4f32 VR128:$src))), (CVTTPS2DQrr VR128:$src)>, Requires<[HasSSE2]>; // Use movaps / movups for SSE integer load / store (one byte shorter). // The instructions selected below are then converted to MOVDQA/MOVDQU // during the SSE domain pass. let Predicates = [HasSSE1] in { def : Pat<(alignedloadv4i32 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(loadv4i32 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(alignedloadv2i64 addr:$src), (MOVAPSrm addr:$src)>; def : Pat<(loadv2i64 addr:$src), (MOVUPSrm addr:$src)>; def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (MOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v2i64 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (MOVUPSmr addr:$dst, VR128:$src)>; } // Use vmovaps/vmovups for AVX integer load/store. let Predicates = [HasAVX] in { // 128-bit load/store def : Pat<(alignedloadv4i32 addr:$src), (VMOVAPSrm addr:$src)>; def : Pat<(loadv4i32 addr:$src), (VMOVUPSrm addr:$src)>; def : Pat<(alignedloadv2i64 addr:$src), (VMOVAPSrm addr:$src)>; def : Pat<(loadv2i64 addr:$src), (VMOVUPSrm addr:$src)>; def : Pat<(alignedstore (v2i64 VR128:$src), addr:$dst), (VMOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v4i32 VR128:$src), addr:$dst), (VMOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v8i16 VR128:$src), addr:$dst), (VMOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(alignedstore (v16i8 VR128:$src), addr:$dst), (VMOVAPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v2i64 VR128:$src), addr:$dst), (VMOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v4i32 VR128:$src), addr:$dst), (VMOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v8i16 VR128:$src), addr:$dst), (VMOVUPSmr addr:$dst, VR128:$src)>; def : Pat<(store (v16i8 VR128:$src), addr:$dst), (VMOVUPSmr addr:$dst, VR128:$src)>; // 256-bit load/store def : Pat<(alignedloadv4i64 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(loadv4i64 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(alignedloadv8i32 addr:$src), (VMOVAPSYrm addr:$src)>; def : Pat<(loadv8i32 addr:$src), (VMOVUPSYrm addr:$src)>; def : Pat<(alignedstore (v4i64 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(alignedstore (v8i32 VR256:$src), addr:$dst), (VMOVAPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v4i64 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; def : Pat<(store (v8i32 VR256:$src), addr:$dst), (VMOVUPSYmr addr:$dst, VR256:$src)>; } //===----------------------------------------------------------------------===// // SSE4.1 - Packed Move with Sign/Zero Extend //===----------------------------------------------------------------------===// multiclass SS41I_binop_rm_int8 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } let Predicates = [HasAVX] in { defm VPMOVSXBW : SS41I_binop_rm_int8<0x20, "vpmovsxbw", int_x86_sse41_pmovsxbw>, VEX; defm VPMOVSXWD : SS41I_binop_rm_int8<0x23, "vpmovsxwd", int_x86_sse41_pmovsxwd>, VEX; defm VPMOVSXDQ : SS41I_binop_rm_int8<0x25, "vpmovsxdq", int_x86_sse41_pmovsxdq>, VEX; defm VPMOVZXBW : SS41I_binop_rm_int8<0x30, "vpmovzxbw", int_x86_sse41_pmovzxbw>, VEX; defm VPMOVZXWD : SS41I_binop_rm_int8<0x33, "vpmovzxwd", int_x86_sse41_pmovzxwd>, VEX; defm VPMOVZXDQ : SS41I_binop_rm_int8<0x35, "vpmovzxdq", int_x86_sse41_pmovzxdq>, VEX; } defm PMOVSXBW : SS41I_binop_rm_int8<0x20, "pmovsxbw", int_x86_sse41_pmovsxbw>; defm PMOVSXWD : SS41I_binop_rm_int8<0x23, "pmovsxwd", int_x86_sse41_pmovsxwd>; defm PMOVSXDQ : SS41I_binop_rm_int8<0x25, "pmovsxdq", int_x86_sse41_pmovsxdq>; defm PMOVZXBW : SS41I_binop_rm_int8<0x30, "pmovzxbw", int_x86_sse41_pmovzxbw>; defm PMOVZXWD : SS41I_binop_rm_int8<0x33, "pmovzxwd", int_x86_sse41_pmovzxwd>; defm PMOVZXDQ : SS41I_binop_rm_int8<0x35, "pmovzxdq", int_x86_sse41_pmovzxdq>; // Common patterns involving scalar load. def : Pat<(int_x86_sse41_pmovsxbw (vzmovl_v2i64 addr:$src)), (PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxbw (vzload_v2i64 addr:$src)), (PMOVSXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwd (vzmovl_v2i64 addr:$src)), (PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwd (vzload_v2i64 addr:$src)), (PMOVSXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxdq (vzmovl_v2i64 addr:$src)), (PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxdq (vzload_v2i64 addr:$src)), (PMOVSXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbw (vzmovl_v2i64 addr:$src)), (PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbw (vzload_v2i64 addr:$src)), (PMOVZXBWrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwd (vzmovl_v2i64 addr:$src)), (PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwd (vzload_v2i64 addr:$src)), (PMOVZXWDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxdq (vzmovl_v2i64 addr:$src)), (PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxdq (vzload_v2i64 addr:$src)), (PMOVZXDQrm addr:$src)>, Requires<[HasSSE41]>; multiclass SS41I_binop_rm_int4 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; def rm : SS48I, OpSize; } let Predicates = [HasAVX] in { defm VPMOVSXBD : SS41I_binop_rm_int4<0x21, "vpmovsxbd", int_x86_sse41_pmovsxbd>, VEX; defm VPMOVSXWQ : SS41I_binop_rm_int4<0x24, "vpmovsxwq", int_x86_sse41_pmovsxwq>, VEX; defm VPMOVZXBD : SS41I_binop_rm_int4<0x31, "vpmovzxbd", int_x86_sse41_pmovzxbd>, VEX; defm VPMOVZXWQ : SS41I_binop_rm_int4<0x34, "vpmovzxwq", int_x86_sse41_pmovzxwq>, VEX; } defm PMOVSXBD : SS41I_binop_rm_int4<0x21, "pmovsxbd", int_x86_sse41_pmovsxbd>; defm PMOVSXWQ : SS41I_binop_rm_int4<0x24, "pmovsxwq", int_x86_sse41_pmovsxwq>; defm PMOVZXBD : SS41I_binop_rm_int4<0x31, "pmovzxbd", int_x86_sse41_pmovzxbd>; defm PMOVZXWQ : SS41I_binop_rm_int4<0x34, "pmovzxwq", int_x86_sse41_pmovzxwq>; // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbd (vzmovl_v4i32 addr:$src)), (PMOVSXBDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovsxwq (vzmovl_v4i32 addr:$src)), (PMOVSXWQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbd (vzmovl_v4i32 addr:$src)), (PMOVZXBDrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxwq (vzmovl_v4i32 addr:$src)), (PMOVZXWQrm addr:$src)>, Requires<[HasSSE41]>; multiclass SS41I_binop_rm_int2 opc, string OpcodeStr, Intrinsic IntId> { def rr : SS48I, OpSize; // Expecting a i16 load any extended to i32 value. def rm : SS48I, OpSize; } let Predicates = [HasAVX] in { defm VPMOVSXBQ : SS41I_binop_rm_int2<0x22, "vpmovsxbq", int_x86_sse41_pmovsxbq>, VEX; defm VPMOVZXBQ : SS41I_binop_rm_int2<0x32, "vpmovzxbq", int_x86_sse41_pmovzxbq>, VEX; } defm PMOVSXBQ : SS41I_binop_rm_int2<0x22, "pmovsxbq", int_x86_sse41_pmovsxbq>; defm PMOVZXBQ : SS41I_binop_rm_int2<0x32, "pmovzxbq", int_x86_sse41_pmovzxbq>; // Common patterns involving scalar load def : Pat<(int_x86_sse41_pmovsxbq (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVSXBQrm addr:$src)>, Requires<[HasSSE41]>; def : Pat<(int_x86_sse41_pmovzxbq (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 addr:$src))))))), (PMOVZXBQrm addr:$src)>, Requires<[HasSSE41]>; //===----------------------------------------------------------------------===// // SSE4.1 - Extract Instructions //===----------------------------------------------------------------------===// /// SS41I_binop_ext8 - SSE 4.1 extract 8 bits to 32 bit reg or 8 bit mem multiclass SS41I_extract8 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i8 (trunc (X86pextrb (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } let Predicates = [HasAVX] in { defm VPEXTRB : SS41I_extract8<0x14, "vpextrb">, VEX; def VPEXTRBrr64 : SS4AIi8<0x14, MRMDestReg, (outs GR64:$dst), (ins VR128:$src1, i32i8imm:$src2), "vpextrb\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, OpSize, VEX; } defm PEXTRB : SS41I_extract8<0x14, "pextrb">; /// SS41I_extract16 - SSE 4.1 extract 16 bits to memory destination multiclass SS41I_extract16 opc, string OpcodeStr> { def mr : SS4AIi8, OpSize; // FIXME: // There's an AssertZext in the way of writing the store pattern // (store (i16 (trunc (X86pextrw (v16i8 VR128:$src1), imm:$src2))), addr:$dst) } let Predicates = [HasAVX] in defm VPEXTRW : SS41I_extract16<0x15, "vpextrw">, VEX; defm PEXTRW : SS41I_extract16<0x15, "pextrw">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; } let Predicates = [HasAVX] in defm VPEXTRD : SS41I_extract32<0x16, "vpextrd">, VEX; defm PEXTRD : SS41I_extract32<0x16, "pextrd">; /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination multiclass SS41I_extract64 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize, REX_W; def mr : SS4AIi8, OpSize, REX_W; } let Predicates = [HasAVX] in defm VPEXTRQ : SS41I_extract64<0x16, "vpextrq">, VEX, VEX_W; defm PEXTRQ : SS41I_extract64<0x16, "pextrq">; /// SS41I_extractf32 - SSE 4.1 extract 32 bits fp value to int reg or memory /// destination multiclass SS41I_extractf32 opc, string OpcodeStr> { def rr : SS4AIi8, OpSize; def mr : SS4AIi8, OpSize; } let Predicates = [HasAVX] in { defm VEXTRACTPS : SS41I_extractf32<0x17, "vextractps">, VEX; def VEXTRACTPSrr64 : SS4AIi8<0x17, MRMDestReg, (outs GR64:$dst), (ins VR128:$src1, i32i8imm:$src2), "vextractps \t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, OpSize, VEX; } defm EXTRACTPS : SS41I_extractf32<0x17, "extractps">; // Also match an EXTRACTPS store when the store is done as f32 instead of i32. def : Pat<(store (f32 (bitconvert (extractelt (bc_v4i32 (v4f32 VR128:$src1)), imm:$src2))), addr:$dst), (EXTRACTPSmr addr:$dst, VR128:$src1, imm:$src2)>, Requires<[HasSSE41]>; //===----------------------------------------------------------------------===// // SSE4.1 - Insert Instructions //===----------------------------------------------------------------------===// multiclass SS41I_insert8 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } let Predicates = [HasAVX] in defm VPINSRB : SS41I_insert8<0x20, "vpinsrb", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PINSRB : SS41I_insert8<0x20, "pinsrb">; multiclass SS41I_insert32 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } let Predicates = [HasAVX] in defm VPINSRD : SS41I_insert32<0x22, "vpinsrd", 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PINSRD : SS41I_insert32<0x22, "pinsrd">; multiclass SS41I_insert64 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } let Predicates = [HasAVX] in defm VPINSRQ : SS41I_insert64<0x22, "vpinsrq", 0>, VEX_4V, VEX_W; let Constraints = "$src1 = $dst" in defm PINSRQ : SS41I_insert64<0x22, "pinsrq">, REX_W; // insertps has a few different modes, there's the first two here below which // are optimized inserts that won't zero arbitrary elements in the destination // vector. The next one matches the intrinsic and could zero arbitrary elements // in the target vector. multiclass SS41I_insertf32 opc, string asm, bit Is2Addr = 1> { def rr : SS4AIi8, OpSize; def rm : SS4AIi8, OpSize; } let Constraints = "$src1 = $dst" in defm INSERTPS : SS41I_insertf32<0x21, "insertps">; let Predicates = [HasAVX] in defm VINSERTPS : SS41I_insertf32<0x21, "vinsertps", 0>, VEX_4V; def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3), (VINSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>, Requires<[HasAVX]>; def : Pat<(int_x86_sse41_insertps VR128:$src1, VR128:$src2, imm:$src3), (INSERTPSrr VR128:$src1, VR128:$src2, imm:$src3)>, Requires<[HasSSE41]>; //===----------------------------------------------------------------------===// // SSE4.1 - Round Instructions //===----------------------------------------------------------------------===// multiclass sse41_fp_unop_rm opcps, bits<8> opcpd, string OpcodeStr, X86MemOperand x86memop, RegisterClass RC, PatFrag mem_frag32, PatFrag mem_frag64, Intrinsic V4F32Int, Intrinsic V2F64Int> { // Intrinsic operation, reg. // Vector intrinsic operation, reg def PSr : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PSm : Ii8, TA, OpSize, Requires<[HasSSE41]>; // Vector intrinsic operation, reg def PDr : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PDm : SS4AIi8, OpSize; } multiclass sse41_fp_unop_rm_avx_p opcps, bits<8> opcpd, RegisterClass RC, X86MemOperand x86memop, string OpcodeStr> { // Intrinsic operation, reg. // Vector intrinsic operation, reg def PSr_AVX : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PSm_AVX : Ii8, TA, OpSize, Requires<[HasSSE41]>; // Vector intrinsic operation, reg def PDr_AVX : SS4AIi8, OpSize; // Vector intrinsic operation, mem def PDm_AVX : SS4AIi8, OpSize; } multiclass sse41_fp_binop_rm opcss, bits<8> opcsd, string OpcodeStr, Intrinsic F32Int, Intrinsic F64Int, bit Is2Addr = 1> { // Intrinsic operation, reg. def SSr : SS4AIi8, OpSize; // Intrinsic operation, mem. def SSm : SS4AIi8, OpSize; // Intrinsic operation, reg. def SDr : SS4AIi8, OpSize; // Intrinsic operation, mem. def SDm : SS4AIi8, OpSize; } multiclass sse41_fp_binop_rm_avx_s opcss, bits<8> opcsd, string OpcodeStr> { // Intrinsic operation, reg. def SSr_AVX : SS4AIi8, OpSize; // Intrinsic operation, mem. def SSm_AVX : SS4AIi8, OpSize; // Intrinsic operation, reg. def SDr_AVX : SS4AIi8, OpSize; // Intrinsic operation, mem. def SDm_AVX : SS4AIi8, OpSize; } // FP round - roundss, roundps, roundsd, roundpd let Predicates = [HasAVX] in { // Intrinsic form defm VROUND : sse41_fp_unop_rm<0x08, 0x09, "vround", f128mem, VR128, memopv4f32, memopv2f64, int_x86_sse41_round_ps, int_x86_sse41_round_pd>, VEX; defm VROUNDY : sse41_fp_unop_rm<0x08, 0x09, "vround", f256mem, VR256, memopv8f32, memopv4f64, int_x86_avx_round_ps_256, int_x86_avx_round_pd_256>, VEX; defm VROUND : sse41_fp_binop_rm<0x0A, 0x0B, "vround", int_x86_sse41_round_ss, int_x86_sse41_round_sd, 0>, VEX_4V; // Instructions for the assembler defm VROUND : sse41_fp_unop_rm_avx_p<0x08, 0x09, VR128, f128mem, "vround">, VEX; defm VROUNDY : sse41_fp_unop_rm_avx_p<0x08, 0x09, VR256, f256mem, "vround">, VEX; defm VROUND : sse41_fp_binop_rm_avx_s<0x0A, 0x0B, "vround">, VEX_4V; } defm ROUND : sse41_fp_unop_rm<0x08, 0x09, "round", f128mem, VR128, memopv4f32, memopv2f64, int_x86_sse41_round_ps, int_x86_sse41_round_pd>; let Constraints = "$src1 = $dst" in defm ROUND : sse41_fp_binop_rm<0x0A, 0x0B, "round", int_x86_sse41_round_ss, int_x86_sse41_round_sd>; //===----------------------------------------------------------------------===// // SSE4.1 - Packed Bit Test //===----------------------------------------------------------------------===// // ptest instruction we'll lower to this in X86ISelLowering primarily from // the intel intrinsic that corresponds to this. let Defs = [EFLAGS], Predicates = [HasAVX] in { def VPTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (v4f32 VR128:$src2)))]>, OpSize, VEX; def VPTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS,(X86ptest VR128:$src1, (memopv4f32 addr:$src2)))]>, OpSize, VEX; def VPTESTYrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR256:$src1, VR256:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR256:$src1, (v4i64 VR256:$src2)))]>, OpSize, VEX; def VPTESTYrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR256:$src1, i256mem:$src2), "vptest\t{$src2, $src1|$src1, $src2}", [(set EFLAGS,(X86ptest VR256:$src1, (memopv4i64 addr:$src2)))]>, OpSize, VEX; } let Defs = [EFLAGS] in { def PTESTrr : SS48I<0x17, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2), "ptest \t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (v4f32 VR128:$src2)))]>, OpSize; def PTESTrm : SS48I<0x17, MRMSrcMem, (outs), (ins VR128:$src1, f128mem:$src2), "ptest \t{$src2, $src1|$src1, $src2}", [(set EFLAGS, (X86ptest VR128:$src1, (memopv4f32 addr:$src2)))]>, OpSize; } // The bit test instructions below are AVX only multiclass avx_bittest opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, PatFrag mem_frag, ValueType vt> { def rr : SS48I, OpSize, VEX; def rm : SS48I, OpSize, VEX; } let Defs = [EFLAGS], Predicates = [HasAVX] in { defm VTESTPS : avx_bittest<0x0E, "vtestps", VR128, f128mem, memopv4f32, v4f32>; defm VTESTPSY : avx_bittest<0x0E, "vtestps", VR256, f256mem, memopv8f32, v8f32>; defm VTESTPD : avx_bittest<0x0F, "vtestpd", VR128, f128mem, memopv2f64, v2f64>; defm VTESTPDY : avx_bittest<0x0F, "vtestpd", VR256, f256mem, memopv4f64, v4f64>; } //===----------------------------------------------------------------------===// // SSE4.1 - Misc Instructions //===----------------------------------------------------------------------===// def POPCNT16rr : I<0xB8, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctpop GR16:$src))]>, OpSize, XS; def POPCNT16rm : I<0xB8, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src), "popcnt{w}\t{$src, $dst|$dst, $src}", [(set GR16:$dst, (ctpop (loadi16 addr:$src)))]>, OpSize, XS; def POPCNT32rr : I<0xB8, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctpop GR32:$src))]>, XS; def POPCNT32rm : I<0xB8, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src), "popcnt{l}\t{$src, $dst|$dst, $src}", [(set GR32:$dst, (ctpop (loadi32 addr:$src)))]>, XS; def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src), "popcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctpop GR64:$src))]>, XS; def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), "popcnt{q}\t{$src, $dst|$dst, $src}", [(set GR64:$dst, (ctpop (loadi64 addr:$src)))]>, XS; // SS41I_unop_rm_int_v16 - SSE 4.1 unary operator whose type is v8i16. multiclass SS41I_unop_rm_int_v16 opc, string OpcodeStr, Intrinsic IntId128> { def rr128 : SS48I, OpSize; def rm128 : SS48I, OpSize; } let Predicates = [HasAVX] in defm VPHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "vphminposuw", int_x86_sse41_phminposuw>, VEX; defm PHMINPOSUW : SS41I_unop_rm_int_v16 <0x41, "phminposuw", int_x86_sse41_phminposuw>; /// SS41I_binop_rm_int - Simple SSE 4.1 binary operator multiclass SS41I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS48I, OpSize; def rm : SS48I, OpSize; } let Predicates = [HasAVX] in { let isCommutable = 0 in defm VPACKUSDW : SS41I_binop_rm_int<0x2B, "vpackusdw", int_x86_sse41_packusdw, 0>, VEX_4V; defm VPCMPEQQ : SS41I_binop_rm_int<0x29, "vpcmpeqq", int_x86_sse41_pcmpeqq, 0>, VEX_4V; defm VPMINSB : SS41I_binop_rm_int<0x38, "vpminsb", int_x86_sse41_pminsb, 0>, VEX_4V; defm VPMINSD : SS41I_binop_rm_int<0x39, "vpminsd", int_x86_sse41_pminsd, 0>, VEX_4V; defm VPMINUD : SS41I_binop_rm_int<0x3B, "vpminud", int_x86_sse41_pminud, 0>, VEX_4V; defm VPMINUW : SS41I_binop_rm_int<0x3A, "vpminuw", int_x86_sse41_pminuw, 0>, VEX_4V; defm VPMAXSB : SS41I_binop_rm_int<0x3C, "vpmaxsb", int_x86_sse41_pmaxsb, 0>, VEX_4V; defm VPMAXSD : SS41I_binop_rm_int<0x3D, "vpmaxsd", int_x86_sse41_pmaxsd, 0>, VEX_4V; defm VPMAXUD : SS41I_binop_rm_int<0x3F, "vpmaxud", int_x86_sse41_pmaxud, 0>, VEX_4V; defm VPMAXUW : SS41I_binop_rm_int<0x3E, "vpmaxuw", int_x86_sse41_pmaxuw, 0>, VEX_4V; defm VPMULDQ : SS41I_binop_rm_int<0x28, "vpmuldq", int_x86_sse41_pmuldq, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { let isCommutable = 0 in defm PACKUSDW : SS41I_binop_rm_int<0x2B, "packusdw", int_x86_sse41_packusdw>; defm PCMPEQQ : SS41I_binop_rm_int<0x29, "pcmpeqq", int_x86_sse41_pcmpeqq>; defm PMINSB : SS41I_binop_rm_int<0x38, "pminsb", int_x86_sse41_pminsb>; defm PMINSD : SS41I_binop_rm_int<0x39, "pminsd", int_x86_sse41_pminsd>; defm PMINUD : SS41I_binop_rm_int<0x3B, "pminud", int_x86_sse41_pminud>; defm PMINUW : SS41I_binop_rm_int<0x3A, "pminuw", int_x86_sse41_pminuw>; defm PMAXSB : SS41I_binop_rm_int<0x3C, "pmaxsb", int_x86_sse41_pmaxsb>; defm PMAXSD : SS41I_binop_rm_int<0x3D, "pmaxsd", int_x86_sse41_pmaxsd>; defm PMAXUD : SS41I_binop_rm_int<0x3F, "pmaxud", int_x86_sse41_pmaxud>; defm PMAXUW : SS41I_binop_rm_int<0x3E, "pmaxuw", int_x86_sse41_pmaxuw>; defm PMULDQ : SS41I_binop_rm_int<0x28, "pmuldq", int_x86_sse41_pmuldq>; } def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, VR128:$src2)), (PCMPEQQrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86pcmpeqq VR128:$src1, (memop addr:$src2))), (PCMPEQQrm VR128:$src1, addr:$src2)>; /// SS48I_binop_rm - Simple SSE41 binary operator. multiclass SS48I_binop_rm opc, string OpcodeStr, SDNode OpNode, ValueType OpVT, bit Is2Addr = 1> { let isCommutable = 1 in def rr : SS48I, OpSize; def rm : SS48I, OpSize; } let Predicates = [HasAVX] in defm VPMULLD : SS48I_binop_rm<0x40, "vpmulld", mul, v4i32, 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PMULLD : SS48I_binop_rm<0x40, "pmulld", mul, v4i32>; /// SS41I_binop_rmi_int - SSE 4.1 binary operator with 8-bit immediate multiclass SS41I_binop_rmi_int opc, string OpcodeStr, Intrinsic IntId, RegisterClass RC, PatFrag memop_frag, X86MemOperand x86memop, bit Is2Addr = 1> { let isCommutable = 1 in def rri : SS4AIi8, OpSize; def rmi : SS4AIi8, OpSize; } let Predicates = [HasAVX] in { let isCommutable = 0 in { defm VBLENDPS : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_sse41_blendps, VR128, memopv16i8, i128mem, 0>, VEX_4V; defm VBLENDPD : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_sse41_blendpd, VR128, memopv16i8, i128mem, 0>, VEX_4V; defm VBLENDPSY : SS41I_binop_rmi_int<0x0C, "vblendps", int_x86_avx_blend_ps_256, VR256, memopv32i8, i256mem, 0>, VEX_4V; defm VBLENDPDY : SS41I_binop_rmi_int<0x0D, "vblendpd", int_x86_avx_blend_pd_256, VR256, memopv32i8, i256mem, 0>, VEX_4V; defm VPBLENDW : SS41I_binop_rmi_int<0x0E, "vpblendw", int_x86_sse41_pblendw, VR128, memopv16i8, i128mem, 0>, VEX_4V; defm VMPSADBW : SS41I_binop_rmi_int<0x42, "vmpsadbw", int_x86_sse41_mpsadbw, VR128, memopv16i8, i128mem, 0>, VEX_4V; } defm VDPPS : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_sse41_dpps, VR128, memopv16i8, i128mem, 0>, VEX_4V; defm VDPPD : SS41I_binop_rmi_int<0x41, "vdppd", int_x86_sse41_dppd, VR128, memopv16i8, i128mem, 0>, VEX_4V; defm VDPPSY : SS41I_binop_rmi_int<0x40, "vdpps", int_x86_avx_dp_ps_256, VR256, memopv32i8, i256mem, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { let isCommutable = 0 in { defm BLENDPS : SS41I_binop_rmi_int<0x0C, "blendps", int_x86_sse41_blendps, VR128, memopv16i8, i128mem>; defm BLENDPD : SS41I_binop_rmi_int<0x0D, "blendpd", int_x86_sse41_blendpd, VR128, memopv16i8, i128mem>; defm PBLENDW : SS41I_binop_rmi_int<0x0E, "pblendw", int_x86_sse41_pblendw, VR128, memopv16i8, i128mem>; defm MPSADBW : SS41I_binop_rmi_int<0x42, "mpsadbw", int_x86_sse41_mpsadbw, VR128, memopv16i8, i128mem>; } defm DPPS : SS41I_binop_rmi_int<0x40, "dpps", int_x86_sse41_dpps, VR128, memopv16i8, i128mem>; defm DPPD : SS41I_binop_rmi_int<0x41, "dppd", int_x86_sse41_dppd, VR128, memopv16i8, i128mem>; } /// SS41I_quaternary_int_avx - AVX SSE 4.1 with 4 operators let Predicates = [HasAVX] in { multiclass SS41I_quaternary_int_avx opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, PatFrag mem_frag, Intrinsic IntId> { def rr : I, OpSize, TA, VEX_4V, VEX_I8IMM; def rm : I, OpSize, TA, VEX_4V, VEX_I8IMM; } } defm VBLENDVPD : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR128, i128mem, memopv16i8, int_x86_sse41_blendvpd>; defm VBLENDVPS : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR128, i128mem, memopv16i8, int_x86_sse41_blendvps>; defm VPBLENDVB : SS41I_quaternary_int_avx<0x4C, "vpblendvb", VR128, i128mem, memopv16i8, int_x86_sse41_pblendvb>; defm VBLENDVPDY : SS41I_quaternary_int_avx<0x4B, "vblendvpd", VR256, i256mem, memopv32i8, int_x86_avx_blendv_pd_256>; defm VBLENDVPSY : SS41I_quaternary_int_avx<0x4A, "vblendvps", VR256, i256mem, memopv32i8, int_x86_avx_blendv_ps_256>; /// SS41I_ternary_int - SSE 4.1 ternary operator let Uses = [XMM0], Constraints = "$src1 = $dst" in { multiclass SS41I_ternary_int opc, string OpcodeStr, Intrinsic IntId> { def rr0 : SS48I, OpSize; def rm0 : SS48I, OpSize; } } defm BLENDVPD : SS41I_ternary_int<0x15, "blendvpd", int_x86_sse41_blendvpd>; defm BLENDVPS : SS41I_ternary_int<0x14, "blendvps", int_x86_sse41_blendvps>; defm PBLENDVB : SS41I_ternary_int<0x10, "pblendvb", int_x86_sse41_pblendvb>; def : Pat<(X86pblendv VR128:$src1, VR128:$src2, XMM0), (PBLENDVBrr0 VR128:$src1, VR128:$src2)>; let Predicates = [HasAVX] in def VMOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "vmovntdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, OpSize, VEX; def MOVNTDQArm : SS48I<0x2A, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src), "movntdqa\t{$src, $dst|$dst, $src}", [(set VR128:$dst, (int_x86_sse41_movntdqa addr:$src))]>, OpSize; //===----------------------------------------------------------------------===// // SSE4.2 - Compare Instructions //===----------------------------------------------------------------------===// /// SS42I_binop_rm_int - Simple SSE 4.2 binary operator multiclass SS42I_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Is2Addr = 1> { def rr : SS428I, OpSize; def rm : SS428I, OpSize; } let Predicates = [HasAVX] in defm VPCMPGTQ : SS42I_binop_rm_int<0x37, "vpcmpgtq", int_x86_sse42_pcmpgtq, 0>, VEX_4V; let Constraints = "$src1 = $dst" in defm PCMPGTQ : SS42I_binop_rm_int<0x37, "pcmpgtq", int_x86_sse42_pcmpgtq>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, VR128:$src2)), (PCMPGTQrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86pcmpgtq VR128:$src1, (memop addr:$src2))), (PCMPGTQrm VR128:$src1, addr:$src2)>; //===----------------------------------------------------------------------===// // SSE4.2 - String/text Processing Instructions //===----------------------------------------------------------------------===// // Packed Compare Implicit Length Strings, Return Mask multiclass pseudo_pcmpistrm { def REG : PseudoI<(outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, VR128:$src2, imm:$src3))]>; def MEM : PseudoI<(outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), [(set VR128:$dst, (int_x86_sse42_pcmpistrm128 VR128:$src1, (load addr:$src2), imm:$src3))]>; } let Defs = [EFLAGS], usesCustomInserter = 1 in { defm PCMPISTRM128 : pseudo_pcmpistrm<"#PCMPISTRM128">, Requires<[HasSSE42]>; defm VPCMPISTRM128 : pseudo_pcmpistrm<"#VPCMPISTRM128">, Requires<[HasAVX]>; } let Defs = [XMM0, EFLAGS], Predicates = [HasAVX] in { def VPCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX; def VPCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "vpcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize, VEX; } let Defs = [XMM0, EFLAGS] in { def PCMPISTRM128rr : SS42AI<0x62, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; def PCMPISTRM128rm : SS42AI<0x62, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "pcmpistrm\t{$src3, $src2, $src1|$src1, $src2, $src3}", []>, OpSize; } // Packed Compare Explicit Length Strings, Return Mask multiclass pseudo_pcmpestrm { def REG : PseudoI<(outs VR128:$dst), (ins VR128:$src1, VR128:$src3, i8imm:$src5), [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5))]>; def MEM : PseudoI<(outs VR128:$dst), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), [(set VR128:$dst, (int_x86_sse42_pcmpestrm128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5))]>; } let Defs = [EFLAGS], Uses = [EAX, EDX], usesCustomInserter = 1 in { defm PCMPESTRM128 : pseudo_pcmpestrm<"#PCMPESTRM128">, Requires<[HasSSE42]>; defm VPCMPESTRM128 : pseudo_pcmpestrm<"#VPCMPESTRM128">, Requires<[HasAVX]>; } let Predicates = [HasAVX], Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { def VPCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), "vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX; def VPCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), "vpcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize, VEX; } let Defs = [XMM0, EFLAGS], Uses = [EAX, EDX] in { def PCMPESTRM128rr : SS42AI<0x60, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; def PCMPESTRM128rm : SS42AI<0x60, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), "pcmpestrm\t{$src5, $src3, $src1|$src1, $src3, $src5}", []>, OpSize; } // Packed Compare Implicit Length Strings, Return Index let Defs = [ECX, EFLAGS] in { multiclass SS42AI_pcmpistri { def rr : SS42AI<0x63, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src2, i8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), [(set ECX, (IntId128 VR128:$src1, VR128:$src2, imm:$src3)), (implicit EFLAGS)]>, OpSize; def rm : SS42AI<0x63, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), !strconcat(asm, "\t{$src3, $src2, $src1|$src1, $src2, $src3}"), [(set ECX, (IntId128 VR128:$src1, (load addr:$src2), imm:$src3)), (implicit EFLAGS)]>, OpSize; } } let Predicates = [HasAVX] in { defm VPCMPISTRI : SS42AI_pcmpistri, VEX; defm VPCMPISTRIA : SS42AI_pcmpistri, VEX; defm VPCMPISTRIC : SS42AI_pcmpistri, VEX; defm VPCMPISTRIO : SS42AI_pcmpistri, VEX; defm VPCMPISTRIS : SS42AI_pcmpistri, VEX; defm VPCMPISTRIZ : SS42AI_pcmpistri, VEX; } defm PCMPISTRI : SS42AI_pcmpistri; defm PCMPISTRIA : SS42AI_pcmpistri; defm PCMPISTRIC : SS42AI_pcmpistri; defm PCMPISTRIO : SS42AI_pcmpistri; defm PCMPISTRIS : SS42AI_pcmpistri; defm PCMPISTRIZ : SS42AI_pcmpistri; // Packed Compare Explicit Length Strings, Return Index let Defs = [ECX, EFLAGS], Uses = [EAX, EDX] in { multiclass SS42AI_pcmpestri { def rr : SS42AI<0x61, MRMSrcReg, (outs), (ins VR128:$src1, VR128:$src3, i8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), [(set ECX, (IntId128 VR128:$src1, EAX, VR128:$src3, EDX, imm:$src5)), (implicit EFLAGS)]>, OpSize; def rm : SS42AI<0x61, MRMSrcMem, (outs), (ins VR128:$src1, i128mem:$src3, i8imm:$src5), !strconcat(asm, "\t{$src5, $src3, $src1|$src1, $src3, $src5}"), [(set ECX, (IntId128 VR128:$src1, EAX, (load addr:$src3), EDX, imm:$src5)), (implicit EFLAGS)]>, OpSize; } } let Predicates = [HasAVX] in { defm VPCMPESTRI : SS42AI_pcmpestri, VEX; defm VPCMPESTRIA : SS42AI_pcmpestri, VEX; defm VPCMPESTRIC : SS42AI_pcmpestri, VEX; defm VPCMPESTRIO : SS42AI_pcmpestri, VEX; defm VPCMPESTRIS : SS42AI_pcmpestri, VEX; defm VPCMPESTRIZ : SS42AI_pcmpestri, VEX; } defm PCMPESTRI : SS42AI_pcmpestri; defm PCMPESTRIA : SS42AI_pcmpestri; defm PCMPESTRIC : SS42AI_pcmpestri; defm PCMPESTRIO : SS42AI_pcmpestri; defm PCMPESTRIS : SS42AI_pcmpestri; defm PCMPESTRIZ : SS42AI_pcmpestri; //===----------------------------------------------------------------------===// // SSE4.2 - CRC Instructions //===----------------------------------------------------------------------===// // No CRC instructions have AVX equivalents // crc intrinsic instruction // This set of instructions are only rm, the only difference is the size // of r and m. let Constraints = "$src1 = $dst" in { def CRC32r32m8 : SS42FI<0xF0, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i8mem:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_8 GR32:$src1, (load addr:$src2)))]>; def CRC32r32r8 : SS42FI<0xF0, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR8:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_8 GR32:$src1, GR8:$src2))]>; def CRC32r32m16 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i16mem:$src2), "crc32{w} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_16 GR32:$src1, (load addr:$src2)))]>, OpSize; def CRC32r32r16 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR16:$src2), "crc32{w} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_16 GR32:$src1, GR16:$src2))]>, OpSize; def CRC32r32m32 : SS42FI<0xF1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$src1, i32mem:$src2), "crc32{l} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_32 GR32:$src1, (load addr:$src2)))]>; def CRC32r32r32 : SS42FI<0xF1, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "crc32{l} \t{$src2, $src1|$src1, $src2}", [(set GR32:$dst, (int_x86_sse42_crc32_32_32 GR32:$src1, GR32:$src2))]>; def CRC32r64m8 : SS42FI<0xF0, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i8mem:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc32_64_8 GR64:$src1, (load addr:$src2)))]>, REX_W; def CRC32r64r8 : SS42FI<0xF0, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR8:$src2), "crc32{b} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc32_64_8 GR64:$src1, GR8:$src2))]>, REX_W; def CRC32r64m64 : SS42FI<0xF1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2), "crc32{q} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc32_64_64 GR64:$src1, (load addr:$src2)))]>, REX_W; def CRC32r64r64 : SS42FI<0xF1, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "crc32{q} \t{$src2, $src1|$src1, $src2}", [(set GR64:$dst, (int_x86_sse42_crc32_64_64 GR64:$src1, GR64:$src2))]>, REX_W; } //===----------------------------------------------------------------------===// // AES-NI Instructions //===----------------------------------------------------------------------===// multiclass AESI_binop_rm_int opc, string OpcodeStr, Intrinsic IntId128, bit Is2Addr = 1> { def rr : AES8I, OpSize; def rm : AES8I, OpSize; } // Perform One Round of an AES Encryption/Decryption Flow let Predicates = [HasAVX, HasAES] in { defm VAESENC : AESI_binop_rm_int<0xDC, "vaesenc", int_x86_aesni_aesenc, 0>, VEX_4V; defm VAESENCLAST : AESI_binop_rm_int<0xDD, "vaesenclast", int_x86_aesni_aesenclast, 0>, VEX_4V; defm VAESDEC : AESI_binop_rm_int<0xDE, "vaesdec", int_x86_aesni_aesdec, 0>, VEX_4V; defm VAESDECLAST : AESI_binop_rm_int<0xDF, "vaesdeclast", int_x86_aesni_aesdeclast, 0>, VEX_4V; } let Constraints = "$src1 = $dst" in { defm AESENC : AESI_binop_rm_int<0xDC, "aesenc", int_x86_aesni_aesenc>; defm AESENCLAST : AESI_binop_rm_int<0xDD, "aesenclast", int_x86_aesni_aesenclast>; defm AESDEC : AESI_binop_rm_int<0xDE, "aesdec", int_x86_aesni_aesdec>; defm AESDECLAST : AESI_binop_rm_int<0xDF, "aesdeclast", int_x86_aesni_aesdeclast>; } def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, VR128:$src2)), (AESENCrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenc VR128:$src1, (memop addr:$src2))), (AESENCrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, VR128:$src2)), (AESENCLASTrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesenclast VR128:$src1, (memop addr:$src2))), (AESENCLASTrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, VR128:$src2)), (AESDECrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdec VR128:$src1, (memop addr:$src2))), (AESDECrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, VR128:$src2)), (AESDECLASTrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (int_x86_aesni_aesdeclast VR128:$src1, (memop addr:$src2))), (AESDECLASTrm VR128:$src1, addr:$src2)>; // Perform the AES InvMixColumn Transformation let Predicates = [HasAVX, HasAES] in { def VAESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "vaesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, OpSize, VEX; def VAESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "vaesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>, OpSize, VEX; } def AESIMCrr : AES8I<0xDB, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc VR128:$src1))]>, OpSize; def AESIMCrm : AES8I<0xDB, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1), "aesimc\t{$src1, $dst|$dst, $src1}", [(set VR128:$dst, (int_x86_aesni_aesimc (bitconvert (memopv2i64 addr:$src1))))]>, OpSize; // AES Round Key Generation Assist let Predicates = [HasAVX, HasAES] in { def VAESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, OpSize, VEX; def VAESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "vaeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, OpSize, VEX; } def AESKEYGENASSIST128rr : AESAI<0xDF, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, i8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist VR128:$src1, imm:$src2))]>, OpSize; def AESKEYGENASSIST128rm : AESAI<0xDF, MRMSrcMem, (outs VR128:$dst), (ins i128mem:$src1, i8imm:$src2), "aeskeygenassist\t{$src2, $src1, $dst|$dst, $src1, $src2}", [(set VR128:$dst, (int_x86_aesni_aeskeygenassist (bitconvert (memopv2i64 addr:$src1)), imm:$src2))]>, OpSize; //===----------------------------------------------------------------------===// // CLMUL Instructions //===----------------------------------------------------------------------===// // Carry-less Multiplication instructions let Constraints = "$src1 = $dst" in { def PCLMULQDQrr : CLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>; def PCLMULQDQrm : CLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "pclmulqdq\t{$src3, $src2, $dst|$dst, $src2, $src3}", []>; } // AVX carry-less Multiplication instructions def VPCLMULQDQrr : AVXCLMULIi8<0x44, MRMSrcReg, (outs VR128:$dst), (ins VR128:$src1, VR128:$src2, i8imm:$src3), "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>; def VPCLMULQDQrm : AVXCLMULIi8<0x44, MRMSrcMem, (outs VR128:$dst), (ins VR128:$src1, i128mem:$src2, i8imm:$src3), "vpclmulqdq\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>; multiclass pclmul_alias { def : InstAlias; def : InstAlias; def : InstAlias; def : InstAlias; } defm : pclmul_alias<"hqhq", 0x11>; defm : pclmul_alias<"hqlq", 0x01>; defm : pclmul_alias<"lqhq", 0x10>; defm : pclmul_alias<"lqlq", 0x00>; //===----------------------------------------------------------------------===// // AVX Instructions //===----------------------------------------------------------------------===// // Load from memory and broadcast to all elements of the destination operand class avx_broadcast opc, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop, Intrinsic Int> : AVX8I, VEX; def VBROADCASTSS : avx_broadcast<0x18, "vbroadcastss", VR128, f32mem, int_x86_avx_vbroadcastss>; def VBROADCASTSSY : avx_broadcast<0x18, "vbroadcastss", VR256, f32mem, int_x86_avx_vbroadcastss_256>; def VBROADCASTSD : avx_broadcast<0x19, "vbroadcastsd", VR256, f64mem, int_x86_avx_vbroadcast_sd_256>; def VBROADCASTF128 : avx_broadcast<0x1A, "vbroadcastf128", VR256, f128mem, int_x86_avx_vbroadcastf128_pd_256>; // Insert packed floating-point values def VINSERTF128rr : AVXAIi8<0x18, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR128:$src2, i8imm:$src3), "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, VEX_4V; def VINSERTF128rm : AVXAIi8<0x18, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f128mem:$src2, i8imm:$src3), "vinsertf128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, VEX_4V; // Extract packed floating-point values def VEXTRACTF128rr : AVXAIi8<0x19, MRMDestReg, (outs VR128:$dst), (ins VR256:$src1, i8imm:$src2), "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX; def VEXTRACTF128mr : AVXAIi8<0x19, MRMDestMem, (outs), (ins f128mem:$dst, VR256:$src1, i8imm:$src2), "vextractf128\t{$src2, $src1, $dst|$dst, $src1, $src2}", []>, VEX; // Conditional SIMD Packed Loads and Stores multiclass avx_movmask_rm opc_rm, bits<8> opc_mr, string OpcodeStr, Intrinsic IntLd, Intrinsic IntLd256, Intrinsic IntSt, Intrinsic IntSt256, PatFrag pf128, PatFrag pf256> { def rm : AVX8I, VEX_4V; def Yrm : AVX8I, VEX_4V; def mr : AVX8I, VEX_4V; def Ymr : AVX8I, VEX_4V; } defm VMASKMOVPS : avx_movmask_rm<0x2C, 0x2E, "vmaskmovps", int_x86_avx_maskload_ps, int_x86_avx_maskload_ps_256, int_x86_avx_maskstore_ps, int_x86_avx_maskstore_ps_256, memopv4f32, memopv8f32>; defm VMASKMOVPD : avx_movmask_rm<0x2D, 0x2F, "vmaskmovpd", int_x86_avx_maskload_pd, int_x86_avx_maskload_pd_256, int_x86_avx_maskstore_pd, int_x86_avx_maskstore_pd_256, memopv2f64, memopv4f64>; // Permute Floating-Point Values multiclass avx_permil opc_rm, bits<8> opc_rmi, string OpcodeStr, RegisterClass RC, X86MemOperand x86memop_f, X86MemOperand x86memop_i, PatFrag f_frag, PatFrag i_frag, Intrinsic IntVar, Intrinsic IntImm> { def rr : AVX8I, VEX_4V; def rm : AVX8I, VEX_4V; def ri : AVXAIi8, VEX; def mi : AVXAIi8, VEX; } defm VPERMILPS : avx_permil<0x0C, 0x04, "vpermilps", VR128, f128mem, i128mem, memopv4f32, memopv4i32, int_x86_avx_vpermilvar_ps, int_x86_avx_vpermil_ps>; defm VPERMILPSY : avx_permil<0x0C, 0x04, "vpermilps", VR256, f256mem, i256mem, memopv8f32, memopv8i32, int_x86_avx_vpermilvar_ps_256, int_x86_avx_vpermil_ps_256>; defm VPERMILPD : avx_permil<0x0D, 0x05, "vpermilpd", VR128, f128mem, i128mem, memopv2f64, memopv2i64, int_x86_avx_vpermilvar_pd, int_x86_avx_vpermil_pd>; defm VPERMILPDY : avx_permil<0x0D, 0x05, "vpermilpd", VR256, f256mem, i256mem, memopv4f64, memopv4i64, int_x86_avx_vpermilvar_pd_256, int_x86_avx_vpermil_pd_256>; def VPERM2F128rr : AVXAIi8<0x06, MRMSrcReg, (outs VR256:$dst), (ins VR256:$src1, VR256:$src2, i8imm:$src3), "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, VEX_4V; def VPERM2F128rm : AVXAIi8<0x06, MRMSrcMem, (outs VR256:$dst), (ins VR256:$src1, f256mem:$src2, i8imm:$src3), "vperm2f128\t{$src3, $src2, $src1, $dst|$dst, $src1, $src2, $src3}", []>, VEX_4V; // Zero All YMM registers def VZEROALL : I<0x77, RawFrm, (outs), (ins), "vzeroall", [(int_x86_avx_vzeroall)]>, VEX, VEX_L, Requires<[HasAVX]>; // Zero Upper bits of YMM registers def VZEROUPPER : I<0x77, RawFrm, (outs), (ins), "vzeroupper", [(int_x86_avx_vzeroupper)]>, VEX, Requires<[HasAVX]>; def : Pat<(int_x86_avx_vinsertf128_pd_256 VR256:$src1, VR128:$src2, imm:$src3), (VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vinsertf128_ps_256 VR256:$src1, VR128:$src2, imm:$src3), (VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vinsertf128_si_256 VR256:$src1, VR128:$src2, imm:$src3), (VINSERTF128rr VR256:$src1, VR128:$src2, imm:$src3)>; def : Pat<(vinsertf128_insert:$ins (v8f32 VR256:$src1), (v4f32 VR128:$src2), (i32 imm)), (VINSERTF128rr VR256:$src1, VR128:$src2, (INSERT_get_vinsertf128_imm VR256:$ins))>; def : Pat<(vinsertf128_insert:$ins (v4f64 VR256:$src1), (v2f64 VR128:$src2), (i32 imm)), (VINSERTF128rr VR256:$src1, VR128:$src2, (INSERT_get_vinsertf128_imm VR256:$ins))>; def : Pat<(vinsertf128_insert:$ins (v8i32 VR256:$src1), (v4i32 VR128:$src2), (i32 imm)), (VINSERTF128rr VR256:$src1, VR128:$src2, (INSERT_get_vinsertf128_imm VR256:$ins))>; def : Pat<(vinsertf128_insert:$ins (v4i64 VR256:$src1), (v2i64 VR128:$src2), (i32 imm)), (VINSERTF128rr VR256:$src1, VR128:$src2, (INSERT_get_vinsertf128_imm VR256:$ins))>; def : Pat<(int_x86_avx_vextractf128_pd_256 VR256:$src1, imm:$src2), (VEXTRACTF128rr VR256:$src1, imm:$src2)>; def : Pat<(int_x86_avx_vextractf128_ps_256 VR256:$src1, imm:$src2), (VEXTRACTF128rr VR256:$src1, imm:$src2)>; def : Pat<(int_x86_avx_vextractf128_si_256 VR256:$src1, imm:$src2), (VEXTRACTF128rr VR256:$src1, imm:$src2)>; def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)), (v4f32 (VEXTRACTF128rr (v8f32 VR256:$src1), (EXTRACT_get_vextractf128_imm VR128:$ext)))>; def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)), (v2f64 (VEXTRACTF128rr (v4f64 VR256:$src1), (EXTRACT_get_vextractf128_imm VR128:$ext)))>; def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)), (v4i32 (VEXTRACTF128rr (v8i32 VR256:$src1), (EXTRACT_get_vextractf128_imm VR128:$ext)))>; def : Pat<(vextractf128_extract:$ext VR256:$src1, (i32 imm)), (v2i64 (VEXTRACTF128rr (v4i64 VR256:$src1), (EXTRACT_get_vextractf128_imm VR128:$ext)))>; def : Pat<(int_x86_avx_vbroadcastf128_ps_256 addr:$src), (VBROADCASTF128 addr:$src)>; def : Pat<(int_x86_avx_vperm2f128_ps_256 VR256:$src1, VR256:$src2, imm:$src3), (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vperm2f128_pd_256 VR256:$src1, VR256:$src2, imm:$src3), (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vperm2f128_si_256 VR256:$src1, VR256:$src2, imm:$src3), (VPERM2F128rr VR256:$src1, VR256:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vperm2f128_ps_256 VR256:$src1, (memopv8f32 addr:$src2), imm:$src3), (VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vperm2f128_pd_256 VR256:$src1, (memopv4f64 addr:$src2), imm:$src3), (VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>; def : Pat<(int_x86_avx_vperm2f128_si_256 VR256:$src1, (memopv8i32 addr:$src2), imm:$src3), (VPERM2F128rm VR256:$src1, addr:$src2, imm:$src3)>; //===----------------------------------------------------------------------===// // SSE Shuffle pattern fragments //===----------------------------------------------------------------------===// // This is part of a "work in progress" refactoring. The idea is that all // vector shuffles are going to be translated into target specific nodes and // directly matched by the patterns below (which can be changed along the way) // The AVX version of some but not all of them are described here, and more // should come in a near future. // Shuffle with PSHUFD instruction folding loads. The first two patterns match // SSE2 loads, which are always promoted to v2i64. The last one should match // the SSE1 case, where the only legal load is v4f32, but there is no PSHUFD // in SSE2, how does it ever worked? Anyway, the pattern will remain here until // we investigate further. def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv2i64 addr:$src1)), (i8 imm:$imm))), (VPSHUFDmi addr:$src1, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv2i64 addr:$src1)), (i8 imm:$imm))), (PSHUFDmi addr:$src1, imm:$imm)>; def : Pat<(v4i32 (X86PShufd (bc_v4i32 (memopv4f32 addr:$src1)), (i8 imm:$imm))), (PSHUFDmi addr:$src1, imm:$imm)>; // FIXME: has this ever worked? // Shuffle with PSHUFD instruction. def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), (VPSHUFDri VR128:$src1, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86PShufd VR128:$src1, (i8 imm:$imm))), (PSHUFDri VR128:$src1, imm:$imm)>; def : Pat<(v4i32 (X86PShufd VR128:$src1, (i8 imm:$imm))), (VPSHUFDri VR128:$src1, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4i32 (X86PShufd VR128:$src1, (i8 imm:$imm))), (PSHUFDri VR128:$src1, imm:$imm)>; // Shuffle with SHUFPD instruction. def : Pat<(v2f64 (X86Shufps VR128:$src1, (memopv2f64 addr:$src2), (i8 imm:$imm))), (VSHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Shufps VR128:$src1, (memopv2f64 addr:$src2), (i8 imm:$imm))), (SHUFPDrmi VR128:$src1, addr:$src2, imm:$imm)>; def : Pat<(v2i64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v2i64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))), (SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>; def : Pat<(v2f64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VSHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Shufpd VR128:$src1, VR128:$src2, (i8 imm:$imm))), (SHUFPDrri VR128:$src1, VR128:$src2, imm:$imm)>; // Shuffle with SHUFPS instruction. def : Pat<(v4f32 (X86Shufps VR128:$src1, (memopv4f32 addr:$src2), (i8 imm:$imm))), (VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Shufps VR128:$src1, (memopv4f32 addr:$src2), (i8 imm:$imm))), (SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>; def : Pat<(v4f32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))), (SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>; def : Pat<(v4i32 (X86Shufps VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))), (VSHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4i32 (X86Shufps VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)), (i8 imm:$imm))), (SHUFPSrmi VR128:$src1, addr:$src2, imm:$imm)>; def : Pat<(v4i32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))), (VSHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>, Requires<[HasAVX]>; def : Pat<(v4i32 (X86Shufps VR128:$src1, VR128:$src2, (i8 imm:$imm))), (SHUFPSrri VR128:$src1, VR128:$src2, imm:$imm)>; // Shuffle with MOVHLPS instruction def : Pat<(v4f32 (X86Movhlps VR128:$src1, VR128:$src2)), (MOVHLPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86Movhlps VR128:$src1, VR128:$src2)), (MOVHLPSrr VR128:$src1, VR128:$src2)>; // Shuffle with MOVDDUP instruction def : Pat<(X86Movddup (memopv2f64 addr:$src)), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (memopv2f64 addr:$src)), (MOVDDUPrm addr:$src)>; def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (bc_v2f64 (memopv4f32 addr:$src))), (MOVDDUPrm addr:$src)>; def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (bc_v2f64 (memopv2i64 addr:$src))), (MOVDDUPrm addr:$src)>; def : Pat<(X86Movddup (v2f64 (scalar_to_vector (loadf64 addr:$src)))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (v2f64 (scalar_to_vector (loadf64 addr:$src)))), (MOVDDUPrm addr:$src)>; def : Pat<(X86Movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src))))), (VMOVDDUPrm addr:$src)>, Requires<[HasAVX]>; def : Pat<(X86Movddup (bc_v2f64 (v2i64 (scalar_to_vector (loadi64 addr:$src))))), (MOVDDUPrm addr:$src)>; // Shuffle with UNPCKLPS def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))), (VUNPCKLPSrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, (memopv8f32 addr:$src2))), (VUNPCKLPSYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, (memopv4f32 addr:$src2))), (UNPCKLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)), (VUNPCKLPSrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; def : Pat<(v8f32 (X86Unpcklpsy VR256:$src1, VR256:$src2)), (VUNPCKLPSYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpcklps VR128:$src1, VR128:$src2)), (UNPCKLPSrr VR128:$src1, VR128:$src2)>; // Shuffle with UNPCKHPS def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))), (VUNPCKHPSrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpckhps VR128:$src1, (memopv4f32 addr:$src2))), (UNPCKHPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)), (VUNPCKHPSrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f32 (X86Unpckhps VR128:$src1, VR128:$src2)), (UNPCKHPSrr VR128:$src1, VR128:$src2)>; // Shuffle with UNPCKLPD def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))), (VUNPCKLPDrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, (memopv4f64 addr:$src2))), (VUNPCKLPDYrm VR256:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (memopv2f64 addr:$src2))), (UNPCKLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)), (VUNPCKLPDrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; def : Pat<(v4f64 (X86Unpcklpdy VR256:$src1, VR256:$src2)), (VUNPCKLPDYrr VR256:$src1, VR256:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, VR128:$src2)), (UNPCKLPDrr VR128:$src1, VR128:$src2)>; // Shuffle with UNPCKHPD def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))), (VUNPCKHPDrm VR128:$src1, addr:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, (memopv2f64 addr:$src2))), (UNPCKHPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)), (VUNPCKHPDrr VR128:$src1, VR128:$src2)>, Requires<[HasAVX]>; def : Pat<(v2f64 (X86Unpckhpd VR128:$src1, VR128:$src2)), (UNPCKHPDrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKLBW def : Pat<(v16i8 (X86Punpcklbw VR128:$src1, (bc_v16i8 (memopv2i64 addr:$src2)))), (PUNPCKLBWrm VR128:$src1, addr:$src2)>; def : Pat<(v16i8 (X86Punpcklbw VR128:$src1, VR128:$src2)), (PUNPCKLBWrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKLWD def : Pat<(v8i16 (X86Punpcklwd VR128:$src1, (bc_v8i16 (memopv2i64 addr:$src2)))), (PUNPCKLWDrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86Punpcklwd VR128:$src1, VR128:$src2)), (PUNPCKLWDrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKLDQ def : Pat<(v4i32 (X86Punpckldq VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))), (PUNPCKLDQrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86Punpckldq VR128:$src1, VR128:$src2)), (PUNPCKLDQrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKLQDQ def : Pat<(v2i64 (X86Punpcklqdq VR128:$src1, (memopv2i64 addr:$src2))), (PUNPCKLQDQrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (X86Punpcklqdq VR128:$src1, VR128:$src2)), (PUNPCKLQDQrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKHBW def : Pat<(v16i8 (X86Punpckhbw VR128:$src1, (bc_v16i8 (memopv2i64 addr:$src2)))), (PUNPCKHBWrm VR128:$src1, addr:$src2)>; def : Pat<(v16i8 (X86Punpckhbw VR128:$src1, VR128:$src2)), (PUNPCKHBWrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKHWD def : Pat<(v8i16 (X86Punpckhwd VR128:$src1, (bc_v8i16 (memopv2i64 addr:$src2)))), (PUNPCKHWDrm VR128:$src1, addr:$src2)>; def : Pat<(v8i16 (X86Punpckhwd VR128:$src1, VR128:$src2)), (PUNPCKHWDrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKHDQ def : Pat<(v4i32 (X86Punpckhdq VR128:$src1, (bc_v4i32 (memopv2i64 addr:$src2)))), (PUNPCKHDQrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86Punpckhdq VR128:$src1, VR128:$src2)), (PUNPCKHDQrr VR128:$src1, VR128:$src2)>; // Shuffle with PUNPCKHQDQ def : Pat<(v2i64 (X86Punpckhqdq VR128:$src1, (memopv2i64 addr:$src2))), (PUNPCKHQDQrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (X86Punpckhqdq VR128:$src1, VR128:$src2)), (PUNPCKHQDQrr VR128:$src1, VR128:$src2)>; // Shuffle with MOVLHPS def : Pat<(X86Movlhps VR128:$src1, (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))), (MOVHPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86Movlhps VR128:$src1, (bc_v4i32 (v2i64 (X86vzload addr:$src2)))), (MOVHPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4f32 (X86Movlhps VR128:$src1, VR128:$src2)), (MOVLHPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v4i32 (X86Movlhps VR128:$src1, VR128:$src2)), (MOVLHPSrr VR128:$src1, VR128:$src2)>; def : Pat<(v2i64 (X86Movlhps VR128:$src1, VR128:$src2)), (MOVLHPSrr (v2i64 VR128:$src1), VR128:$src2)>; // FIXME: Instead of X86Movddup, there should be a X86Unpcklpd here, the problem // is during lowering, where it's not possible to recognize the load fold cause // it has two uses through a bitcast. One use disappears at isel time and the // fold opportunity reappears. def : Pat<(v2f64 (X86Movddup VR128:$src)), (UNPCKLPDrr VR128:$src, VR128:$src)>; // Shuffle with MOVLHPD def : Pat<(v2f64 (X86Movlhpd VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)))), (MOVHPDrm VR128:$src1, addr:$src2)>; // FIXME: Instead of X86Unpcklpd, there should be a X86Movlhpd here, the problem // is during lowering, where it's not possible to recognize the load fold cause // it has two uses through a bitcast. One use disappears at isel time and the // fold opportunity reappears. def : Pat<(v2f64 (X86Unpcklpd VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)))), (MOVHPDrm VR128:$src1, addr:$src2)>; // Shuffle with MOVSS def : Pat<(v4f32 (X86Movss VR128:$src1, (scalar_to_vector FR32:$src2))), (MOVSSrr VR128:$src1, FR32:$src2)>; def : Pat<(v4i32 (X86Movss VR128:$src1, VR128:$src2)), (MOVSSrr (v4i32 VR128:$src1), (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_ss))>; def : Pat<(v4f32 (X86Movss VR128:$src1, VR128:$src2)), (MOVSSrr (v4f32 VR128:$src1), (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_ss))>; // FIXME: Instead of a X86Movss there should be a X86Movlps here, the problem // is during lowering, where it's not possible to recognize the load fold cause // it has two uses through a bitcast. One use disappears at isel time and the // fold opportunity reappears. def : Pat<(X86Movss VR128:$src1, (bc_v4i32 (v2i64 (load addr:$src2)))), (MOVLPSrm VR128:$src1, addr:$src2)>; // Shuffle with MOVSD def : Pat<(v2f64 (X86Movsd VR128:$src1, (scalar_to_vector FR64:$src2))), (MOVSDrr VR128:$src1, FR64:$src2)>; def : Pat<(v2i64 (X86Movsd VR128:$src1, VR128:$src2)), (MOVSDrr (v2i64 VR128:$src1), (EXTRACT_SUBREG (v2i64 VR128:$src2), sub_sd))>; def : Pat<(v2f64 (X86Movsd VR128:$src1, VR128:$src2)), (MOVSDrr (v2f64 VR128:$src1), (EXTRACT_SUBREG (v2f64 VR128:$src2), sub_sd))>; def : Pat<(v4f32 (X86Movsd VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_sd))>; def : Pat<(v4i32 (X86Movsd VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_sd))>; // Shuffle with MOVSHDUP def : Pat<(v4i32 (X86Movshdup VR128:$src)), (MOVSHDUPrr VR128:$src)>; def : Pat<(X86Movshdup (bc_v4i32 (memopv2i64 addr:$src))), (MOVSHDUPrm addr:$src)>; def : Pat<(v4f32 (X86Movshdup VR128:$src)), (MOVSHDUPrr VR128:$src)>; def : Pat<(X86Movshdup (memopv4f32 addr:$src)), (MOVSHDUPrm addr:$src)>; // Shuffle with MOVSLDUP def : Pat<(v4i32 (X86Movsldup VR128:$src)), (MOVSLDUPrr VR128:$src)>; def : Pat<(X86Movsldup (bc_v4i32 (memopv2i64 addr:$src))), (MOVSLDUPrm addr:$src)>; def : Pat<(v4f32 (X86Movsldup VR128:$src)), (MOVSLDUPrr VR128:$src)>; def : Pat<(X86Movsldup (memopv4f32 addr:$src)), (MOVSLDUPrm addr:$src)>; // Shuffle with PSHUFHW def : Pat<(v8i16 (X86PShufhw VR128:$src, (i8 imm:$imm))), (PSHUFHWri VR128:$src, imm:$imm)>; def : Pat<(v8i16 (X86PShufhw (bc_v8i16 (memopv2i64 addr:$src)), (i8 imm:$imm))), (PSHUFHWmi addr:$src, imm:$imm)>; // Shuffle with PSHUFLW def : Pat<(v8i16 (X86PShuflw VR128:$src, (i8 imm:$imm))), (PSHUFLWri VR128:$src, imm:$imm)>; def : Pat<(v8i16 (X86PShuflw (bc_v8i16 (memopv2i64 addr:$src)), (i8 imm:$imm))), (PSHUFLWmi addr:$src, imm:$imm)>; // Shuffle with PALIGN def : Pat<(v4i32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; def : Pat<(v4f32 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; def : Pat<(v8i16 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; def : Pat<(v16i8 (X86PAlign VR128:$src1, VR128:$src2, (i8 imm:$imm))), (PALIGNR128rr VR128:$src2, VR128:$src1, imm:$imm)>; // Shuffle with MOVLPS def : Pat<(v4f32 (X86Movlps VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(v4i32 (X86Movlps VR128:$src1, (load addr:$src2))), (MOVLPSrm VR128:$src1, addr:$src2)>; def : Pat<(X86Movlps VR128:$src1, (bc_v4f32 (v2f64 (scalar_to_vector (loadf64 addr:$src2))))), (MOVLPSrm VR128:$src1, addr:$src2)>; // FIXME: Instead of a X86Movlps there should be a X86Movsd here, the problem // is during lowering, where it's not possible to recognize the load fold cause // it has two uses through a bitcast. One use disappears at isel time and the // fold opportunity reappears. def : Pat<(v4f32 (X86Movlps VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4f32 VR128:$src2), sub_sd))>; def : Pat<(v4i32 (X86Movlps VR128:$src1, VR128:$src2)), (MOVSDrr VR128:$src1, (EXTRACT_SUBREG (v4i32 VR128:$src2), sub_sd))>; // Shuffle with MOVLPD def : Pat<(v2f64 (X86Movlpd VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2i64 (X86Movlpd VR128:$src1, (load addr:$src2))), (MOVLPDrm VR128:$src1, addr:$src2)>; def : Pat<(v2f64 (X86Movlpd VR128:$src1, (scalar_to_vector (loadf64 addr:$src2)))), (MOVLPDrm VR128:$src1, addr:$src2)>; // Extra patterns to match stores with MOVHPS/PD and MOVLPS/PD def : Pat<(store (f64 (vector_extract (v2f64 (X86Unpckhps VR128:$src, (undef))), (iPTR 0))),addr:$dst), (MOVHPSmr addr:$dst, VR128:$src)>; def : Pat<(store (f64 (vector_extract (v2f64 (X86Unpckhpd VR128:$src, (undef))), (iPTR 0))),addr:$dst), (MOVHPDmr addr:$dst, VR128:$src)>; def : Pat<(store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)),addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v4i32 (X86Movlps (bc_v4i32 (loadv2i64 addr:$src1)), VR128:$src2)), addr:$src1), (MOVLPSmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2f64 (X86Movlpd (load addr:$src1), VR128:$src2)),addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>; def : Pat<(store (v2i64 (X86Movlpd (load addr:$src1), VR128:$src2)),addr:$src1), (MOVLPDmr addr:$src1, VR128:$src2)>;