//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86MCCodeEmitter class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" #include "X86.h" #include "X86InstrInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { class X86MCCodeEmitter : public MCCodeEmitter { X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT const TargetMachine &TM; const TargetInstrInfo &TII; bool Is64BitMode; public: X86MCCodeEmitter(TargetMachine &tm, bool is64Bit) : TM(tm), TII(*TM.getInstrInfo()) { Is64BitMode = is64Bit; } ~X86MCCodeEmitter() {} unsigned getNumFixupKinds() const { return 5; } MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { static MCFixupKindInfo Infos[] = { { "reloc_pcrel_word", 0, 4 * 8 }, { "reloc_picrel_word", 0, 4 * 8 }, { "reloc_absolute_word", 0, 4 * 8 }, { "reloc_absolute_word_sext", 0, 4 * 8 }, { "reloc_absolute_dword", 0, 8 * 8 } }; assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind && "Invalid kind!"); return Infos[Kind - FirstTargetFixupKind]; } static unsigned GetX86RegNum(const MCOperand &MO) { return X86RegisterInfo::getX86RegNum(MO.getReg()); } void EmitByte(unsigned char C, raw_ostream &OS) const { OS << (char)C; } void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { // Output the constant in little endian byte order. for (unsigned i = 0; i != Size; ++i) { EmitByte(Val & 255, OS); Val >>= 8; } } void EmitDisplacementField(const MCOperand *RelocOp, int DispVal, int64_t Adj, bool IsPCRel, raw_ostream &OS) const; inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, raw_ostream &OS) const { EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), OS); } void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, raw_ostream &OS) const { // SIB byte is in the same format as the ModRMByte... EmitByte(ModRMByte(SS, Index, Base), OS); } void EmitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj, raw_ostream &OS) const; void EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups) const; }; } // end anonymous namespace MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &, TargetMachine &TM) { return new X86MCCodeEmitter(TM, false); } MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &, TargetMachine &TM) { return new X86MCCodeEmitter(TM, true); } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } void X86MCCodeEmitter:: EmitDisplacementField(const MCOperand *RelocOp, int DispVal, int64_t Adj, bool IsPCRel, raw_ostream &OS) const { // If this is a simple integer displacement that doesn't require a relocation, // emit it now. if (!RelocOp) { EmitConstant(DispVal, 4, OS); return; } assert(0 && "Reloc not handled yet"); #if 0 // Otherwise, this is something that requires a relocation. Emit it as such // now. unsigned RelocType = Is64BitMode ? (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (RelocOp->isGlobal()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. If the MCE supports using RIP directly // do it, otherwise fallback to absolute (this is determined by IsPCRel). // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), Adj, Indirect); } else if (RelocOp->isSymbol()) { emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); } else if (RelocOp->isCPI()) { emitConstPoolAddress(RelocOp->getIndex(), RelocType, RelocOp->getOffset(), Adj); } else { assert(RelocOp->isJTI() && "Unexpected machine operand!"); emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); } #endif } void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, intptr_t PCAdj, raw_ostream &OS) const { const MCOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; const MCOperand *DispForReloc = 0; // Figure out what sort of displacement we have to handle here. if (Op3.isImm()) { DispVal = Op3.getImm(); } else { assert(0 && "relocatable operand"); #if 0 if (Op3.isGlobal()) { DispForReloc = &Op3; } else if (Op3.isSymbol()) { DispForReloc = &Op3; } else if (Op3.isCPI()) { if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); DispVal += Op3.getOffset(); } } else { assert(Op3.isJTI()); if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { DispForReloc = &Op3; } else { DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); } #endif } const MCOperand &Base = MI.getOperand(Op); const MCOperand &Scale = MI.getOperand(Op+1); const MCOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); // FIXME: Eliminate! bool IsPCRel = false; // Determine whether a SIB byte is needed. // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. if (// The SIB byte must be used if there is an index register. IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP. BaseReg != X86::ESP && BaseReg != X86::RSP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!Is64BitMode || BaseReg != 0)) { if (BaseReg == 0 || // [disp32] in X86-32 mode BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode EmitByte(ModRMByte(0, RegOpcodeField, 5), OS); EmitDisplacementField(DispForReloc, DispVal, PCAdj, true, OS); return; } unsigned BaseRegNo = GetX86RegNum(Base); // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it // by emitting a displacement of 0 below. if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), OS); return; } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (!DispForReloc && isDisp8(DispVal)) { EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), OS); EmitConstant(DispVal, 1, OS); return; } // Otherwise, emit the most general non-SIB encoding: [REG+disp32] EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), OS); EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS); return; } // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); ForceDisp32 = true; } else if (DispForReloc) { // Emit the normal disp32 encoding. EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); ForceDisp32 = true; } else if (DispVal == 0 && BaseReg != X86::EBP) { // Emit no displacement ModR/M byte EmitByte(ModRMByte(0, RegOpcodeField, 4), OS); } else if (isDisp8(DispVal)) { // Emit the disp8 encoding. EmitByte(ModRMByte(1, RegOpcodeField, 4), OS); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding. EmitByte(ModRMByte(2, RegOpcodeField, 4), OS); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = GetX86RegNum(IndexReg); else // Examples: [ESP+1*+4] or [scaled idx]+disp32 (MOD=0,BASE=5) IndexRegNo = 4; EmitSIBByte(SS, IndexRegNo, 5, OS); } else { unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = GetX86RegNum(IndexReg); else IndexRegNo = 4; // For example [ESP+1*+4] EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), OS); } // Do we need to output a displacement? if (ForceDisp8) EmitConstant(DispVal, 1, OS); else if (DispVal != 0 || ForceDisp32) EmitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel, OS); } /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, const TargetInstrDesc &Desc) { unsigned REX = 0; // Pseudo instructions do not need REX prefix byte. if ((TSFlags & X86II::FormMask) == X86II::Pseudo) return 0; if (TSFlags & X86II::REX_W) REX |= 1 << 3; if (MI.getNumOperands() == 0) return REX; unsigned NumOps = MI.getNumOperands(); // FIXME: MCInst should explicitize the two-addrness. bool isTwoAddr = NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. unsigned i = isTwoAddr ? 1 : 0; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything // that returns non-zero. REX |= 0x40; break; } switch (TSFlags & X86II::FormMask) { case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); case X86II::MRMSrcReg: if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 2; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << 0; } break; case X86II::MRMSrcMem: { if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 2; unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << Bit; Bit++; } } break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && MI.getOperand(e).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) REX |= 1 << 2; unsigned Bit = 0; for (; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << Bit; Bit++; } } break; } default: if (MI.getOperand(0).isReg() && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 0; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << 2; } break; } return REX; } void X86MCCodeEmitter:: EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups) const { unsigned Opcode = MI.getOpcode(); const TargetInstrDesc &Desc = TII.get(Opcode); unsigned TSFlags = Desc.TSFlags; // FIXME: We should emit the prefixes in exactly the same order as GAS does, // in order to provide diffability. // Emit the lock opcode prefix as needed. if (TSFlags & X86II::LOCK) EmitByte(0xF0, OS); // Emit segment override opcode prefix as needed. switch (TSFlags & X86II::SegOvrMask) { default: assert(0 && "Invalid segment!"); case 0: break; // No segment override! case X86II::FS: EmitByte(0x64, OS); break; case X86II::GS: EmitByte(0x65, OS); break; } // Emit the repeat opcode prefix as needed. if ((TSFlags & X86II::Op0Mask) == X86II::REP) EmitByte(0xF3, OS); // Emit the operand size opcode prefix as needed. if (TSFlags & X86II::OpSize) EmitByte(0x66, OS); // Emit the address size opcode prefix as needed. if (TSFlags & X86II::AdSize) EmitByte(0x67, OS); bool Need0FPrefix = false; switch (TSFlags & X86II::Op0Mask) { default: assert(0 && "Invalid prefix!"); case 0: break; // No prefix! case X86II::REP: break; // already handled. case X86II::TB: // Two-byte opcode prefix case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A Need0FPrefix = true; break; case X86II::TF: // F2 0F 38 EmitByte(0xF2, OS); Need0FPrefix = true; break; case X86II::XS: // F3 0F EmitByte(0xF3, OS); Need0FPrefix = true; break; case X86II::XD: // F2 0F EmitByte(0xF2, OS); Need0FPrefix = true; break; case X86II::D8: EmitByte(0xD8, OS); break; case X86II::D9: EmitByte(0xD9, OS); break; case X86II::DA: EmitByte(0xDA, OS); break; case X86II::DB: EmitByte(0xDB, OS); break; case X86II::DC: EmitByte(0xDC, OS); break; case X86II::DD: EmitByte(0xDD, OS); break; case X86II::DE: EmitByte(0xDE, OS); break; case X86II::DF: EmitByte(0xDF, OS); break; } // Handle REX prefix. // FIXME: Can this come before F2 etc to simplify emission? if (Is64BitMode) { if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) EmitByte(0x40 | REX, OS); } // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) EmitByte(0x0F, OS); // FIXME: Pull this up into previous switch if REX can be moved earlier. switch (TSFlags & X86II::Op0Mask) { case X86II::TF: // F2 0F 38 case X86II::T8: // 0F 38 EmitByte(0x38, OS); break; case X86II::TA: // 0F 3A EmitByte(0x3A, OS); break; } // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = 0; if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) ++CurOp; else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 --NumOps; unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); switch (TSFlags & X86II::FormMask) { case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); case X86II::RawFrm: { EmitByte(BaseOpcode, OS); if (CurOp == NumOps) break; assert(0 && "Unimpl RawFrm expr"); break; } case X86II::AddRegFrm: { EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)),OS); if (CurOp == NumOps) break; const MCOperand &MO1 = MI.getOperand(CurOp++); if (MO1.isImm()) { unsigned Size = X86II::getSizeOfImm(TSFlags); EmitConstant(MO1.getImm(), Size, OS); break; } assert(0 && "Unimpl AddRegFrm expr"); break; } case X86II::MRMDestReg: EmitByte(BaseOpcode, OS); EmitRegModRMByte(MI.getOperand(CurOp), GetX86RegNum(MI.getOperand(CurOp+1)), OS); CurOp += 2; if (CurOp != NumOps) EmitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(TSFlags), OS); break; case X86II::MRMDestMem: EmitByte(BaseOpcode, OS); EmitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), 0, OS); CurOp += X86AddrNumOperands + 1; if (CurOp != NumOps) EmitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(TSFlags), OS); break; case X86II::MRMSrcReg: EmitByte(BaseOpcode, OS); EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)), OS); CurOp += 2; if (CurOp != NumOps) EmitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(TSFlags), OS); break; case X86II::MRMSrcMem: { EmitByte(BaseOpcode, OS); // FIXME: Maybe lea should have its own form? This is a horrible hack. int AddrOperands; if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || Opcode == X86::LEA16r || Opcode == X86::LEA32r) AddrOperands = X86AddrNumOperands - 1; // No segment register else AddrOperands = X86AddrNumOperands; // FIXME: What is this actually doing? intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? X86II::getSizeOfImm(TSFlags) : 0; EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)), PCAdj, OS); CurOp += AddrOperands + 1; if (CurOp != NumOps) EmitConstant(MI.getOperand(CurOp++).getImm(), X86II::getSizeOfImm(TSFlags), OS); break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { EmitByte(BaseOpcode, OS); // Special handling of lfence, mfence, monitor, and mwait. // FIXME: This is terrible, they should get proper encoding bits in TSFlags. if (Opcode == X86::LFENCE || Opcode == X86::MFENCE || Opcode == X86::MONITOR || Opcode == X86::MWAIT) { EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0), OS); switch (Opcode) { default: break; case X86::MONITOR: EmitByte(0xC8, OS); break; case X86::MWAIT: EmitByte(0xC9, OS); break; } } else { EmitRegModRMByte(MI.getOperand(CurOp++), (TSFlags & X86II::FormMask)-X86II::MRM0r, OS); } if (CurOp == NumOps) break; const MCOperand &MO1 = MI.getOperand(CurOp++); if (MO1.isImm()) { EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), OS); break; } assert(0 && "relo unimpl"); #if 0 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64ri32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO1.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO1, TM); emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, Indirect); } else if (MO1.isSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isCPI()) emitConstPoolAddress(MO1.getIndex(), rt); else if (MO1.isJTI()) emitJumpTableAddress(MO1.getIndex(), rt); break; #endif } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { intptr_t PCAdj = 0; if (CurOp + X86AddrNumOperands != NumOps) { if (MI.getOperand(CurOp+X86AddrNumOperands).isImm()) PCAdj = X86II::getSizeOfImm(TSFlags); else PCAdj = 4; } EmitByte(BaseOpcode, OS); EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj, OS); CurOp += X86AddrNumOperands; if (CurOp == NumOps) break; const MCOperand &MO = MI.getOperand(CurOp++); if (MO.isImm()) { EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), OS); break; } assert(0 && "relo not handled"); #if 0 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); if (Opcode == X86::MOV64mi32) rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? if (MO.isGlobal()) { bool Indirect = gvNeedsNonLazyPtr(MO, TM); emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, Indirect); } else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), rt); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), rt); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), rt); #endif break; } } #ifndef NDEBUG // FIXME: Verify. if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { errs() << "Cannot encode all operands of: "; MI.dump(); errs() << '\n'; abort(); } #endif }