//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetRegisterInfo class. // This file is responsible for the frame pointer elimination optimization // on X86. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86RegisterInfo.h" #include "X86InstrBuilder.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" using namespace llvm; X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, const TargetInstrInfo &tii) : X86GenRegisterInfo(tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32, tm.getSubtarget().is64Bit() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), TM(tm), TII(tii) { // Cache some information. const X86Subtarget *Subtarget = &TM.getSubtarget(); Is64Bit = Subtarget->is64Bit(); IsWin64 = Subtarget->isTargetWin64(); StackAlign = TM.getFrameInfo()->getStackAlignment(); if (Is64Bit) { SlotSize = 8; StackPtr = X86::RSP; FramePtr = X86::RBP; } else { SlotSize = 4; StackPtr = X86::ESP; FramePtr = X86::EBP; } } /// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF /// specific numbering, used in debug info and exception tables. int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { const X86Subtarget *Subtarget = &TM.getSubtarget(); unsigned Flavour = DWARFFlavour::X86_64; if (!Subtarget->is64Bit()) { if (Subtarget->isTargetDarwin()) { if (isEH) Flavour = DWARFFlavour::X86_32_DarwinEH; else Flavour = DWARFFlavour::X86_32_Generic; } else if (Subtarget->isTargetCygMing()) { // Unsupported by now, just quick fallback Flavour = DWARFFlavour::X86_32_Generic; } else { Flavour = DWARFFlavour::X86_32_Generic; } } return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); } /// getX86RegNum - This function maps LLVM register identifiers to their X86 /// specific numbering, which is used in various places encoding instructions. unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: return N86::ESP; case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: return N86::EBP; case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: return N86::ESI; case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: return N86::EDI; case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: return N86::EAX; case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: return N86::ECX; case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: return N86::EDX; case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: return N86::EBX; case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: return N86::ESP; case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: return N86::EBP; case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: return N86::ESI; case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: return N86::EDI; case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; case X86::XMM0: case X86::XMM8: case X86::MM0: return 0; case X86::XMM1: case X86::XMM9: case X86::MM1: return 1; case X86::XMM2: case X86::XMM10: case X86::MM2: return 2; case X86::XMM3: case X86::XMM11: case X86::MM3: return 3; case X86::XMM4: case X86::XMM12: case X86::MM4: return 4; case X86::XMM5: case X86::XMM13: case X86::MM5: return 5; case X86::XMM6: case X86::XMM14: case X86::MM6: return 6; case X86::XMM7: case X86::XMM15: case X86::MM7: return 7; default: assert(isVirtualRegister(RegNo) && "Unknown physical register!"); llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); return 0; } } const TargetRegisterClass * X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned SubIdx) const { switch (SubIdx) { default: return 0; case 1: // 8-bit if (B == &X86::GR8RegClass) { if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8) return A; } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_ABCDRegClass; else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) return &X86::GR32_ABCDRegClass; else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || A == &X86::GR16_NOREXRegClass) return &X86::GR16_ABCDRegClass; } else if (B == &X86::GR8_NOREXRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_NOREXRegClass; else if (A == &X86::GR64_ABCDRegClass) return &X86::GR64_ABCDRegClass; else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) return &X86::GR32_NOREXRegClass; else if (A == &X86::GR32_ABCDRegClass) return &X86::GR32_ABCDRegClass; else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass) return &X86::GR16_NOREXRegClass; else if (A == &X86::GR16_ABCDRegClass) return &X86::GR16_ABCDRegClass; } break; case 2: // 8-bit hi if (B == &X86::GR8_ABCD_HRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_ABCDRegClass; else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) return &X86::GR32_ABCDRegClass; else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || A == &X86::GR16_NOREXRegClass) return &X86::GR16_ABCDRegClass; } break; case 3: // 16-bit if (B == &X86::GR16RegClass) { if (A->getSize() == 4 || A->getSize() == 8) return A; } else if (B == &X86::GR16_ABCDRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_ABCDRegClass; else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) return &X86::GR32_ABCDRegClass; } else if (B == &X86::GR16_NOREXRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_NOREXRegClass; else if (A == &X86::GR64_ABCDRegClass) return &X86::GR64_ABCDRegClass; else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) return &X86::GR32_NOREXRegClass; else if (A == &X86::GR32_ABCDRegClass) return &X86::GR64_ABCDRegClass; } break; case 4: // 32-bit if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) { if (A->getSize() == 8) return A; } else if (B == &X86::GR32_ABCDRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_ABCDRegClass; } else if (B == &X86::GR32_NOREXRegClass) { if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) return &X86::GR64_NOREXRegClass; else if (A == &X86::GR64_ABCDRegClass) return &X86::GR64_ABCDRegClass; } break; } return 0; } const TargetRegisterClass * X86RegisterInfo::getPointerRegClass(unsigned Kind) const { switch (Kind) { default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); case 0: // Normal GPRs. if (TM.getSubtarget().is64Bit()) return &X86::GR64RegClass; return &X86::GR32RegClass; case 1: // Normal GRPs except the stack pointer (for encoding reasons). if (TM.getSubtarget().is64Bit()) return &X86::GR64_NOSPRegClass; return &X86::GR32_NOSPRegClass; } } const TargetRegisterClass * X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { if (RC == &X86::CCRRegClass) { if (Is64Bit) return &X86::GR64RegClass; else return &X86::GR32RegClass; } return NULL; } const unsigned * X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { bool callsEHReturn = false; if (MF) { const MachineFrameInfo *MFI = MF->getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); callsEHReturn = (MMI ? MMI->callsEHReturn() : false); } static const unsigned CalleeSavedRegs32Bit[] = { X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 }; static const unsigned CalleeSavedRegs32EHRet[] = { X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 }; static const unsigned CalleeSavedRegs64Bit[] = { X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; static const unsigned CalleeSavedRegs64EHRet[] = { X86::RAX, X86::RDX, X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 }; static const unsigned CalleeSavedRegsWin64[] = { X86::RBX, X86::RBP, X86::RDI, X86::RSI, X86::R12, X86::R13, X86::R14, X86::R15, X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, X86::XMM14, X86::XMM15, 0 }; if (Is64Bit) { if (IsWin64) return CalleeSavedRegsWin64; else return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); } else { return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); } } const TargetRegisterClass* const* X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { bool callsEHReturn = false; if (MF) { const MachineFrameInfo *MFI = MF->getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); callsEHReturn = (MMI ? MMI->callsEHReturn() : false); } static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, &X86::GR32RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, 0 }; static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::GR64RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, &X86::VR128RegClass, 0 }; if (Is64Bit) { if (IsWin64) return CalleeSavedRegClassesWin64; else return (callsEHReturn ? CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); } else { return (callsEHReturn ? CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); } } BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); // Set the stack-pointer register and its aliases as reserved. Reserved.set(X86::RSP); Reserved.set(X86::ESP); Reserved.set(X86::SP); Reserved.set(X86::SPL); // Set the instruction pointer register and its aliases as reserved. Reserved.set(X86::RIP); Reserved.set(X86::EIP); Reserved.set(X86::IP); // Set the frame-pointer register and its aliases as reserved if needed. if (hasFP(MF)) { Reserved.set(X86::RBP); Reserved.set(X86::EBP); Reserved.set(X86::BP); Reserved.set(X86::BPL); } // Mark the x87 stack registers as reserved, since they don't behave normally // with respect to liveness. We don't fully model the effects of x87 stack // pushes and pops after stackification. Reserved.set(X86::ST0); Reserved.set(X86::ST1); Reserved.set(X86::ST2); Reserved.set(X86::ST3); Reserved.set(X86::ST4); Reserved.set(X86::ST5); Reserved.set(X86::ST6); Reserved.set(X86::ST7); return Reserved; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); return (NoFramePointerElim || needsStackRealignment(MF) || MFI->hasVarSizedObjects() || MFI->isFrameAddressTaken() || MF.getInfo()->getForceFramePointer() || (MMI && MMI->callsUnwindInit())); } bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); return (RealignStack && !MFI->hasVarSizedObjects()); } bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); bool requiresRealignment = RealignStack && (MFI->getMaxAlignment() > StackAlign); // FIXME: Currently we don't support stack realignment for functions with // variable-sized allocas. // FIXME: Temporary disable the error - it seems to be too conservative. if (0 && requiresRealignment && MFI->hasVarSizedObjects()) llvm_report_error( "Stack realignment in presense of dynamic allocas is not supported"); return (requiresRealignment && !MFI->hasVarSizedObjects()); } bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { return !MF.getFrameInfo()->hasVarSizedObjects(); } bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg, int &FrameIdx) const { if (Reg == FramePtr && hasFP(MF)) { FrameIdx = MF.getFrameInfo()->getObjectIndexBegin(); return true; } return false; } int X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const { const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); const MachineFrameInfo *MFI = MF.getFrameInfo(); int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea(); uint64_t StackSize = MFI->getStackSize(); if (needsStackRealignment(MF)) { if (FI < 0) { // Skip the saved EBP. Offset += SlotSize; } else { unsigned Align = MFI->getObjectAlignment(FI); assert( (-(Offset + StackSize)) % Align == 0); Align = 0; return Offset + StackSize; } // FIXME: Support tail calls } else { if (!hasFP(MF)) return Offset + StackSize; // Skip the saved EBP. Offset += SlotSize; // Skip the RETADDR move area const X86MachineFunctionInfo *X86FI = MF.getInfo(); int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; } return Offset; } void X86RegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (!hasReservedCallFrame(MF)) { // If the stack pointer can be changed after prologue, turn the // adjcallstackup instruction into a 'sub ESP, ' and the // adjcallstackdown instruction into 'add ESP, ' // TODO: consider using push / pop instead of sub + store / add MachineInstr *Old = I; uint64_t Amount = Old->getOperand(0).getImm(); if (Amount != 0) { // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; MachineInstr *New = 0; if (Old->getOpcode() == getCallFrameSetupOpcode()) { New = BuildMI(MF, Old->getDebugLoc(), TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr) .addReg(StackPtr) .addImm(Amount); } else { assert(Old->getOpcode() == getCallFrameDestroyOpcode()); // Factor out the amount the callee already popped. uint64_t CalleeAmt = Old->getOperand(1).getImm(); Amount -= CalleeAmt; if (Amount) { unsigned Opc = (Amount < 128) ? (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(Amount); } } if (New) { // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); // Replace the pseudo instruction with a new instruction. MBB.insert(I, New); } } } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { // If we are performing frame pointer elimination and if the callee pops // something off the stack pointer, add it back. We do this until we have // more advanced stack pointer tracking ability. if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { unsigned Opc = (CalleeAmt < 128) ? (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); MachineInstr *Old = I; MachineInstr *New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(CalleeAmt); // The EFLAGS implicit def is dead. New->getOperand(3).setIsDead(); MBB.insert(I, New); } } MBB.erase(I); } unsigned X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, int *Value, RegScavenger *RS) const{ assert(SPAdj == 0 && "Unexpected"); unsigned i = 0; MachineInstr &MI = *II; MachineFunction &MF = *MI.getParent()->getParent(); while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } int FrameIndex = MI.getOperand(i).getIndex(); unsigned BasePtr; if (needsStackRealignment(MF)) BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); else BasePtr = (hasFP(MF) ? FramePtr : StackPtr); // This must be part of a four operand memory reference. Replace the // FrameIndex with base register with EBP. Add an offset to the offset. MI.getOperand(i).ChangeToRegister(BasePtr, false); // Now add the frame object offset to the offset from EBP. if (MI.getOperand(i+3).isImm()) { // Offset is a 32-bit integer. int Offset = getFrameIndexOffset(MF, FrameIndex) + (int)(MI.getOperand(i + 3).getImm()); MI.getOperand(i + 3).ChangeToImmediate(Offset); } else { // Offset is symbolic. This is extremely rare. uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) + (uint64_t)MI.getOperand(i+3).getOffset(); MI.getOperand(i+3).setOffset(Offset); } return 0; } void X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { MachineFrameInfo *MFI = MF.getFrameInfo(); // Calculate and set max stack object alignment early, so we can decide // whether we will need stack realignment (and thus FP). MFI->calculateMaxStackAlignment(); X86MachineFunctionInfo *X86FI = MF.getInfo(); int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) { // create RETURNADDR area // arg // arg // RETADDR // { ... // RETADDR area // ... // } // [EBP] MFI->CreateFixedObject(-TailCallReturnAddrDelta, (-1U*SlotSize)+TailCallReturnAddrDelta, true, false); } if (hasFP(MF)) { assert((TailCallReturnAddrDelta <= 0) && "The Delta should always be zero or negative"); const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); // Create a frame entry for the EBP register that must be saved. int FrameIdx = MFI->CreateFixedObject(SlotSize, -(int)SlotSize + TFI.getOffsetOfLocalArea() + TailCallReturnAddrDelta, true, false); assert(FrameIdx == MFI->getObjectIndexBegin() && "Slot for EBP register must be last in order to be found!"); FrameIdx = 0; } } /// emitSPUpdate - Emit a series of instructions to increment / decrement the /// stack pointer by a constant value. static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, int64_t NumBytes, bool Is64Bit, const TargetInstrInfo &TII) { bool isSub = NumBytes < 0; uint64_t Offset = isSub ? -NumBytes : NumBytes; unsigned Opc = isSub ? ((Offset < 128) ? (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) : ((Offset < 128) ? (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); uint64_t Chunk = (1LL << 31) - 1; DebugLoc DL = MBB.findDebugLoc(MBBI); while (Offset) { uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) .addReg(StackPtr) .addImm(ThisVal); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. Offset -= ThisVal; } } /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. static void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { if (MBBI == MBB.begin()) return; MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += PI->getOperand(2).getImm(); MBB.erase(PI); } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= PI->getOperand(2).getImm(); MBB.erase(PI); } } /// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. static void mergeSPUpdatesDown(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, uint64_t *NumBytes = NULL) { // FIXME: THIS ISN'T RUN!!! return; if (MBBI == MBB.end()) return; MachineBasicBlock::iterator NI = llvm::next(MBBI); if (NI == MBB.end()) return; unsigned Opc = NI->getOpcode(); if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes -= NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && NI->getOperand(0).getReg() == StackPtr) { if (NumBytes) *NumBytes += NI->getOperand(2).getImm(); MBB.erase(NI); MBBI = NI; } } /// mergeSPUpdates - Checks the instruction before/after the passed /// instruction. If it is an ADD/SUB instruction it is deleted argument and the /// stack adjustment is returned as a positive value for ADD and a negative for /// SUB. static int mergeSPUpdates(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned StackPtr, bool doMergeWithPrevious) { if ((doMergeWithPrevious && MBBI == MBB.begin()) || (!doMergeWithPrevious && MBBI == MBB.end())) return 0; MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); unsigned Opc = PI->getOpcode(); int Offset = 0; if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && PI->getOperand(0).getReg() == StackPtr){ Offset += PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && PI->getOperand(0).getReg() == StackPtr) { Offset -= PI->getOperand(2).getImm(); MBB.erase(PI); if (!doMergeWithPrevious) MBBI = NI; } return Offset; } void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF, unsigned LabelId, unsigned FramePtr) const { MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); if (!MMI) return; // Add callee saved registers to move list. const std::vector &CSI = MFI->getCalleeSavedInfo(); if (CSI.empty()) return; std::vector &Moves = MMI->getFrameMoves(); const TargetData *TD = MF.getTarget().getTargetData(); bool HasFP = hasFP(MF); // Calculate amount of bytes used for return address storing. int stackGrowth = (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize()); // FIXME: This is dirty hack. The code itself is pretty mess right now. // It should be rewritten from scratch and generalized sometimes. // Determine maximum offset (minumum due to stack growth). int64_t MaxOffset = 0; for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) MaxOffset = std::min(MaxOffset, MFI->getObjectOffset(I->getFrameIdx())); // Calculate offsets. int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; for (std::vector::const_iterator I = CSI.begin(), E = CSI.end(); I != E; ++I) { int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); unsigned Reg = I->getReg(); Offset = MaxOffset - Offset + saveAreaOffset; // Don't output a new machine move if we're re-saving the frame // pointer. This happens when the PrologEpilogInserter has inserted an extra // "PUSH" of the frame pointer -- the "emitPrologue" method automatically // generates one when frame pointers are used. If we generate a "machine // move" for this extra "PUSH", the linker will lose track of the fact that // the frame pointer should have the value of the first "PUSH" when it's // trying to unwind. // // FIXME: This looks inelegant. It's possibly correct, but it's covering up // another bug. I.e., one where we generate a prolog like this: // // pushl %ebp // movl %esp, %ebp // pushl %ebp // pushl %esi // ... // // The immediate re-push of EBP is unnecessary. At the least, it's an // optimization bug. EBP can be used as a scratch register in certain // cases, but probably not when we have a frame pointer. if (HasFP && FramePtr == Reg) continue; MachineLocation CSDst(MachineLocation::VirtualFP, Offset); MachineLocation CSSrc(Reg); Moves.push_back(MachineMove(LabelId, CSDst, CSSrc)); } } /// emitPrologue - Push callee-saved registers onto the stack, which /// automatically adjust the stack pointer. Adjust the stack pointer to allocate /// space for local variables. Also emit labels used by the exception handler to /// generate the exception handling frames. void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); const Function *Fn = MF.getFunction(); const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget(); MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) || !Fn->doesNotThrow() || UnwindTablesMandatory; uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. bool HasFP = hasFP(MF); DebugLoc DL; // Add RETADDR move area to callee saved frame size. int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); if (TailCallReturnAddrDelta < 0) X86FI->setCalleeSavedFrameSize( X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); // If this is x86-64 and the Red Zone is not disabled, if we are a leaf // function, and use up to 128 bytes of stack space, don't have a frame // pointer, calls, or dynamic alloca then we do not need to adjust the // stack pointer (we fit in the Red Zone). if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) && !needsStackRealignment(MF) && !MFI->hasVarSizedObjects() && // No dynamic alloca. !MFI->hasCalls() && // No calls. !Subtarget->isTargetWin64()) { // Win64 has no Red Zone uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); if (HasFP) MinSize += SlotSize; StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); MFI->setStackSize(StackSize); } else if (Subtarget->isTargetWin64()) { // We need to always allocate 32 bytes as register spill area. // FIXME: We might reuse these 32 bytes for leaf functions. StackSize += 32; MFI->setStackSize(StackSize); } // Insert stack pointer adjustment for later moving of return addr. Only // applies to tail call optimized functions where the callee argument stack // size is bigger than the callers. if (TailCallReturnAddrDelta < 0) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), StackPtr) .addReg(StackPtr) .addImm(-TailCallReturnAddrDelta); MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. } // Mapping for machine moves: // // DST: VirtualFP AND // SRC: VirtualFP => DW_CFA_def_cfa_offset // ELSE => DW_CFA_def_cfa // // SRC: VirtualFP AND // DST: Register => DW_CFA_def_cfa_register // // ELSE // OFFSET < 0 => DW_CFA_offset_extended_sf // REG < 64 => DW_CFA_offset + Reg // ELSE => DW_CFA_offset_extended std::vector &Moves = MMI->getFrameMoves(); const TargetData *TD = MF.getTarget().getTargetData(); uint64_t NumBytes = 0; int stackGrowth = (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == TargetFrameInfo::StackGrowsUp ? TD->getPointerSize() : -TD->getPointerSize()); if (HasFP) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; if (needsStackRealignment(MF)) FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); // Get the offset of the stack slot for the EBP register, which is // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. // Update the frame offset adjustment. MFI->setOffsetAdjustment(-NumBytes); // Save EBP/RBP into the appropriate stack slot. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(FramePtr, RegState::Kill); if (needsFrameMoves) { // Mark the place where EBP/RBP was saved. unsigned FrameLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); // Define the current CFA rule to use the provided offset. if (StackSize) { MachineLocation SPDst(MachineLocation::VirtualFP); MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } else { // FIXME: Verify & implement for FP MachineLocation SPDst(StackPtr); MachineLocation SPSrc(StackPtr, stackGrowth); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } // Change the rule for the FramePtr to be an "offset" rule. MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth); MachineLocation FPSrc(FramePtr); Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc)); } // Update EBP with the new base value... BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) .addReg(StackPtr); if (needsFrameMoves) { // Mark effective beginning of when frame pointer becomes valid. unsigned FrameLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); // Define the current CFA to use the EBP/RBP register. MachineLocation FPDst(FramePtr); MachineLocation FPSrc(MachineLocation::VirtualFP); Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc)); } // Mark the FramePtr as live-in in every block except the entry. for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); I != E; ++I) I->addLiveIn(FramePtr); // Realign stack if (needsStackRealignment(MF)) { MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr).addReg(StackPtr).addImm(-MaxAlign); // The EFLAGS implicit def is dead. MI->getOperand(3).setIsDead(); } } else { NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); } // Skip the callee-saved push instructions. bool PushedRegs = false; int StackOffset = 2 * stackGrowth; while (MBBI != MBB.end() && (MBBI->getOpcode() == X86::PUSH32r || MBBI->getOpcode() == X86::PUSH64r)) { PushedRegs = true; ++MBBI; if (!HasFP && needsFrameMoves) { // Mark callee-saved push instruction. unsigned LabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId); // Define the current CFA rule to use the provided offset. unsigned Ptr = StackSize ? MachineLocation::VirtualFP : StackPtr; MachineLocation SPDst(Ptr); MachineLocation SPSrc(Ptr, StackOffset); Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); StackOffset += stackGrowth; } } DL = MBB.findDebugLoc(MBBI); // Adjust stack pointer: ESP -= numbytes. if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { // Check, whether EAX is livein for this function. bool isEAXAlive = false; for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(), EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { unsigned Reg = II->first; isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || Reg == X86::AH || Reg == X86::AL); } // Function prologue calls _alloca to probe the stack when allocating more // than 4k bytes in one go. Touching the stack at 4K increments is necessary // to ensure that the guard pages used by the OS virtual memory manager are // allocated in correct sequence. if (!isEAXAlive) { BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(NumBytes); BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) .addExternalSymbol("_alloca"); } else { // Save EAX BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) .addReg(X86::EAX, RegState::Kill); // Allocate NumBytes-4 bytes on stack. We'll also use 4 already // allocated bytes for EAX. BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) .addImm(NumBytes - 4); BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) .addExternalSymbol("_alloca"); // Restore EAX MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX), StackPtr, false, NumBytes - 4); MBB.insert(MBBI, MI); } } else if (NumBytes) { // If there is an SUB32ri of ESP immediately before this instruction, merge // the two. This can be the case when tail call elimination is enabled and // the callee has more arguments then the caller. NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); // If there is an ADD32ri or SUB32ri of ESP immediately after this // instruction, merge the two instructions. mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); if (NumBytes) emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); } if ((NumBytes || PushedRegs) && needsFrameMoves) { // Mark end of stack pointer adjustment. unsigned LabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId); if (!HasFP && NumBytes) { // Define the current CFA rule to use the provided offset. if (StackSize) { MachineLocation SPDst(MachineLocation::VirtualFP); MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize + stackGrowth); Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); } else { // FIXME: Verify & implement for FP MachineLocation SPDst(StackPtr); MachineLocation SPSrc(StackPtr, stackGrowth); Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); } } // Emit DWARF info specifying the offsets of the callee-saved registers. if (PushedRegs) emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr); } } void X86RegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); X86MachineFunctionInfo *X86FI = MF.getInfo(); MachineBasicBlock::iterator MBBI = prior(MBB.end()); unsigned RetOpcode = MBBI->getOpcode(); DebugLoc DL = MBBI->getDebugLoc(); switch (RetOpcode) { default: llvm_unreachable("Can only insert epilog into returning blocks"); case X86::RET: case X86::RETI: case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNri64: case X86::TCRETURNdi64: case X86::EH_RETURN: case X86::EH_RETURN64: case X86::TAILJMPd: case X86::TAILJMPr: case X86::TAILJMPm: break; // These are ok } // Get the number of bytes to allocate from the FrameInfo. uint64_t StackSize = MFI->getStackSize(); uint64_t MaxAlign = MFI->getMaxAlignment(); unsigned CSSize = X86FI->getCalleeSavedFrameSize(); uint64_t NumBytes = 0; if (hasFP(MF)) { // Calculate required stack adjustment. uint64_t FrameSize = StackSize - SlotSize; if (needsStackRealignment(MF)) FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; NumBytes = FrameSize - CSSize; // Pop EBP. BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); } else { NumBytes = StackSize - CSSize; } // Skip the callee-saved pop instructions. MachineBasicBlock::iterator LastCSPop = MBBI; while (MBBI != MBB.begin()) { MachineBasicBlock::iterator PI = prior(MBBI); unsigned Opc = PI->getOpcode(); if (Opc != X86::POP32r && Opc != X86::POP64r && !PI->getDesc().isTerminator()) break; --MBBI; } DL = MBBI->getDebugLoc(); // If there is an ADD32ri or SUB32ri of ESP immediately before this // instruction, merge the two instructions. if (NumBytes || MFI->hasVarSizedObjects()) mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); // If dynamic alloca is used, then reset esp to point to the last callee-saved // slot before popping them off! Same applies for the case, when stack was // realigned. if (needsStackRealignment(MF)) { // We cannot use LEA here, because stack pointer was realigned. We need to // deallocate local frame back. if (CSSize) { emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); MBBI = prior(LastCSPop); } BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(FramePtr); } else if (MFI->hasVarSizedObjects()) { if (CSSize) { unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), FramePtr, false, -CSSize); MBB.insert(MBBI, MI); } else { BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr) .addReg(FramePtr); } } else if (NumBytes) { // Adjust stack pointer back: ESP += numbytes. emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); } // We're returning from function via eh_return. if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { MBBI = prior(MBB.end()); MachineOperand &DestAddr = MBBI->getOperand(0); assert(DestAddr.isReg() && "Offset should be in register!"); BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr).addReg(DestAddr.getReg()); } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { // Tail call return: adjust the stack pointer and jump to callee. MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); MachineOperand &StackAdjust = MBBI->getOperand(1); assert(StackAdjust.isImm() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); int MaxTCDelta = X86FI->getTCReturnAddrDelta(); int Offset = 0; assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); // Incoporate the retaddr area. Offset = StackAdj-MaxTCDelta; assert(Offset >= 0 && "Offset should never be negative"); if (Offset) { // Check for possible merge with preceeding ADD instruction. Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); } // Jump to label or value in register. if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)). addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), JumpTarget.getTargetFlags()); } else if (RetOpcode == X86::TCRETURNri64) { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); } else { BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg()); } MachineInstr *NewMI = prior(MBBI); for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) NewMI->addOperand(MBBI->getOperand(i)); // Delete the pseudo instruction TCRETURN. MBB.erase(MBBI); } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && (X86FI->getTCReturnAddrDelta() < 0)) { // Add the return addr area delta back since we are not tail calling. int delta = -1*X86FI->getTCReturnAddrDelta(); MBBI = prior(MBB.end()); // Check for possible merge with preceeding ADD instruction. delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); } } unsigned X86RegisterInfo::getRARegister() const { return Is64Bit ? X86::RIP // Should have dwarf #16. : X86::EIP; // Should have dwarf #8. } unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const { return hasFP(MF) ? FramePtr : StackPtr; } void X86RegisterInfo::getInitialFrameState(std::vector &Moves) const { // Calculate amount of bytes used for return address storing int stackGrowth = (Is64Bit ? -8 : -4); // Initial state of the frame pointer is esp+4. MachineLocation Dst(MachineLocation::VirtualFP); MachineLocation Src(StackPtr, stackGrowth); Moves.push_back(MachineMove(0, Dst, Src)); // Add return address to move list MachineLocation CSDst(StackPtr, stackGrowth); MachineLocation CSSrc(getRARegister()); Moves.push_back(MachineMove(0, CSDst, CSSrc)); } unsigned X86RegisterInfo::getEHExceptionRegister() const { llvm_unreachable("What is the exception register"); return 0; } unsigned X86RegisterInfo::getEHHandlerRegister() const { llvm_unreachable("What is the exception handler register"); return 0; } namespace llvm { unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) { switch (VT.getSimpleVT().SimpleTy) { default: return Reg; case MVT::i8: if (High) { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AH; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DH; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CH; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BH; } } else { switch (Reg) { default: return 0; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AL; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DL; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CL; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BL; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SIL; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DIL; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BPL; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SPL; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8B; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9B; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10B; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11B; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12B; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13B; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14B; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15B; } } case MVT::i16: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::AX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::DX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::CX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::BX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::SI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::DI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::BP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::SP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8W; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9W; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10W; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11W; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12W; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13W; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14W; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15W; } case MVT::i32: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::EAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::EDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::ECX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::EBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::ESI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::EDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::EBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::ESP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8D; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9D; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10D; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11D; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12D; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13D; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14D; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15D; } case MVT::i64: switch (Reg) { default: return Reg; case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: return X86::RAX; case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: return X86::RDX; case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: return X86::RCX; case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: return X86::RBX; case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: return X86::RSI; case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: return X86::RDI; case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: return X86::RBP; case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: return X86::RSP; case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: return X86::R8; case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: return X86::R9; case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: return X86::R10; case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: return X86::R11; case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: return X86::R12; case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: return X86::R13; case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: return X86::R14; case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: return X86::R15; } } return Reg; } } #include "X86GenRegisterInfo.inc"