//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements an _extremely_ simple interprocedural constant // propagation pass. It could certainly be improved in many different ways, // like using a worklist. This pass makes arguments dead, but does not remove // them. The existing dead argument elimination pass should be run after this // to clean up the mess. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ipconstprop" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/SmallVector.h" using namespace llvm; STATISTIC(NumArgumentsProped, "Number of args turned into constants"); STATISTIC(NumReturnValProped, "Number of return values turned into constants"); namespace { /// IPCP - The interprocedural constant propagation pass /// struct VISIBILITY_HIDDEN IPCP : public ModulePass { static char ID; // Pass identification, replacement for typeid IPCP() : ModulePass(&ID) {} bool runOnModule(Module &M); private: bool PropagateConstantsIntoArguments(Function &F); bool PropagateConstantReturn(Function &F); }; } char IPCP::ID = 0; static RegisterPass X("ipconstprop", "Interprocedural constant propagation"); ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); } bool IPCP::runOnModule(Module &M) { bool Changed = false; bool LocalChange = true; Context = &M.getContext(); // FIXME: instead of using smart algorithms, we just iterate until we stop // making changes. while (LocalChange) { LocalChange = false; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) { // Delete any klingons. I->removeDeadConstantUsers(); if (I->hasLocalLinkage()) LocalChange |= PropagateConstantsIntoArguments(*I); Changed |= PropagateConstantReturn(*I); } Changed |= LocalChange; } return Changed; } /// PropagateConstantsIntoArguments - Look at all uses of the specified /// function. If all uses are direct call sites, and all pass a particular /// constant in for an argument, propagate that constant in as the argument. /// bool IPCP::PropagateConstantsIntoArguments(Function &F) { if (F.arg_empty() || F.use_empty()) return false; // No arguments? Early exit. // For each argument, keep track of its constant value and whether it is a // constant or not. The bool is driven to true when found to be non-constant. SmallVector, 16> ArgumentConstants; ArgumentConstants.resize(F.arg_size()); unsigned NumNonconstant = 0; for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) { // Used by a non-instruction, or not the callee of a function, do not // transform. if (!isa(*UI) && !isa(*UI)) return false; CallSite CS = CallSite::get(cast(*UI)); if (!CS.isCallee(UI)) return false; // Check out all of the potentially constant arguments. Note that we don't // inspect varargs here. CallSite::arg_iterator AI = CS.arg_begin(); Function::arg_iterator Arg = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI, ++Arg) { // If this argument is known non-constant, ignore it. if (ArgumentConstants[i].second) continue; Constant *C = dyn_cast(*AI); if (C && ArgumentConstants[i].first == 0) { ArgumentConstants[i].first = C; // First constant seen. } else if (C && ArgumentConstants[i].first == C) { // Still the constant value we think it is. } else if (*AI == &*Arg) { // Ignore recursive calls passing argument down. } else { // Argument became non-constant. If all arguments are non-constant now, // give up on this function. if (++NumNonconstant == ArgumentConstants.size()) return false; ArgumentConstants[i].second = true; } } } // If we got to this point, there is a constant argument! assert(NumNonconstant != ArgumentConstants.size()); bool MadeChange = false; Function::arg_iterator AI = F.arg_begin(); for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI) { // Do we have a constant argument? if (ArgumentConstants[i].second || AI->use_empty()) continue; Value *V = ArgumentConstants[i].first; if (V == 0) V = Context->getUndef(AI->getType()); AI->replaceAllUsesWith(V); ++NumArgumentsProped; MadeChange = true; } return MadeChange; } // Check to see if this function returns one or more constants. If so, replace // all callers that use those return values with the constant value. This will // leave in the actual return values and instructions, but deadargelim will // clean that up. // // Additionally if a function always returns one of its arguments directly, // callers will be updated to use the value they pass in directly instead of // using the return value. bool IPCP::PropagateConstantReturn(Function &F) { if (F.getReturnType() == Type::VoidTy) return false; // No return value. // If this function could be overridden later in the link stage, we can't // propagate information about its results into callers. if (F.mayBeOverridden()) return false; // Check to see if this function returns a constant. SmallVector RetVals; const StructType *STy = dyn_cast(F.getReturnType()); if (STy) for (unsigned i = 0, e = STy->getNumElements(); i < e; ++i) RetVals.push_back(Context->getUndef(STy->getElementType(i))); else RetVals.push_back(Context->getUndef(F.getReturnType())); unsigned NumNonConstant = 0; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { for (unsigned i = 0, e = RetVals.size(); i != e; ++i) { // Already found conflicting return values? Value *RV = RetVals[i]; if (!RV) continue; // Find the returned value Value *V; if (!STy) V = RI->getOperand(i); else V = FindInsertedValue(RI->getOperand(0), i, Context); if (V) { // Ignore undefs, we can change them into anything if (isa(V)) continue; // Try to see if all the rets return the same constant or argument. if (isa(V) || isa(V)) { if (isa(RV)) { // No value found yet? Try the current one. RetVals[i] = V; continue; } // Returning the same value? Good. if (RV == V) continue; } } // Different or no known return value? Don't propagate this return // value. RetVals[i] = 0; // All values non constant? Stop looking. if (++NumNonConstant == RetVals.size()) return false; } } // If we got here, the function returns at least one constant value. Loop // over all users, replacing any uses of the return value with the returned // constant. bool MadeChange = false; for (Value::use_iterator UI = F.use_begin(), E = F.use_end(); UI != E; ++UI) { CallSite CS = CallSite::get(*UI); Instruction* Call = CS.getInstruction(); // Not a call instruction or a call instruction that's not calling F // directly? if (!Call || !CS.isCallee(UI)) continue; // Call result not used? if (Call->use_empty()) continue; MadeChange = true; if (STy == 0) { Value* New = RetVals[0]; if (Argument *A = dyn_cast(New)) // Was an argument returned? Then find the corresponding argument in // the call instruction and use that. New = CS.getArgument(A->getArgNo()); Call->replaceAllUsesWith(New); continue; } for (Value::use_iterator I = Call->use_begin(), E = Call->use_end(); I != E;) { Instruction *Ins = cast(*I); // Increment now, so we can remove the use ++I; // Find the index of the retval to replace with int index = -1; if (ExtractValueInst *EV = dyn_cast(Ins)) if (EV->hasIndices()) index = *EV->idx_begin(); // If this use uses a specific return value, and we have a replacement, // replace it. if (index != -1) { Value *New = RetVals[index]; if (New) { if (Argument *A = dyn_cast(New)) // Was an argument returned? Then find the corresponding argument in // the call instruction and use that. New = CS.getArgument(A->getArgNo()); Ins->replaceAllUsesWith(New); Ins->eraseFromParent(); } } } } if (MadeChange) ++NumReturnValProped; return MadeChange; }