//===- Inliner.cpp - Code common to all inliners --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the mechanics required to implement inlining without // missing any calls and updating the call graph. The decisions of which calls // are profitable to inline are implemented elsewhere. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "inline" #include "llvm/Module.h" #include "llvm/Instructions.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Support/CallSite.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/IPO/InlinerPass.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include <set> using namespace llvm; STATISTIC(NumInlined, "Number of functions inlined"); STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); static cl::opt<int> InlineLimit("inline-threshold", cl::Hidden, cl::init(200), cl::desc("Control the amount of inlining to perform (default = 200)")); Inliner::Inliner(void *ID) : CallGraphSCCPass(ID), InlineThreshold(InlineLimit) {} Inliner::Inliner(void *ID, int Threshold) : CallGraphSCCPass(ID), InlineThreshold(Threshold) {} /// getAnalysisUsage - For this class, we declare that we require and preserve /// the call graph. If the derived class implements this method, it should /// always explicitly call the implementation here. void Inliner::getAnalysisUsage(AnalysisUsage &Info) const { Info.addRequired<TargetData>(); CallGraphSCCPass::getAnalysisUsage(Info); } // InlineCallIfPossible - If it is possible to inline the specified call site, // do so and update the CallGraph for this operation. static bool InlineCallIfPossible(CallSite CS, CallGraph &CG, const std::set<Function*> &SCCFunctions, const TargetData &TD) { Function *Callee = CS.getCalledFunction(); if (!InlineFunction(CS, &CG, &TD)) return false; // If we inlined the last possible call site to the function, delete the // function body now. if (Callee->use_empty() && Callee->hasInternalLinkage() && !SCCFunctions.count(Callee)) { DOUT << " -> Deleting dead function: " << Callee->getName() << "\n"; CallGraphNode *CalleeNode = CG[Callee]; // Remove any call graph edges from the callee to its callees. CalleeNode->removeAllCalledFunctions(); // Removing the node for callee from the call graph and delete it. delete CG.removeFunctionFromModule(CalleeNode); ++NumDeleted; } return true; } /// shouldInline - Return true if the inliner should attempt to inline /// at the given CallSite. bool Inliner::shouldInline(CallSite CS) { int Cost = getInlineCost(CS); float FudgeFactor = getInlineFudgeFactor(CS); int CurrentThreshold = InlineThreshold; Function *Fn = CS.getCaller(); if (Fn && !Fn->isDeclaration() && Fn->hasFnAttr(Attribute::OptimizeForSize) && InlineThreshold != 50) { CurrentThreshold = 50; } if (Cost >= (int)(CurrentThreshold * FudgeFactor)) { DOUT << " NOT Inlining: cost=" << Cost << ", Call: " << *CS.getInstruction(); return false; } else { DOUT << " Inlining: cost=" << Cost << ", Call: " << *CS.getInstruction(); return true; } } bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) { CallGraph &CG = getAnalysis<CallGraph>(); std::set<Function*> SCCFunctions; DOUT << "Inliner visiting SCC:"; for (unsigned i = 0, e = SCC.size(); i != e; ++i) { Function *F = SCC[i]->getFunction(); if (F) SCCFunctions.insert(F); DOUT << " " << (F ? F->getName() : "INDIRECTNODE"); } // Scan through and identify all call sites ahead of time so that we only // inline call sites in the original functions, not call sites that result // from inlining other functions. std::vector<CallSite> CallSites; for (unsigned i = 0, e = SCC.size(); i != e; ++i) if (Function *F = SCC[i]->getFunction()) for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { CallSite CS = CallSite::get(I); if (CS.getInstruction() && (!CS.getCalledFunction() || !CS.getCalledFunction()->isDeclaration())) CallSites.push_back(CS); } DOUT << ": " << CallSites.size() << " call sites.\n"; // Now that we have all of the call sites, move the ones to functions in the // current SCC to the end of the list. unsigned FirstCallInSCC = CallSites.size(); for (unsigned i = 0; i < FirstCallInSCC; ++i) if (Function *F = CallSites[i].getCalledFunction()) if (SCCFunctions.count(F)) std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); // Now that we have all of the call sites, loop over them and inline them if // it looks profitable to do so. bool Changed = false; bool LocalChange; do { LocalChange = false; // Iterate over the outer loop because inlining functions can cause indirect // calls to become direct calls. for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) if (Function *Callee = CallSites[CSi].getCalledFunction()) { // Calls to external functions are never inlinable. if (Callee->isDeclaration() || CallSites[CSi].getInstruction()->getParent()->getParent() ==Callee){ if (SCC.size() == 1) { std::swap(CallSites[CSi], CallSites.back()); CallSites.pop_back(); } else { // Keep the 'in SCC / not in SCC' boundary correct. CallSites.erase(CallSites.begin()+CSi); } --CSi; continue; } // If the policy determines that we should inline this function, // try to do so. CallSite CS = CallSites[CSi]; if (shouldInline(CS)) { // Attempt to inline the function... if (InlineCallIfPossible(CS, CG, SCCFunctions, getAnalysis<TargetData>())) { // Remove this call site from the list. If possible, use // swap/pop_back for efficiency, but do not use it if doing so would // move a call site to a function in this SCC before the // 'FirstCallInSCC' barrier. if (SCC.size() == 1) { std::swap(CallSites[CSi], CallSites.back()); CallSites.pop_back(); } else { CallSites.erase(CallSites.begin()+CSi); } --CSi; ++NumInlined; Changed = true; LocalChange = true; } } } } while (LocalChange); return Changed; } // doFinalization - Remove now-dead linkonce functions at the end of // processing to avoid breaking the SCC traversal. bool Inliner::doFinalization(CallGraph &CG) { std::set<CallGraphNode*> FunctionsToRemove; // Scan for all of the functions, looking for ones that should now be removed // from the program. Insert the dead ones in the FunctionsToRemove set. for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { CallGraphNode *CGN = I->second; if (Function *F = CGN ? CGN->getFunction() : 0) { // If the only remaining users of the function are dead constants, remove // them. F->removeDeadConstantUsers(); if ((F->hasLinkOnceLinkage() || F->hasInternalLinkage()) && F->use_empty()) { // Remove any call graph edges from the function to its callees. CGN->removeAllCalledFunctions(); // Remove any edges from the external node to the function's call graph // node. These edges might have been made irrelegant due to // optimization of the program. CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); // Removing the node for callee from the call graph and delete it. FunctionsToRemove.insert(CGN); } } } // Now that we know which functions to delete, do so. We didn't want to do // this inline, because that would invalidate our CallGraph::iterator // objects. :( bool Changed = false; for (std::set<CallGraphNode*>::iterator I = FunctionsToRemove.begin(), E = FunctionsToRemove.end(); I != E; ++I) { delete CG.removeFunctionFromModule(*I); ++NumDeleted; Changed = true; } return Changed; }