//===-- PoolAllocate.cpp - Pool Allocation Pass ---------------------------===// // // This transform changes programs so that disjoint data structures are // allocated out of different pools of memory, increasing locality and shrinking // pointer size. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/IPO/PoolAllocate.h" #include "llvm/Analysis/DataStructure.h" #include "llvm/Pass.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/iMemory.h" #include "llvm/iTerminators.h" #include "llvm/iOther.h" #include "llvm/ConstantVals.h" #include "llvm/Target/TargetData.h" #include "Support/STLExtras.h" #include // FIXME: This is dependant on the sparc backend layout conventions!! static TargetData TargetData("test"); namespace { // ScalarInfo - Information about an LLVM value that we know points to some // datastructure we are processing. // struct ScalarInfo { Value *Val; // Scalar value in Current Function AllocDSNode *AllocNode; // Allocation node it points to Value *PoolHandle; // PoolTy* LLVM value ScalarInfo(Value *V, AllocDSNode *AN, Value *PH) : Val(V), AllocNode(AN), PoolHandle(PH) {} }; // TransformFunctionInfo - Information about how a function eeds to be // transformed. // struct TransformFunctionInfo { // ArgInfo - Maintain information about the arguments that need to be // processed. Each pair corresponds to an argument (whose number is the // first element) that needs to have a pool pointer (the second element) // passed into the transformed function with it. // // As a special case, "argument" number -1 corresponds to the return value. // vector > ArgInfo; // Func - The function to be transformed... Function *Func; // default ctor... TransformFunctionInfo() : Func(0) {} inline bool operator<(const TransformFunctionInfo &TFI) const { return Func < TFI.Func || (Func == TFI.Func && ArgInfo < TFI.ArgInfo); } void finalizeConstruction() { // Sort the vector so that the return value is first, followed by the // argument records, in order. sort(ArgInfo.begin(), ArgInfo.end()); } }; // Define the pass class that we implement... class PoolAllocate : public Pass { // PoolTy - The type of a scalar value that contains a pool pointer. PointerType *PoolTy; public: PoolAllocate() { // Initialize the PoolTy instance variable, since the type never changes. vector PoolElements; PoolElements.push_back(PointerType::get(Type::SByteTy)); PoolElements.push_back(Type::UIntTy); PoolTy = PointerType::get(StructType::get(PoolElements)); // PoolTy = { sbyte*, uint }* CurModule = 0; DS = 0; PoolInit = PoolDestroy = PoolAlloc = PoolFree = 0; } bool run(Module *M); // getAnalysisUsageInfo - This function requires data structure information // to be able to see what is pool allocatable. // virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Required, Pass::AnalysisSet &,Pass::AnalysisSet &) { Required.push_back(DataStructure::ID); } private: // CurModule - The module being processed. Module *CurModule; // DS - The data structure graph for the module being processed. DataStructure *DS; // Prototypes that we add to support pool allocation... Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree; // The map of already transformed functions... map TransformedFunctions; // getTransformedFunction - Get a transformed function, or return null if // the function specified hasn't been transformed yet. // Function *getTransformedFunction(TransformFunctionInfo &TFI) const { map::const_iterator I = TransformedFunctions.find(TFI); if (I != TransformedFunctions.end()) return I->second; return 0; } // addPoolPrototypes - Add prototypes for the pool methods to the specified // module and update the Pool* instance variables to point to them. // void addPoolPrototypes(Module *M); // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescriptors vector. // void CreatePools(Function *F, const vector &Allocs, vector &PoolDescriptors); // processFunction - Convert a function to use pool allocation where // available. // bool processFunction(Function *F); void transformFunctionBody(Function *F, vector &Scalars); // transformFunction - Transform the specified function the specified way. // It we have already transformed that function that way, don't do anything. // void transformFunction(TransformFunctionInfo &TFI); }; } // isNotPoolableAlloc - This is a predicate that returns true if the specified // allocation node in a data structure graph is eligable for pool allocation. // static bool isNotPoolableAlloc(const AllocDSNode *DS) { if (DS->isAllocaNode()) return true; // Do not pool allocate alloca's. MallocInst *MI = cast(DS->getAllocation()); if (MI->isArrayAllocation() && !isa(MI->getArraySize())) return true; // Do not allow variable size allocations... return false; } // processFunction - Convert a function to use pool allocation where // available. // bool PoolAllocate::processFunction(Function *F) { // Get the closed datastructure graph for the current function... if there are // any allocations in this graph that are not escaping, we need to pool // allocate them here! // FunctionDSGraph &IPGraph = DS->getClosedDSGraph(F); // Get all of the allocations that do not escape the current function. Since // they are still live (they exist in the graph at all), this means we must // have scalar references to these nodes, but the scalars are never returned. // vector Allocs; IPGraph.getNonEscapingAllocations(Allocs); // Filter out allocations that we cannot handle. Currently, this includes // variable sized array allocations and alloca's (which we do not want to // pool allocate) // Allocs.erase(remove_if(Allocs.begin(), Allocs.end(), isNotPoolableAlloc), Allocs.end()); if (Allocs.empty()) return false; // Nothing to do. // Insert instructions into the function we are processing to create all of // the memory pool objects themselves. This also inserts destruction code. // This fills in the PoolDescriptors vector to be a array parallel with // Allocs, but containing the alloca instructions that allocate the pool ptr. // vector PoolDescriptors; CreatePools(F, Allocs, PoolDescriptors); // Loop through the value map looking for scalars that refer to nonescaping // allocations. Add them to the Scalars vector. Note that we may have // multiple entries in the Scalars vector for each value if it points to more // than one object. // map &ValMap = IPGraph.getValueMap(); vector Scalars; for (map::iterator I = ValMap.begin(), E = ValMap.end(); I != E; ++I) { const PointerValSet &PVS = I->second; // Set of things pointed to by scalar assert(PVS.size() == 1 && "Only handle scalars that point to one thing so far!"); // Check to see if the scalar points to anything that is an allocation... for (unsigned i = 0, e = PVS.size(); i != e; ++i) if (AllocDSNode *Alloc = dyn_cast(PVS[i].Node)) { assert(PVS[i].Index == 0 && "Nonzero not handled yet!"); // If the allocation is in the nonescaping set... vector::iterator AI = find(Allocs.begin(), Allocs.end(), Alloc); if (AI != Allocs.end()) { unsigned IDX = AI-Allocs.begin(); // Add it to the list of scalars we have Scalars.push_back(ScalarInfo(I->first, Alloc, PoolDescriptors[IDX])); } } } // Now we need to figure out what called methods we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // transformFunctionBody(F, Scalars); return true; } static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg, Value *PoolHandle) { assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!"); TFI.ArgInfo.push_back(make_pair(Arg, PoolHandle)); assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() && "Function call record should always call the same function!"); TFI.Func = CI->getCalledFunction(); } void PoolAllocate::transformFunctionBody(Function *F, vector &Scalars) { cerr << "In '" << F->getName() << "': Found the following values that point to poolable nodes:\n"; for (unsigned i = 0, e = Scalars.size(); i != e; ++i) Scalars[i].Val->dump(); // CallMap - Contain an entry for every call instruction that needs to be // transformed. Each entry in the map contains information about what we need // to do to each call site to change it to work. // map CallMap; // Now we need to figure out what called methods we need to transform, and // how. To do this, we look at all of the scalars, seeing which functions are // either used as a scalar value (so they return a data structure), or are // passed one of our scalar values. // for (unsigned i = 0, e = Scalars.size(); i != e; ++i) { Value *ScalarVal = Scalars[i].Val; // Check to see if the scalar _IS_ a call... if (CallInst *CI = dyn_cast(ScalarVal)) // If so, add information about the pool it will be returning... addCallInfo(CallMap[CI], CI, -1, Scalars[i].PoolHandle); // Check to see if the scalar is an operand to a call... for (Value::use_iterator UI = ScalarVal->use_begin(), UE = ScalarVal->use_end(); UI != UE; ++UI) { if (CallInst *CI = dyn_cast(*UI)) { // Find out which operand this is to the call instruction... User::op_iterator OI = find(CI->op_begin(), CI->op_end(), ScalarVal); assert(OI != CI->op_end() && "Call on use list but not an operand!?"); assert(OI != CI->op_begin() && "Pointer operand is call destination?"); // FIXME: This is broken if the same pointer is passed to a call more // than once! It will get multiple entries for the first pointer. // Add the operand number and pool handle to the call table... addCallInfo(CallMap[CI], CI, OI-CI->op_begin(), Scalars[i].PoolHandle); } } } // Print out call map... for (map::iterator I = CallMap.begin(); I != CallMap.end(); ++I) { cerr << "\nFor call: "; I->first->dump(); I->second.finalizeConstruction(); cerr << " must pass pool pointer for arg #"; for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i) cerr << I->second.ArgInfo[i].first << " "; cerr << "\n"; } // Loop through all of the call nodes, recursively creating the new functions // that we want to call... This uses a map to prevent infinite recursion and // to avoid duplicating functions unneccesarily. // for (map::iterator I = CallMap.begin(), E = CallMap.end(); I != E; ++I) { // Make sure the entries are sorted. I->second.finalizeConstruction(); transformFunction(I->second); } } // transformFunction - Transform the specified function the specified way. // It we have already transformed that function that way, don't do anything. // void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) { if (getTransformedFunction(TFI)) return; // Function xformation already done? } // CreatePools - Insert instructions into the function we are processing to // create all of the memory pool objects themselves. This also inserts // destruction code. Add an alloca for each pool that is allocated to the // PoolDescriptors vector. // void PoolAllocate::CreatePools(Function *F, const vector &Allocs, vector &PoolDescriptors) { // FIXME: This should use an IP version of the UnifyAllExits pass! vector ReturnNodes; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) if (isa((*I)->getTerminator())) ReturnNodes.push_back(*I); // Create the code that goes in the entry and exit nodes for the method... vector EntryNodeInsts; for (unsigned i = 0, e = Allocs.size(); i != e; ++i) { // Add an allocation and a free for each pool... AllocaInst *PoolAlloc = new AllocaInst(PoolTy, 0, "pool"); EntryNodeInsts.push_back(PoolAlloc); PoolDescriptors.push_back(PoolAlloc); // Keep track of pool allocas AllocationInst *AI = Allocs[i]->getAllocation(); // Initialize the pool. We need to know how big each allocation is. For // our purposes here, we assume we are allocating a scalar, or array of // constant size. // unsigned ElSize = TargetData.getTypeSize(AI->getAllocatedType()); ElSize *= cast(AI->getArraySize())->getValue(); vector Args; Args.push_back(PoolAlloc); // Pool to initialize Args.push_back(ConstantUInt::get(Type::UIntTy, ElSize)); EntryNodeInsts.push_back(new CallInst(PoolInit, Args)); // Destroy the pool... Args.pop_back(); for (unsigned EN = 0, ENE = ReturnNodes.size(); EN != ENE; ++EN) { Instruction *Destroy = new CallInst(PoolDestroy, Args); // Insert it before the return instruction... BasicBlock *RetNode = ReturnNodes[EN]; RetNode->getInstList().insert(RetNode->end()-1, Destroy); } } // Insert the entry node code into the entry block... F->getEntryNode()->getInstList().insert(F->getEntryNode()->begin()+1, EntryNodeInsts.begin(), EntryNodeInsts.end()); } // addPoolPrototypes - Add prototypes for the pool methods to the specified // module and update the Pool* instance variables to point to them. // void PoolAllocate::addPoolPrototypes(Module *M) { // Get PoolInit function... vector Args; Args.push_back(PoolTy); // Pool to initialize Args.push_back(Type::UIntTy); // Num bytes per element FunctionType *PoolInitTy = FunctionType::get(Type::VoidTy, Args, false); PoolInit = M->getOrInsertFunction("poolinit", PoolInitTy); // Get pooldestroy function... Args.pop_back(); // Only takes a pool... FunctionType *PoolDestroyTy = FunctionType::get(Type::VoidTy, Args, false); PoolDestroy = M->getOrInsertFunction("pooldestroy", PoolDestroyTy); const Type *PtrVoid = PointerType::get(Type::SByteTy); // Get the poolalloc function... FunctionType *PoolAllocTy = FunctionType::get(PtrVoid, Args, false); PoolAlloc = M->getOrInsertFunction("poolalloc", PoolAllocTy); // Get the poolfree function... Args.push_back(PtrVoid); FunctionType *PoolFreeTy = FunctionType::get(Type::VoidTy, Args, false); PoolFree = M->getOrInsertFunction("poolfree", PoolFreeTy); // Add the %PoolTy type to the symbol table of the module... M->addTypeName("PoolTy", PoolTy->getElementType()); } bool PoolAllocate::run(Module *M) { addPoolPrototypes(M); CurModule = M; DS = &getAnalysis(); bool Changed = false; for (Module::iterator I = M->begin(); I != M->end(); ++I) if (!(*I)->isExternal()) Changed |= processFunction(*I); CurModule = 0; DS = 0; return false; } // createPoolAllocatePass - Global function to access the functionality of this // pass... // Pass *createPoolAllocatePass() { return new PoolAllocate(); }