//===---- BDCE.cpp - Bit-tracking dead code elimination -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Bit-Tracking Dead Code Elimination pass. Some // instructions (shifts, some ands, ors, etc.) kill some of their input bits. // We track these dead bits and remove instructions that compute only these // dead bits. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "bdce" STATISTIC(NumRemoved, "Number of instructions removed (unused)"); STATISTIC(NumSimplified, "Number of instructions trivialized (dead bits)"); namespace { struct BDCE : public FunctionPass { static char ID; // Pass identification, replacement for typeid BDCE() : FunctionPass(ID) { initializeBDCEPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function& F) override; void getAnalysisUsage(AnalysisUsage& AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); } void determineLiveOperandBits(const Instruction *UserI, const Instruction *I, unsigned OperandNo, const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, APInt &KnownOne2); AssumptionCache *AC; DominatorTree *DT; }; } char BDCE::ID = 0; INITIALIZE_PASS_BEGIN(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(BDCE, "bdce", "Bit-Tracking Dead Code Elimination", false, false) static bool isAlwaysLive(Instruction *I) { return isa(I) || isa(I) || isa(I) || I->mayHaveSideEffects(); } void BDCE::determineLiveOperandBits(const Instruction *UserI, const Instruction *I, unsigned OperandNo, const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, APInt &KnownOne2) { unsigned BitWidth = AB.getBitWidth(); // We're called once per operand, but for some instructions, we need to // compute known bits of both operands in order to determine the live bits of // either (when both operands are instructions themselves). We don't, // however, want to do this twice, so we cache the result in APInts that live // in the caller. For the two-relevant-operands case, both operand values are // provided here. auto ComputeKnownBits = [&](unsigned BitWidth, const Value *V1, const Value *V2) { const DataLayout &DL = I->getModule()->getDataLayout(); KnownZero = APInt(BitWidth, 0); KnownOne = APInt(BitWidth, 0); computeKnownBits(const_cast(V1), KnownZero, KnownOne, DL, 0, AC, UserI, DT); if (V2) { KnownZero2 = APInt(BitWidth, 0); KnownOne2 = APInt(BitWidth, 0); computeKnownBits(const_cast(V2), KnownZero2, KnownOne2, DL, 0, AC, UserI, DT); } }; switch (UserI->getOpcode()) { default: break; case Instruction::Call: case Instruction::Invoke: if (const IntrinsicInst *II = dyn_cast(UserI)) switch (II->getIntrinsicID()) { default: break; case Intrinsic::bswap: // The alive bits of the input are the swapped alive bits of // the output. AB = AOut.byteSwap(); break; case Intrinsic::ctlz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the left of, and including, the leftmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getHighBitsSet(BitWidth, std::min(BitWidth, KnownOne.countLeadingZeros()+1)); } break; case Intrinsic::cttz: if (OperandNo == 0) { // We need some output bits, so we need all bits of the // input to the right of, and including, the rightmost bit // known to be one. ComputeKnownBits(BitWidth, I, nullptr); AB = APInt::getLowBitsSet(BitWidth, std::min(BitWidth, KnownOne.countTrailingZeros()+1)); } break; } break; case Instruction::Add: case Instruction::Sub: // Find the highest live output bit. We don't need any more input // bits than that (adds, and thus subtracts, ripple only to the // left). AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); break; case Instruction::Shl: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.lshr(ShiftAmt); // If the shift is nuw/nsw, then the high bits are not dead // (because we've promised that they *must* be zero). const ShlOperator *S = cast(UserI); if (S->hasNoSignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); else if (S->hasNoUnsignedWrap()) AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); } break; case Instruction::LShr: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.shl(ShiftAmt); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::AShr: if (OperandNo == 0) if (ConstantInt *CI = dyn_cast(UserI->getOperand(1))) { uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); AB = AOut.shl(ShiftAmt); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) .getBoolValue()) AB.setBit(BitWidth-1); // If the shift is exact, then the low bits are not dead // (they must be zero). if (cast(UserI)->isExact()) AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::And: AB = AOut; // For bits that are known zero, the corresponding bits in the // other operand are dead (unless they're both zero, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~KnownZero2; } else { if (!isa(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(KnownZero & ~KnownZero2); } break; case Instruction::Or: AB = AOut; // For bits that are known one, the corresponding bits in the // other operand are dead (unless they're both one, in which // case they can't both be dead, so just mark the LHS bits as // dead). if (OperandNo == 0) { ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); AB &= ~KnownOne2; } else { if (!isa(UserI->getOperand(0))) ComputeKnownBits(BitWidth, UserI->getOperand(0), I); AB &= ~(KnownOne & ~KnownOne2); } break; case Instruction::Xor: case Instruction::PHI: AB = AOut; break; case Instruction::Trunc: AB = AOut.zext(BitWidth); break; case Instruction::ZExt: AB = AOut.trunc(BitWidth); break; case Instruction::SExt: AB = AOut.trunc(BitWidth); // Because the high input bit is replicated into the // high-order bits of the result, if we need any of those // bits, then we must keep the highest input bit. if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), AOut.getBitWidth() - BitWidth)) .getBoolValue()) AB.setBit(BitWidth-1); break; case Instruction::Select: if (OperandNo != 0) AB = AOut; break; } } bool BDCE::runOnFunction(Function& F) { if (skipOptnoneFunction(F)) return false; AC = &getAnalysis().getAssumptionCache(F); DT = &getAnalysis().getDomTree(); DenseMap AliveBits; SmallVector Worklist; // The set of visited instructions (non-integer-typed only). SmallPtrSet Visited; // Collect the set of "root" instructions that are known live. for (Instruction &I : inst_range(F)) { if (!isAlwaysLive(&I)) continue; DEBUG(dbgs() << "BDCE: Root: " << I << "\n"); // For integer-valued instructions, set up an initial empty set of alive // bits and add the instruction to the work list. For other instructions // add their operands to the work list (for integer values operands, mark // all bits as live). if (IntegerType *IT = dyn_cast(I.getType())) { if (!AliveBits.count(&I)) { AliveBits[&I] = APInt(IT->getBitWidth(), 0); Worklist.push_back(&I); } continue; } // Non-integer-typed instructions... for (Use &OI : I.operands()) { if (Instruction *J = dyn_cast(OI)) { if (IntegerType *IT = dyn_cast(J->getType())) AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); Worklist.push_back(J); } } // To save memory, we don't add I to the Visited set here. Instead, we // check isAlwaysLive on every instruction when searching for dead // instructions later (we need to check isAlwaysLive for the // integer-typed instructions anyway). } // Propagate liveness backwards to operands. while (!Worklist.empty()) { Instruction *UserI = Worklist.pop_back_val(); DEBUG(dbgs() << "BDCE: Visiting: " << *UserI); APInt AOut; if (UserI->getType()->isIntegerTy()) { AOut = AliveBits[UserI]; DEBUG(dbgs() << " Alive Out: " << AOut); } DEBUG(dbgs() << "\n"); if (!UserI->getType()->isIntegerTy()) Visited.insert(UserI); APInt KnownZero, KnownOne, KnownZero2, KnownOne2; // Compute the set of alive bits for each operand. These are anded into the // existing set, if any, and if that changes the set of alive bits, the // operand is added to the work-list. for (Use &OI : UserI->operands()) { if (Instruction *I = dyn_cast(OI)) { if (IntegerType *IT = dyn_cast(I->getType())) { unsigned BitWidth = IT->getBitWidth(); APInt AB = APInt::getAllOnesValue(BitWidth); if (UserI->getType()->isIntegerTy() && !AOut && !isAlwaysLive(UserI)) { AB = APInt(BitWidth, 0); } else { // If all bits of the output are dead, then all bits of the input // Bits of each operand that are used to compute alive bits of the // output are alive, all others are dead. determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, KnownZero, KnownOne, KnownZero2, KnownOne2); } // If we've added to the set of alive bits (or the operand has not // been previously visited), then re-queue the operand to be visited // again. APInt ABPrev(BitWidth, 0); auto ABI = AliveBits.find(I); if (ABI != AliveBits.end()) ABPrev = ABI->second; APInt ABNew = AB | ABPrev; if (ABNew != ABPrev || ABI == AliveBits.end()) { AliveBits[I] = std::move(ABNew); Worklist.push_back(I); } } else if (!Visited.count(I)) { Worklist.push_back(I); } } } } bool Changed = false; // The inverse of the live set is the dead set. These are those instructions // which have no side effects and do not influence the control flow or return // value of the function, and may therefore be deleted safely. // NOTE: We reuse the Worklist vector here for memory efficiency. for (Instruction &I : inst_range(F)) { // For live instructions that have all dead bits, first make them dead by // replacing all uses with something else. Then, if they don't need to // remain live (because they have side effects, etc.) we can remove them. if (I.getType()->isIntegerTy()) { auto ABI = AliveBits.find(&I); if (ABI != AliveBits.end()) { if (ABI->second.getBoolValue()) continue; DEBUG(dbgs() << "BDCE: Trivializing: " << I << " (all bits dead)\n"); // FIXME: In theory we could substitute undef here instead of zero. // This should be reconsidered once we settle on the semantics of // undef, poison, etc. Value *Zero = ConstantInt::get(I.getType(), 0); ++NumSimplified; I.replaceAllUsesWith(Zero); Changed = true; } } else if (Visited.count(&I)) { continue; } if (isAlwaysLive(&I)) continue; Worklist.push_back(&I); I.dropAllReferences(); Changed = true; } for (Instruction *&I : Worklist) { ++NumRemoved; I->eraseFromParent(); } return Changed; } FunctionPass *llvm::createBitTrackingDCEPass() { return new BDCE(); }