//===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===// // // This pass is designed to be a very quick global transformation that // eliminates global common subexpressions from a function. It does this by // examining the SSA value graph of the function, instead of doing slow, dense, // bit-vector computations. // // This pass works best if it is proceeded with a simple constant propogation // pass and an instruction combination pass because this pass does not do any // value numbering (in order to be speedy). // // This pass does not attempt to CSE load instructions, because it does not use // pointer analysis to determine when it is safe. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/GCSE.h" #include "llvm/Pass.h" #include "llvm/InstrTypes.h" #include "llvm/iMemory.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/InstIterator.h" #include #include namespace { class GCSE : public FunctionPass, public InstVisitor { set WorkList; DominatorSet *DomSetInfo; ImmediateDominators *ImmDominator; public: const char *getPassName() const { return "Global Common Subexpression Elimination"; } virtual bool runOnFunction(Function *F); // Visitation methods, these are invoked depending on the type of // instruction being checked. They should return true if a common // subexpression was folded. // bool visitUnaryOperator(Instruction *I); bool visitBinaryOperator(Instruction *I); bool visitGetElementPtrInst(GetElementPtrInst *I); bool visitCastInst(CastInst *I){return visitUnaryOperator((Instruction*)I);} bool visitShiftInst(ShiftInst *I) { return visitBinaryOperator((Instruction*)I); } bool visitInstruction(Instruction *) { return false; } private: void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI); void CommonSubExpressionFound(Instruction *I, Instruction *Other); // This transformation requires dominator and immediate dominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.preservesCFG(); AU.addRequired(DominatorSet::ID); AU.addRequired(ImmediateDominators::ID); } }; } // createGCSEPass - The public interface to this file... Pass *createGCSEPass() { return new GCSE(); } // GCSE::runOnFunction - This is the main transformation entry point for a // function. // bool GCSE::runOnFunction(Function *F) { bool Changed = false; DomSetInfo = &getAnalysis(); ImmDominator = &getAnalysis(); // Step #1: Add all instructions in the function to the worklist for // processing. All of the instructions are considered to be our // subexpressions to eliminate if possible. // WorkList.insert(inst_begin(F), inst_end(F)); // Step #2: WorkList processing. Iterate through all of the instructions, // checking to see if there are any additionally defined subexpressions in the // program. If so, eliminate them! // while (!WorkList.empty()) { Instruction *I = *WorkList.begin(); // Get an instruction from the worklist WorkList.erase(WorkList.begin()); // Visit the instruction, dispatching to the correct visit function based on // the instruction type. This does the checking. // Changed |= visit(I); } // When the worklist is empty, return whether or not we changed anything... return Changed; } // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all // uses of the instruction use First now instead. // void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) { Instruction *Second = *SI; //cerr << "DEL " << (void*)Second << Second; // Add the first instruction back to the worklist WorkList.insert(First); // Add all uses of the second instruction to the worklist for (Value::use_iterator UI = Second->use_begin(), UE = Second->use_end(); UI != UE; ++UI) WorkList.insert(cast(*UI)); // Make all users of 'Second' now use 'First' Second->replaceAllUsesWith(First); // Erase the second instruction from the program delete Second->getParent()->getInstList().remove(SI); } // CommonSubExpressionFound - The two instruction I & Other have been found to // be common subexpressions. This function is responsible for eliminating one // of them, and for fixing the worklist to be correct. // void GCSE::CommonSubExpressionFound(Instruction *I, Instruction *Other) { // I has already been removed from the worklist, Other needs to be. assert(I != Other && WorkList.count(I) == 0 && "I shouldn't be on worklist!"); WorkList.erase(Other); // Other may not actually be on the worklist anymore... // Handle the easy case, where both instructions are in the same basic block BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent(); if (BB1 == BB2) { // Eliminate the second occuring instruction. Add all uses of the second // instruction to the worklist. // // Scan the basic block looking for the "first" instruction BasicBlock::iterator BI = BB1->begin(); while (*BI != I && *BI != Other) { ++BI; assert(BI != BB1->end() && "Instructions not found in parent BB!"); } // Keep track of which instructions occurred first & second Instruction *First = *BI; Instruction *Second = I != First ? I : Other; // Get iterator to second inst BI = find(BI, BB1->end(), Second); assert(BI != BB1->end() && "Second instruction not found in parent block!"); // Destroy Second, using First instead. ReplaceInstWithInst(First, BI); // Otherwise, the two instructions are in different basic blocks. If one // dominates the other instruction, we can simply use it // } else if (DomSetInfo->dominates(BB1, BB2)) { // I dom Other? BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); assert(BI != BB2->end() && "Other not in parent basic block!"); ReplaceInstWithInst(I, BI); } else if (DomSetInfo->dominates(BB2, BB1)) { // Other dom I? BasicBlock::iterator BI = find(BB1->begin(), BB1->end(), I); assert(BI != BB1->end() && "I not in parent basic block!"); ReplaceInstWithInst(Other, BI); } else { // Handle the most general case now. In this case, neither I dom Other nor // Other dom I. Because we are in SSA form, we are guaranteed that the // operands of the two instructions both dominate the uses, so we _know_ // that there must exist a block that dominates both instructions (if the // operands of the instructions are globals or constants, worst case we // would get the entry node of the function). Search for this block now. // // Search up the immediate dominator chain of BB1 for the shared dominator BasicBlock *SharedDom = (*ImmDominator)[BB1]; while (!DomSetInfo->dominates(SharedDom, BB2)) SharedDom = (*ImmDominator)[SharedDom]; // At this point, shared dom must dominate BOTH BB1 and BB2... assert(SharedDom && DomSetInfo->dominates(SharedDom, BB1) && DomSetInfo->dominates(SharedDom, BB2) && "Dominators broken!"); // Rip 'I' out of BB1, and move it to the end of SharedDom. BB1->getInstList().remove(I); SharedDom->getInstList().insert(SharedDom->end()-1, I); // Eliminate 'Other' now. BasicBlock::iterator BI = find(BB2->begin(), BB2->end(), Other); assert(BI != BB2->end() && "I not in parent basic block!"); ReplaceInstWithInst(I, BI); } } //===----------------------------------------------------------------------===// // // Visitation methods, these are invoked depending on the type of instruction // being checked. They should return true if a common subexpression was folded. // //===----------------------------------------------------------------------===// bool GCSE::visitUnaryOperator(Instruction *I) { Value *Op = I->getOperand(0); Function *F = I->getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast(*UI)) // Check to see if this new binary operator is not I, but same operand... if (Other != I && Other->getOpcode() == I->getOpcode() && Other->getOperand(0) == Op && // Is the operand the same? // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) Other->getParent()->getParent() == F && // Check that the types are the same, since this code handles casts... Other->getType() == I->getType()) { // These instructions are identical. Handle the situation. CommonSubExpressionFound(I, Other); return true; // One instruction eliminated! } return false; } bool GCSE::visitBinaryOperator(Instruction *I) { Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); Function *F = I->getParent()->getParent(); for (Value::use_iterator UI = LHS->use_begin(), UE = LHS->use_end(); UI != UE; ++UI) if (Instruction *Other = dyn_cast(*UI)) // Check to see if this new binary operator is not I, but same operand... if (Other != I && Other->getOpcode() == I->getOpcode() && // Are the LHS and RHS the same? Other->getOperand(0) == LHS && Other->getOperand(1) == RHS && // Is it embeded in the same function? (This could be false if LHS // is a constant or global!) Other->getParent()->getParent() == F) { // These instructions are identical. Handle the situation. CommonSubExpressionFound(I, Other); return true; // One instruction eliminated! } return false; } bool GCSE::visitGetElementPtrInst(GetElementPtrInst *I) { Value *Op = I->getOperand(0); Function *F = I->getParent()->getParent(); for (Value::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; ++UI) if (GetElementPtrInst *Other = dyn_cast(*UI)) // Check to see if this new binary operator is not I, but same operand... if (Other != I && Other->getParent()->getParent() == F && Other->getType() == I->getType()) { // Check to see that all operators past the 0th are the same... unsigned i = 1, e = I->getNumOperands(); for (; i != e; ++i) if (I->getOperand(i) != Other->getOperand(i)) break; if (i == e) { // These instructions are identical. Handle the situation. CommonSubExpressionFound(I, Other); return true; // One instruction eliminated! } } return false; }