//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG This pass is where algebraic // simplification happens. // // This pass combines things like: // %Y = add i32 %X, 1 // %Z = add i32 %Y, 1 // into: // %Z = add i32 %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All cmp instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/ParameterAttributes.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumCombined , "Number of insts combined"); STATISTIC(NumConstProp, "Number of constant folds"); STATISTIC(NumDeadInst , "Number of dead inst eliminated"); STATISTIC(NumDeadStore, "Number of dead stores eliminated"); STATISTIC(NumSunkInst , "Number of instructions sunk"); namespace { class VISIBILITY_HIDDEN InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. std::vector Worklist; DenseMap WorklistMap; TargetData *TD; bool MustPreserveLCSSA; public: static char ID; // Pass identification, replacement for typeid InstCombiner() : FunctionPass((intptr_t)&ID) {} /// AddToWorkList - Add the specified instruction to the worklist if it /// isn't already in it. void AddToWorkList(Instruction *I) { if (WorklistMap.insert(std::make_pair(I, Worklist.size()))) Worklist.push_back(I); } // RemoveFromWorkList - remove I from the worklist if it exists. void RemoveFromWorkList(Instruction *I) { DenseMap::iterator It = WorklistMap.find(I); if (It == WorklistMap.end()) return; // Not in worklist. // Don't bother moving everything down, just null out the slot. Worklist[It->second] = 0; WorklistMap.erase(It); } Instruction *RemoveOneFromWorkList() { Instruction *I = Worklist.back(); Worklist.pop_back(); WorklistMap.erase(I); return I; } /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(Value &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) AddToWorkList(cast(*UI)); } /// AddUsesToWorkList - When an instruction is simplified, add operands to /// the work lists because they might get more simplified now. /// void AddUsesToWorkList(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(I.getOperand(i))) AddToWorkList(Op); } /// AddSoonDeadInstToWorklist - The specified instruction is about to become /// dead. Add all of its operands to the worklist, turning them into /// undef's to reduce the number of uses of those instructions. /// /// Return the specified operand before it is turned into an undef. /// Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) { Value *R = I.getOperand(op); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(I.getOperand(i))) { AddToWorkList(Op); // Set the operand to undef to drop the use. I.setOperand(i, UndefValue::get(Op->getType())); } return R; } public: virtual bool runOnFunction(Function &F); bool DoOneIteration(Function &F, unsigned ItNum); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreservedID(LCSSAID); AU.setPreservesCFG(); } TargetData &getTargetData() const { return *TD; } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitAdd(BinaryOperator &I); Instruction *visitSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitURem(BinaryOperator &I); Instruction *visitSRem(BinaryOperator &I); Instruction *visitFRem(BinaryOperator &I); Instruction *commonRemTransforms(BinaryOperator &I); Instruction *commonIRemTransforms(BinaryOperator &I); Instruction *commonDivTransforms(BinaryOperator &I); Instruction *commonIDivTransforms(BinaryOperator &I); Instruction *visitUDiv(BinaryOperator &I); Instruction *visitSDiv(BinaryOperator &I); Instruction *visitFDiv(BinaryOperator &I); Instruction *visitAnd(BinaryOperator &I); Instruction *visitOr (BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitShl(BinaryOperator &I); Instruction *visitAShr(BinaryOperator &I); Instruction *visitLShr(BinaryOperator &I); Instruction *commonShiftTransforms(BinaryOperator &I); Instruction *visitFCmpInst(FCmpInst &I); Instruction *visitICmpInst(ICmpInst &I); Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI); Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS, ConstantInt *RHS); Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS); Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I); Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1, BinaryOperator &I); Instruction *commonCastTransforms(CastInst &CI); Instruction *commonIntCastTransforms(CastInst &CI); Instruction *commonPointerCastTransforms(CastInst &CI); Instruction *visitTrunc(TruncInst &CI); Instruction *visitZExt(ZExtInst &CI); Instruction *visitSExt(SExtInst &CI); Instruction *visitFPTrunc(CastInst &CI); Instruction *visitFPExt(CastInst &CI); Instruction *visitFPToUI(CastInst &CI); Instruction *visitFPToSI(CastInst &CI); Instruction *visitUIToFP(CastInst &CI); Instruction *visitSIToFP(CastInst &CI); Instruction *visitPtrToInt(CastInst &CI); Instruction *visitIntToPtr(CastInst &CI); Instruction *visitBitCast(BitCastInst &CI); Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); Instruction *visitSelectInst(SelectInst &CI); Instruction *visitCallInst(CallInst &CI); Instruction *visitInvokeInst(InvokeInst &II); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); Instruction *visitAllocationInst(AllocationInst &AI); Instruction *visitFreeInst(FreeInst &FI); Instruction *visitLoadInst(LoadInst &LI); Instruction *visitStoreInst(StoreInst &SI); Instruction *visitBranchInst(BranchInst &BI); Instruction *visitSwitchInst(SwitchInst &SI); Instruction *visitInsertElementInst(InsertElementInst &IE); Instruction *visitExtractElementInst(ExtractElementInst &EI); Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction &I) { return 0; } private: Instruction *visitCallSite(CallSite CS); bool transformConstExprCastCall(CallSite CS); Instruction *transformCallThroughTrampoline(CallSite CS); public: // InsertNewInstBefore - insert an instruction New before instruction Old // in the program. Add the new instruction to the worklist. // Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && New->getParent() == 0 && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); BB->getInstList().insert(&Old, New); // Insert inst AddToWorkList(New); return New; } /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. /// This also adds the cast to the worklist. Finally, this returns the /// cast. Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty, Instruction &Pos) { if (V->getType() == Ty) return V; if (Constant *CV = dyn_cast(V)) return ConstantExpr::getCast(opc, CV, Ty); Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos); AddToWorkList(C); return C; } // ReplaceInstUsesWith - This method is to be used when an instruction is // found to be dead, replacable with another preexisting expression. Here // we add all uses of I to the worklist, replace all uses of I with the new // value, then return I, so that the inst combiner will know that I was // modified. // Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { AddUsersToWorkList(I); // Add all modified instrs to worklist if (&I != V) { I.replaceAllUsesWith(V); return &I; } else { // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. I.replaceAllUsesWith(UndefValue::get(I.getType())); return &I; } } // UpdateValueUsesWith - This method is to be used when an value is // found to be replacable with another preexisting expression or was // updated. Here we add all uses of I to the worklist, replace all uses of // I with the new value (unless the instruction was just updated), then // return true, so that the inst combiner will know that I was modified. // bool UpdateValueUsesWith(Value *Old, Value *New) { AddUsersToWorkList(*Old); // Add all modified instrs to worklist if (Old != New) Old->replaceAllUsesWith(New); if (Instruction *I = dyn_cast(Old)) AddToWorkList(I); if (Instruction *I = dyn_cast(New)) AddToWorkList(I); return true; } // EraseInstFromFunction - When dealing with an instruction that has side // effects or produces a void value, we can't rely on DCE to delete the // instruction. Instead, visit methods should return the value returned by // this function. Instruction *EraseInstFromFunction(Instruction &I) { assert(I.use_empty() && "Cannot erase instruction that is used!"); AddUsesToWorkList(I); RemoveFromWorkList(&I); I.eraseFromParent(); return 0; // Don't do anything with FI } private: /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InsertOperandCastBefore(Instruction::CastOps opcode, Value *V, const Type *DestTy, Instruction *InsertBefore); /// SimplifyCommutative - This performs a few simplifications for /// commutative operators. bool SimplifyCommutative(BinaryOperator &I); /// SimplifyCompare - This reorders the operands of a CmpInst to get them in /// most-complex to least-complex order. bool SimplifyCompare(CmpInst &I); /// SimplifyDemandedBits - Attempts to replace V with a simpler value based /// on the demanded bits. bool SimplifyDemandedBits(Value *V, APInt DemandedMask, APInt& KnownZero, APInt& KnownOne, unsigned Depth = 0); Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts, uint64_t &UndefElts, unsigned Depth = 0); // FoldOpIntoPhi - Given a binary operator or cast instruction which has a // PHI node as operand #0, see if we can fold the instruction into the PHI // (which is only possible if all operands to the PHI are constants). Instruction *FoldOpIntoPhi(Instruction &I); // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN); Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS, ConstantInt *AndRHS, BinaryOperator &TheAnd); Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, bool isSub, Instruction &I); Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned, bool Inside, Instruction &IB); Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI); Instruction *MatchBSwap(BinaryOperator &I); bool SimplifyStoreAtEndOfBlock(StoreInst &SI); Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned); }; char InstCombiner::ID = 0; RegisterPass X("instcombine", "Combine redundant instructions"); } // getComplexity: Assign a complexity or rank value to LLVM Values... // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst static unsigned getComplexity(Value *V) { if (isa(V)) { if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) return 3; return 4; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } // isOnlyUse - Return true if this instruction will be deleted if we stop using // it. static bool isOnlyUse(Value *V) { return V->hasOneUse() || isa(V); } // getPromotedType - Return the specified type promoted as it would be to pass // though a va_arg area... static const Type *getPromotedType(const Type *Ty) { if (const IntegerType* ITy = dyn_cast(Ty)) { if (ITy->getBitWidth() < 32) return Type::Int32Ty; } return Ty; } /// getBitCastOperand - If the specified operand is a CastInst or a constant /// expression bitcast, return the operand value, otherwise return null. static Value *getBitCastOperand(Value *V) { if (BitCastInst *I = dyn_cast(V)) return I->getOperand(0); else if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::BitCast) return CE->getOperand(0); return 0; } /// This function is a wrapper around CastInst::isEliminableCastPair. It /// simply extracts arguments and returns what that function returns. static Instruction::CastOps isEliminableCastPair( const CastInst *CI, ///< The first cast instruction unsigned opcode, ///< The opcode of the second cast instruction const Type *DstTy, ///< The target type for the second cast instruction TargetData *TD ///< The target data for pointer size ) { const Type *SrcTy = CI->getOperand(0)->getType(); // A from above const Type *MidTy = CI->getType(); // B from above // Get the opcodes of the two Cast instructions Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); Instruction::CastOps secondOp = Instruction::CastOps(opcode); return Instruction::CastOps( CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, TD->getIntPtrType())); } /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results /// in any code being generated. It does not require codegen if V is simple /// enough or if the cast can be folded into other casts. static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, const Type *Ty, TargetData *TD) { if (V->getType() == Ty || isa(V)) return false; // If this is another cast that can be eliminated, it isn't codegen either. if (const CastInst *CI = dyn_cast(V)) if (isEliminableCastPair(CI, opcode, Ty, TD)) return false; return true; } /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode, Value *V, const Type *DestTy, Instruction *InsertBefore) { if (V->getType() == DestTy) return V; if (Constant *C = dyn_cast(V)) return ConstantExpr::getCast(opcode, C, DestTy); return InsertCastBefore(opcode, V, DestTy, *InsertBefore); } // SimplifyCommutative - This performs a few simplifications for commutative // operators: // // 1. Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. // // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) // bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { bool Changed = false; if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); if (!I.isAssociative()) return Changed; Instruction::BinaryOps Opcode = I.getOpcode(); if (BinaryOperator *Op = dyn_cast(I.getOperand(0))) if (Op->getOpcode() == Opcode && isa(Op->getOperand(1))) { if (isa(I.getOperand(1))) { Constant *Folded = ConstantExpr::get(I.getOpcode(), cast(I.getOperand(1)), cast(Op->getOperand(1))); I.setOperand(0, Op->getOperand(0)); I.setOperand(1, Folded); return true; } else if (BinaryOperator *Op1=dyn_cast(I.getOperand(1))) if (Op1->getOpcode() == Opcode && isa(Op1->getOperand(1)) && isOnlyUse(Op) && isOnlyUse(Op1)) { Constant *C1 = cast(Op->getOperand(1)); Constant *C2 = cast(Op1->getOperand(1)); // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0), Op1->getOperand(0), Op1->getName(), &I); AddToWorkList(New); I.setOperand(0, New); I.setOperand(1, Folded); return true; } } return Changed; } /// SimplifyCompare - For a CmpInst this function just orders the operands /// so that theyare listed from right (least complex) to left (most complex). /// This puts constants before unary operators before binary operators. bool InstCombiner::SimplifyCompare(CmpInst &I) { if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1))) return false; I.swapOperands(); // Compare instructions are not associative so there's nothing else we can do. return true; } // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction // if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegVal(Value *V) { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(V); // Constants can be considered to be negated values if they can be folded. if (ConstantInt *C = dyn_cast(V)) return ConstantExpr::getNeg(C); return 0; } static inline Value *dyn_castNotVal(Value *V) { if (BinaryOperator::isNot(V)) return BinaryOperator::getNotArgument(V); // Constants can be considered to be not'ed values... if (ConstantInt *C = dyn_cast(V)) return ConstantInt::get(~C->getValue()); return 0; } // dyn_castFoldableMul - If this value is a multiply that can be folded into // other computations (because it has a constant operand), return the // non-constant operand of the multiply, and set CST to point to the multiplier. // Otherwise, return null. // static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { if (V->hasOneUse() && V->getType()->isInteger()) if (Instruction *I = dyn_cast(V)) { if (I->getOpcode() == Instruction::Mul) if ((CST = dyn_cast(I->getOperand(1)))) return I->getOperand(0); if (I->getOpcode() == Instruction::Shl) if ((CST = dyn_cast(I->getOperand(1)))) { // The multiplier is really 1 << CST. uint32_t BitWidth = cast(V->getType())->getBitWidth(); uint32_t CSTVal = CST->getLimitedValue(BitWidth); CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal)); return I->getOperand(0); } } return 0; } /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant /// expression, return it. static User *dyn_castGetElementPtr(Value *V) { if (isa(V)) return cast(V); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::GetElementPtr) return cast(V); return false; } /// AddOne - Add one to a ConstantInt static ConstantInt *AddOne(ConstantInt *C) { APInt Val(C->getValue()); return ConstantInt::get(++Val); } /// SubOne - Subtract one from a ConstantInt static ConstantInt *SubOne(ConstantInt *C) { APInt Val(C->getValue()); return ConstantInt::get(--Val); } /// Add - Add two ConstantInts together static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() + C2->getValue()); } /// And - Bitwise AND two ConstantInts together static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() & C2->getValue()); } /// Subtract - Subtract one ConstantInt from another static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() - C2->getValue()); } /// Multiply - Multiply two ConstantInts together static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) { return ConstantInt::get(C1->getValue() * C2->getValue()); } /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bit sets. This code only analyzes bits in Mask, in order to short-circuit /// processing. /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that /// we cannot optimize based on the assumption that it is zero without changing /// it to be an explicit zero. If we don't change it to zero, other code could /// optimized based on the contradictory assumption that it is non-zero. /// Because instcombine aggressively folds operations with undef args anyway, /// this won't lose us code quality. static void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero, APInt& KnownOne, unsigned Depth = 0) { assert(V && "No Value?"); assert(Depth <= 6 && "Limit Search Depth"); uint32_t BitWidth = Mask.getBitWidth(); assert(cast(V->getType())->getBitWidth() == BitWidth && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && "V, Mask, KnownOne and KnownZero should have same BitWidth"); if (ConstantInt *CI = dyn_cast(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & Mask; KnownZero = ~KnownOne & Mask; return; } if (Depth == 6 || Mask == 0) return; // Limit search depth. Instruction *I = dyn_cast(V); if (!I) return; KnownZero.clear(); KnownOne.clear(); // Don't know anything. APInt KnownZero2(KnownZero), KnownOne2(KnownOne); switch (I->getOpcode()) { case Instruction::And: { // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); APInt Mask2(Mask & ~KnownZero); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; } case Instruction::Or: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); APInt Mask2(Mask & ~KnownOne); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; } case Instruction::Xor: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case Instruction::Select: ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::SIToFP: case Instruction::PtrToInt: case Instruction::UIToFP: case Instruction::IntToPtr: return; // Can't work with floating point or pointers case Instruction::Trunc: { // All these have integer operands uint32_t SrcBitWidth = cast(I->getOperand(0)->getType())->getBitWidth(); APInt MaskIn(Mask); MaskIn.zext(SrcBitWidth); KnownZero.zext(SrcBitWidth); KnownOne.zext(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1); KnownZero.trunc(BitWidth); KnownOne.trunc(BitWidth); return; } case Instruction::BitCast: { const Type *SrcTy = I->getOperand(0)->getType(); if (SrcTy->isInteger()) { ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); return; } break; } case Instruction::ZExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); uint32_t SrcBitWidth = SrcTy->getBitWidth(); APInt MaskIn(Mask); MaskIn.trunc(SrcBitWidth); KnownZero.trunc(SrcBitWidth); KnownOne.trunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // The top bits are known to be zero. KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); uint32_t SrcBitWidth = SrcTy->getBitWidth(); APInt MaskIn(Mask); MaskIn.trunc(SrcBitWidth); KnownZero.trunc(SrcBitWidth); KnownOne.trunc(SrcBitWidth); ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero.zext(BitWidth); KnownOne.zext(BitWidth); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); return; } case Instruction::Shl: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); APInt Mask2(Mask.lshr(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= ShiftAmt; KnownOne <<= ShiftAmt; KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 return; } break; case Instruction::LShr: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); // high bits known zero. KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); return; } break; case Instruction::AShr: // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Signed shift right. APInt Mask2(Mask.shl(ShiftAmt)); ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. KnownZero |= HighBits; else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. KnownOne |= HighBits; return; } break; } } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) { APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); return (KnownZero & Mask) == Mask; } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, APInt Demanded) { assert(I && "No instruction?"); assert(OpNo < I->getNumOperands() && "Operand index too large"); // If the operand is not a constant integer, nothing to do. ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); if (!OpC) return false; // If there are no bits set that aren't demanded, nothing to do. Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); if ((~Demanded & OpC->getValue()) == 0) return false; // This instruction is producing bits that are not demanded. Shrink the RHS. Demanded &= OpC->getValue(); I->setOperand(OpNo, ConstantInt::get(Demanded)); return true; } // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a // set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, const APInt& KnownZero, const APInt& KnownOne, APInt& Min, APInt& Max) { uint32_t BitWidth = cast(Ty)->getBitWidth(); assert(KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); APInt UnknownBits = ~(KnownZero|KnownOne); // The minimum value is when all unknown bits are zeros, EXCEPT for the sign // bit if it is unknown. Min = KnownOne; Max = KnownOne|UnknownBits; if (UnknownBits[BitWidth-1]) { // Sign bit is unknown Min.set(BitWidth-1); Max.clear(BitWidth-1); } } // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and // a set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, const APInt &KnownZero, const APInt &KnownOne, APInt &Min, APInt &Max) { uint32_t BitWidth = cast(Ty)->getBitWidth(); BitWidth = BitWidth; assert(KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && Min.getBitWidth() == BitWidth && Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); APInt UnknownBits = ~(KnownZero|KnownOne); // The minimum value is when the unknown bits are all zeros. Min = KnownOne; // The maximum value is when the unknown bits are all ones. Max = KnownOne|UnknownBits; } /// SimplifyDemandedBits - This function attempts to replace V with a simpler /// value based on the demanded bits. When this function is called, it is known /// that only the bits set in DemandedMask of the result of V are ever used /// downstream. Consequently, depending on the mask and V, it may be possible /// to replace V with a constant or one of its operands. In such cases, this /// function does the replacement and returns true. In all other cases, it /// returns false after analyzing the expression and setting KnownOne and known /// to be one in the expression. KnownZero contains all the bits that are known /// to be zero in the expression. These are provided to potentially allow the /// caller (which might recursively be SimplifyDemandedBits itself) to simplify /// the expression. KnownOne and KnownZero always follow the invariant that /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that /// the bits in KnownOne and KnownZero may only be accurate for those bits set /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero /// and KnownOne must all be the same. bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask, APInt& KnownZero, APInt& KnownOne, unsigned Depth) { assert(V != 0 && "Null pointer of Value???"); assert(Depth <= 6 && "Limit Search Depth"); uint32_t BitWidth = DemandedMask.getBitWidth(); const IntegerType *VTy = cast(V->getType()); assert(VTy->getBitWidth() == BitWidth && KnownZero.getBitWidth() == BitWidth && KnownOne.getBitWidth() == BitWidth && "Value *V, DemandedMask, KnownZero and KnownOne \ must have same BitWidth"); if (ConstantInt *CI = dyn_cast(V)) { // We know all of the bits for a constant! KnownOne = CI->getValue() & DemandedMask; KnownZero = ~KnownOne & DemandedMask; return false; } KnownZero.clear(); KnownOne.clear(); if (!V->hasOneUse()) { // Other users may use these bits. if (Depth != 0) { // Not at the root. // Just compute the KnownZero/KnownOne bits to simplify things downstream. ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); return false; } // If this is the root being simplified, allow it to have multiple uses, // just set the DemandedMask to all bits. DemandedMask = APInt::getAllOnesValue(BitWidth); } else if (DemandedMask == 0) { // Not demanding any bits from V. if (V != UndefValue::get(VTy)) return UpdateValueUsesWith(V, UndefValue::get(VTy)); return false; } else if (Depth == 6) { // Limit search depth. return false; } Instruction *I = dyn_cast(V); if (!I) return false; // Only analyze instructions. APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne; switch (I->getOpcode()) { default: break; case Instruction::And: // If either the LHS or the RHS are Zero, the result is zero. if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If something is known zero on the RHS, the bits aren't demanded on the // LHS. if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, LHSKnownZero, LHSKnownOne, Depth+1)) return true; assert((LHSKnownZero & LHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known 1 on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == (DemandedMask & ~LHSKnownZero)) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == (DemandedMask & ~RHSKnownZero)) return UpdateValueUsesWith(I, I->getOperand(1)); // If all of the demanded bits in the inputs are known zeros, return zero. if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) return UpdateValueUsesWith(I, Constant::getNullValue(VTy)); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) return UpdateValueUsesWith(I, I); // Output known-1 bits are only known if set in both the LHS & RHS. RHSKnownOne &= LHSKnownOne; // Output known-0 are known to be clear if zero in either the LHS | RHS. RHSKnownZero |= LHSKnownZero; break; case Instruction::Or: // If either the LHS or the RHS are One, the result is One. if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If something is known one on the RHS, the bits aren't demanded on the // LHS. if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, LHSKnownZero, LHSKnownOne, Depth+1)) return true; assert((LHSKnownZero & LHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == (DemandedMask & ~LHSKnownOne)) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == (DemandedMask & ~RHSKnownOne)) return UpdateValueUsesWith(I, I->getOperand(1)); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == (DemandedMask & (~RHSKnownZero))) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == (DemandedMask & (~LHSKnownZero))) return UpdateValueUsesWith(I, I->getOperand(1)); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); // Output known-0 bits are only known if clear in both the LHS & RHS. RHSKnownZero &= LHSKnownZero; // Output known-1 are known to be set if set in either the LHS | RHS. RHSKnownOne |= LHSKnownOne; break; case Instruction::Xor: { if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, LHSKnownZero, LHSKnownOne, Depth+1)) return true; assert((LHSKnownZero & LHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((DemandedMask & RHSKnownZero) == DemandedMask) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & LHSKnownZero) == DemandedMask) return UpdateValueUsesWith(I, I->getOperand(1)); // Output known-0 bits are known if clear or set in both the LHS & RHS. APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); // Output known-1 are known to be set if set in only one of the LHS, RHS. APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); // If all of the demanded bits are known to be zero on one side or the // other, turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { Instruction *Or = BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), I->getName()); InsertNewInstBefore(Or, *I); return UpdateValueUsesWith(I, Or); } // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { // all known if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask); Instruction *And = BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp"); InsertNewInstBefore(And, *I); return UpdateValueUsesWith(I, And); } } // If the RHS is a constant, see if we can simplify it. // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); RHSKnownZero = KnownZeroOut; RHSKnownOne = KnownOneOut; break; } case Instruction::Select: if (SimplifyDemandedBits(I->getOperand(2), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, LHSKnownZero, LHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); assert((LHSKnownZero & LHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); if (ShrinkDemandedConstant(I, 2, DemandedMask)) return UpdateValueUsesWith(I, I); // Only known if known in both the LHS and RHS. RHSKnownOne &= LHSKnownOne; RHSKnownZero &= LHSKnownZero; break; case Instruction::Trunc: { uint32_t truncBf = cast(I->getOperand(0)->getType())->getBitWidth(); DemandedMask.zext(truncBf); RHSKnownZero.zext(truncBf); RHSKnownOne.zext(truncBf); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; DemandedMask.trunc(BitWidth); RHSKnownZero.trunc(BitWidth); RHSKnownOne.trunc(BitWidth); assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); break; } case Instruction::BitCast: if (!I->getOperand(0)->getType()->isInteger()) return false; if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); break; case Instruction::ZExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); uint32_t SrcBitWidth = SrcTy->getBitWidth(); DemandedMask.trunc(SrcBitWidth); RHSKnownZero.trunc(SrcBitWidth); RHSKnownOne.trunc(SrcBitWidth); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, RHSKnownZero, RHSKnownOne, Depth+1)) return true; DemandedMask.zext(BitWidth); RHSKnownZero.zext(BitWidth); RHSKnownOne.zext(BitWidth); assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); // The top bits are known to be zero. RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); break; } case Instruction::SExt: { // Compute the bits in the result that are not present in the input. const IntegerType *SrcTy = cast(I->getOperand(0)->getType()); uint32_t SrcBitWidth = SrcTy->getBitWidth(); APInt InputDemandedBits = DemandedMask & APInt::getLowBitsSet(BitWidth, SrcBitWidth); APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. if ((NewBits & DemandedMask) != 0) InputDemandedBits.set(SrcBitWidth-1); InputDemandedBits.trunc(SrcBitWidth); RHSKnownZero.trunc(SrcBitWidth); RHSKnownOne.trunc(SrcBitWidth); if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits, RHSKnownZero, RHSKnownOne, Depth+1)) return true; InputDemandedBits.zext(BitWidth); RHSKnownZero.zext(BitWidth); RHSKnownOne.zext(BitWidth); assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, or if the NewBits are not demanded // convert this into a zero extension. if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { // Convert to ZExt cast CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I); return UpdateValueUsesWith(I, NewCast); } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set RHSKnownOne |= NewBits; } break; } case Instruction::Add: { // Figure out what the input bits are. If the top bits of the and result // are not demanded, then the add doesn't demand them from its input // either. uint32_t NLZ = DemandedMask.countLeadingZeros(); // If there is a constant on the RHS, there are a variety of xformations // we can do. if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { // If null, this should be simplified elsewhere. Some of the xforms here // won't work if the RHS is zero. if (RHS->isZero()) break; // If the top bit of the output is demanded, demand everything from the // input. Otherwise, we demand all the input bits except NLZ top bits. APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); // Find information about known zero/one bits in the input. if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits, LHSKnownZero, LHSKnownOne, Depth+1)) return true; // If the RHS of the add has bits set that can't affect the input, reduce // the constant. if (ShrinkDemandedConstant(I, 1, InDemandedBits)) return UpdateValueUsesWith(I, I); // Avoid excess work. if (LHSKnownZero == 0 && LHSKnownOne == 0) break; // Turn it into OR if input bits are zero. if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { Instruction *Or = BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), I->getName()); InsertNewInstBefore(Or, *I); return UpdateValueUsesWith(I, Or); } // We can say something about the output known-zero and known-one bits, // depending on potential carries from the input constant and the // unknowns. For example if the LHS is known to have at most the 0x0F0F0 // bits set and the RHS constant is 0x01001, then we know we have a known // one mask of 0x00001 and a known zero mask of 0xE0F0E. // To compute this, we first compute the potential carry bits. These are // the bits which may be modified. I'm not aware of a better way to do // this scan. const APInt& RHSVal = RHS->getValue(); APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); // Now that we know which bits have carries, compute the known-1/0 sets. // Bits are known one if they are known zero in one operand and one in the // other, and there is no input carry. RHSKnownOne = ((LHSKnownZero & RHSVal) | (LHSKnownOne & ~RHSVal)) & ~CarryBits; // Bits are known zero if they are known zero in both operands and there // is no input carry. RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; } else { // If the high-bits of this ADD are not demanded, then it does not demand // the high bits of its LHS or RHS. if (DemandedMask[BitWidth-1] == 0) { // Right fill the mask of bits for this ADD to demand the most // significant bit and all those below it. APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return true; if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return true; } } break; } case Instruction::Sub: // If the high-bits of this SUB are not demanded, then it does not demand // the high bits of its LHS or RHS. if (DemandedMask[BitWidth-1] == 0) { // Right fill the mask of bits for this SUB to demand the most // significant bit and all those below it. uint32_t NLZ = DemandedMask.countLeadingZeros(); APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return true; if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps, LHSKnownZero, LHSKnownOne, Depth+1)) return true; } break; case Instruction::Shl: if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); RHSKnownZero <<= ShiftAmt; RHSKnownOne <<= ShiftAmt; // low bits known zero. if (ShiftAmt) RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); } break; case Instruction::LShr: // For a logical shift right if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); // Unsigned shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); if (ShiftAmt) { // Compute the new bits that are at the top now. APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); RHSKnownZero |= HighBits; // high bits known zero. } } break; case Instruction::AShr: // If this is an arithmetic shift right and only the low-bit is set, we can // always convert this into a logical shr, even if the shift amount is // variable. The low bit of the shift cannot be an input sign bit unless // the shift amount is >= the size of the datatype, which is undefined. if (DemandedMask == 1) { // Perform the logical shift right. Value *NewVal = BinaryOperator::createLShr( I->getOperand(0), I->getOperand(1), I->getName()); InsertNewInstBefore(cast(NewVal), *I); return UpdateValueUsesWith(I, NewVal); } // If the sign bit is the only bit demanded by this ashr, then there is no // need to do it, the shift doesn't change the high bit. if (DemandedMask.isSignBit()) return UpdateValueUsesWith(I, I->getOperand(0)); if (ConstantInt *SA = dyn_cast(I->getOperand(1))) { uint32_t ShiftAmt = SA->getLimitedValue(BitWidth); // Signed shift right. APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); // If any of the "high bits" are demanded, we should set the sign bit as // demanded. if (DemandedMask.countLeadingZeros() <= ShiftAmt) DemandedMaskIn.set(BitWidth-1); if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn, RHSKnownZero, RHSKnownOne, Depth+1)) return true; assert((RHSKnownZero & RHSKnownOne) == 0 && "Bits known to be one AND zero?"); // Compute the new bits that are at the top now. APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt); RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt); // Handle the sign bits. APInt SignBit(APInt::getSignBit(BitWidth)); // Adjust to where it is now in the mask. SignBit = APIntOps::lshr(SignBit, ShiftAmt); // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if (RHSKnownZero[BitWidth-ShiftAmt-1] || (HighBits & ~DemandedMask) == HighBits) { // Perform the logical shift right. Value *NewVal = BinaryOperator::createLShr( I->getOperand(0), SA, I->getName()); InsertNewInstBefore(cast(NewVal), *I); return UpdateValueUsesWith(I, NewVal); } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one. RHSKnownOne |= HighBits; } } break; } // If the client is only demanding bits that we know, return the known // constant. if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne)); return false; } /// SimplifyDemandedVectorElts - The specified value producecs a vector with /// 64 or fewer elements. DemandedElts contains the set of elements that are /// actually used by the caller. This method analyzes which elements of the /// operand are undef and returns that information in UndefElts. /// /// If the information about demanded elements can be used to simplify the /// operation, the operation is simplified, then the resultant value is /// returned. This returns null if no change was made. Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts, uint64_t &UndefElts, unsigned Depth) { unsigned VWidth = cast(V->getType())->getNumElements(); assert(VWidth <= 64 && "Vector too wide to analyze!"); uint64_t EltMask = ~0ULL >> (64-VWidth); assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); if (isa(V)) { // If the entire vector is undefined, just return this info. UndefElts = EltMask; return 0; } else if (DemandedElts == 0) { // If nothing is demanded, provide undef. UndefElts = EltMask; return UndefValue::get(V->getType()); } UndefElts = 0; if (ConstantVector *CP = dyn_cast(V)) { const Type *EltTy = cast(V->getType())->getElementType(); Constant *Undef = UndefValue::get(EltTy); std::vector Elts; for (unsigned i = 0; i != VWidth; ++i) if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef. Elts.push_back(Undef); UndefElts |= (1ULL << i); } else if (isa(CP->getOperand(i))) { // Already undef. Elts.push_back(Undef); UndefElts |= (1ULL << i); } else { // Otherwise, defined. Elts.push_back(CP->getOperand(i)); } // If we changed the constant, return it. Constant *NewCP = ConstantVector::get(Elts); return NewCP != CP ? NewCP : 0; } else if (isa(V)) { // Simplify the CAZ to a ConstantVector where the non-demanded elements are // set to undef. const Type *EltTy = cast(V->getType())->getElementType(); Constant *Zero = Constant::getNullValue(EltTy); Constant *Undef = UndefValue::get(EltTy); std::vector Elts; for (unsigned i = 0; i != VWidth; ++i) Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef); UndefElts = DemandedElts ^ EltMask; return ConstantVector::get(Elts); } if (!V->hasOneUse()) { // Other users may use these bits. if (Depth != 0) { // Not at the root. // TODO: Just compute the UndefElts information recursively. return false; } return false; } else if (Depth == 10) { // Limit search depth. return false; } Instruction *I = dyn_cast(V); if (!I) return false; // Only analyze instructions. bool MadeChange = false; uint64_t UndefElts2; Value *TmpV; switch (I->getOpcode()) { default: break; case Instruction::InsertElement: { // If this is a variable index, we don't know which element it overwrites. // demand exactly the same input as we produce. ConstantInt *Idx = dyn_cast(I->getOperand(2)); if (Idx == 0) { // Note that we can't propagate undef elt info, because we don't know // which elt is getting updated. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } break; } // If this is inserting an element that isn't demanded, remove this // insertelement. unsigned IdxNo = Idx->getZExtValue(); if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0) return AddSoonDeadInstToWorklist(*I, 0); // Otherwise, the element inserted overwrites whatever was there, so the // input demanded set is simpler than the output set. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts & ~(1ULL << IdxNo), UndefElts, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } // The inserted element is defined. UndefElts |= 1ULL << IdxNo; break; } case Instruction::BitCast: { // Vector->vector casts only. const VectorType *VTy = dyn_cast(I->getOperand(0)->getType()); if (!VTy) break; unsigned InVWidth = VTy->getNumElements(); uint64_t InputDemandedElts = 0; unsigned Ratio; if (VWidth == InVWidth) { // If we are converting from <4 x i32> -> <4 x f32>, we demand the same // elements as are demanded of us. Ratio = 1; InputDemandedElts = DemandedElts; } else if (VWidth > InVWidth) { // Untested so far. break; // If there are more elements in the result than there are in the source, // then an input element is live if any of the corresponding output // elements are live. Ratio = VWidth/InVWidth; for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { if (DemandedElts & (1ULL << OutIdx)) InputDemandedElts |= 1ULL << (OutIdx/Ratio); } } else { // Untested so far. break; // If there are more elements in the source than there are in the result, // then an input element is live if the corresponding output element is // live. Ratio = InVWidth/VWidth; for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) if (DemandedElts & (1ULL << InIdx/Ratio)) InputDemandedElts |= 1ULL << InIdx; } // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } UndefElts = UndefElts2; if (VWidth > InVWidth) { assert(0 && "Unimp"); // If there are more elements in the result than there are in the source, // then an output element is undef if the corresponding input element is // undef. for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) if (UndefElts2 & (1ULL << (OutIdx/Ratio))) UndefElts |= 1ULL << OutIdx; } else if (VWidth < InVWidth) { assert(0 && "Unimp"); // If there are more elements in the source than there are in the result, // then a result element is undef if all of the corresponding input // elements are undef. UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef? UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit. } break; } case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::Add: case Instruction::Sub: case Instruction::Mul: // div/rem demand all inputs, because they don't want divide by zero. TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, UndefElts, Depth+1); if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, UndefElts2, Depth+1); if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } // Output elements are undefined if both are undefined. Consider things // like undef&0. The result is known zero, not undef. UndefElts &= UndefElts2; break; case Instruction::Call: { IntrinsicInst *II = dyn_cast(I); if (!II) break; switch (II->getIntrinsicID()) { default: break; // Binary vector operations that work column-wise. A dest element is a // function of the corresponding input elements from the two inputs. case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse_min_ss: case Intrinsic::x86_sse_max_ss: case Intrinsic::x86_sse2_sub_sd: case Intrinsic::x86_sse2_mul_sd: case Intrinsic::x86_sse2_min_sd: case Intrinsic::x86_sse2_max_sd: TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, UndefElts, Depth+1); if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, UndefElts2, Depth+1); if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } // If only the low elt is demanded and this is a scalarizable intrinsic, // scalarize it now. if (DemandedElts == 1) { switch (II->getIntrinsicID()) { default: break; case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse2_sub_sd: case Intrinsic::x86_sse2_mul_sd: // TODO: Lower MIN/MAX/ABS/etc Value *LHS = II->getOperand(1); Value *RHS = II->getOperand(2); // Extract the element as scalars. LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II); RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II); switch (II->getIntrinsicID()) { default: assert(0 && "Case stmts out of sync!"); case Intrinsic::x86_sse_sub_ss: case Intrinsic::x86_sse2_sub_sd: TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS, II->getName()), *II); break; case Intrinsic::x86_sse_mul_ss: case Intrinsic::x86_sse2_mul_sd: TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS, II->getName()), *II); break; } Instruction *New = new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U, II->getName()); InsertNewInstBefore(New, *II); AddSoonDeadInstToWorklist(*II, 0); return New; } } // Output elements are undefined if both are undefined. Consider things // like undef&0. The result is known zero, not undef. UndefElts &= UndefElts2; break; } break; } } return MadeChange ? I : 0; } /// @returns true if the specified compare predicate is /// true when both operands are equal... /// @brief Determine if the icmp Predicate is true when both operands are equal static bool isTrueWhenEqual(ICmpInst::Predicate pred) { return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE || pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE || pred == ICmpInst::ICMP_SLE; } /// @returns true if the specified compare instruction is /// true when both operands are equal... /// @brief Determine if the ICmpInst returns true when both operands are equal static bool isTrueWhenEqual(ICmpInst &ICI) { return isTrueWhenEqual(ICI.getPredicate()); } /// AssociativeOpt - Perform an optimization on an associative operator. This /// function is designed to check a chain of associative operators for a /// potential to apply a certain optimization. Since the optimization may be /// applicable if the expression was reassociated, this checks the chain, then /// reassociates the expression as necessary to expose the optimization /// opportunity. This makes use of a special Functor, which must define /// 'shouldApply' and 'apply' methods. /// template Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { unsigned Opcode = Root.getOpcode(); Value *LHS = Root.getOperand(0); // Quick check, see if the immediate LHS matches... if (F.shouldApply(LHS)) return F.apply(Root); // Otherwise, if the LHS is not of the same opcode as the root, return. Instruction *LHSI = dyn_cast(LHS); while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { // Should we apply this transform to the RHS? bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); // If not to the RHS, check to see if we should apply to the LHS... if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { cast(LHSI)->swapOperands(); // Make the LHS the RHS ShouldApply = true; } // If the functor wants to apply the optimization to the RHS of LHSI, // reassociate the expression from ((? op A) op B) to (? op (A op B)) if (ShouldApply) { BasicBlock *BB = Root.getParent(); // Now all of the instructions are in the current basic block, go ahead // and perform the reassociation. Instruction *TmpLHSI = cast(Root.getOperand(0)); // First move the selected RHS to the LHS of the root... Root.setOperand(0, LHSI->getOperand(1)); // Make what used to be the LHS of the root be the user of the root... Value *ExtraOperand = TmpLHSI->getOperand(1); if (&Root == TmpLHSI) { Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); return 0; } Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root TmpLHSI->getParent()->getInstList().remove(TmpLHSI); BasicBlock::iterator ARI = &Root; ++ARI; BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root ARI = Root; // Now propagate the ExtraOperand down the chain of instructions until we // get to LHSI. while (TmpLHSI != LHSI) { Instruction *NextLHSI = cast(TmpLHSI->getOperand(0)); // Move the instruction to immediately before the chain we are // constructing to avoid breaking dominance properties. NextLHSI->getParent()->getInstList().remove(NextLHSI); BB->getInstList().insert(ARI, NextLHSI); ARI = NextLHSI; Value *NextOp = NextLHSI->getOperand(1); NextLHSI->setOperand(1, ExtraOperand); TmpLHSI = NextLHSI; ExtraOperand = NextOp; } // Now that the instructions are reassociated, have the functor perform // the transformation... return F.apply(Root); } LHSI = dyn_cast(LHSI->getOperand(0)); } return 0; } // AddRHS - Implements: X + X --> X << 1 struct AddRHS { Value *RHS; AddRHS(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::createShl(Add.getOperand(0), ConstantInt::get(Add.getType(), 1)); } }; // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) // iff C1&C2 == 0 struct AddMaskingAnd { Constant *C2; AddMaskingAnd(Constant *c) : C2(c) {} bool shouldApply(Value *LHS) const { ConstantInt *C1; return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && ConstantExpr::getAnd(C1, C2)->isNullValue(); } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1)); } }; static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC) { if (CastInst *CI = dyn_cast(&I)) { if (Constant *SOC = dyn_cast(SO)) return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType()); return IC->InsertNewInstBefore(CastInst::create( CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I); } // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa(I.getOperand(1)); Constant *ConstOperand = cast(I.getOperand(ConstIsRHS)); if (Constant *SOC = dyn_cast(SO)) { if (ConstIsRHS) return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); } Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); Instruction *New; if (BinaryOperator *BO = dyn_cast(&I)) New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op"); else if (CmpInst *CI = dyn_cast(&I)) New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1, SO->getName()+".cmp"); else { assert(0 && "Unknown binary instruction type!"); abort(); } return IC->InsertNewInstBefore(New, I); } // FoldOpIntoSelect - Given an instruction with a select as one operand and a // constant as the other operand, try to fold the binary operator into the // select arguments. This also works for Cast instructions, which obviously do // not have a second operand. static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, InstCombiner *IC) { // Don't modify shared select instructions if (!SI->hasOneUse()) return 0; Value *TV = SI->getOperand(1); Value *FV = SI->getOperand(2); if (isa(TV) || isa(FV)) { // Bool selects with constant operands can be folded to logical ops. if (SI->getType() == Type::Int1Ty) return 0; Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); return new SelectInst(SI->getCondition(), SelectTrueVal, SelectFalseVal); } return 0; } /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI /// node as operand #0, see if we can fold the instruction into the PHI (which /// is only possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); if (!PN->hasOneUse() || NumPHIValues == 0) return 0; // Check to see if all of the operands of the PHI are constants. If there is // one non-constant value, remember the BB it is. If there is more than one // or if *it* is a PHI, bail out. BasicBlock *NonConstBB = 0; for (unsigned i = 0; i != NumPHIValues; ++i) if (!isa(PN->getIncomingValue(i))) { if (NonConstBB) return 0; // More than one non-const value. if (isa(PN->getIncomingValue(i))) return 0; // Itself a phi. NonConstBB = PN->getIncomingBlock(i); // If the incoming non-constant value is in I's block, we have an infinite // loop. if (NonConstBB == I.getParent()) return 0; } // If there is exactly one non-constant value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation one some other paths (e.g. inside a loop). Only // do this if the pred block is unconditionally branching into the phi block. if (NonConstBB) { BranchInst *BI = dyn_cast(NonConstBB->getTerminator()); if (!BI || !BI->isUnconditional()) return 0; } // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = new PHINode(I.getType(), ""); NewPN->reserveOperandSpace(PN->getNumOperands()/2); InsertNewInstBefore(NewPN, *PN); NewPN->takeName(PN); // Next, add all of the operands to the PHI. if (I.getNumOperands() == 2) { Constant *C = cast(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV = 0; if (Constant *InC = dyn_cast(PN->getIncomingValue(i))) { if (CmpInst *CI = dyn_cast(&I)) InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); else InV = ConstantExpr::get(I.getOpcode(), InC, C); } else { assert(PN->getIncomingBlock(i) == NonConstBB); if (BinaryOperator *BO = dyn_cast(&I)) InV = BinaryOperator::create(BO->getOpcode(), PN->getIncomingValue(i), C, "phitmp", NonConstBB->getTerminator()); else if (CmpInst *CI = dyn_cast(&I)) InV = CmpInst::create(CI->getOpcode(), CI->getPredicate(), PN->getIncomingValue(i), C, "phitmp", NonConstBB->getTerminator()); else assert(0 && "Unknown binop!"); AddToWorkList(cast(InV)); } NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } else { CastInst *CI = cast(&I); const Type *RetTy = CI->getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV; if (Constant *InC = dyn_cast(PN->getIncomingValue(i))) { InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); } else { assert(PN->getIncomingBlock(i) == NonConstBB); InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i), I.getType(), "phitmp", NonConstBB->getTerminator()); AddToWorkList(cast(InV)); } NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } return ReplaceInstUsesWith(I, NewPN); } Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (Constant *RHSC = dyn_cast(RHS)) { // X + undef -> undef if (isa(RHS)) return ReplaceInstUsesWith(I, RHS); // X + 0 --> X if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0. if (RHSC->isNullValue()) return ReplaceInstUsesWith(I, LHS); } else if (ConstantFP *CFP = dyn_cast(RHSC)) { if (CFP->isExactlyValue(ConstantFP::getNegativeZero (I.getType())->getValueAPF())) return ReplaceInstUsesWith(I, LHS); } if (ConstantInt *CI = dyn_cast(RHSC)) { // X + (signbit) --> X ^ signbit const APInt& Val = CI->getValue(); uint32_t BitWidth = Val.getBitWidth(); if (Val == APInt::getSignBit(BitWidth)) return BinaryOperator::createXor(LHS, RHS); // See if SimplifyDemandedBits can simplify this. This handles stuff like // (X & 254)+1 -> (X&254)|1 if (!isa(I.getType())) { APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne)) return &I; } } if (isa(LHS)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; ConstantInt *XorRHS = 0; Value *XorLHS = 0; if (isa(RHSC) && match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits(); const APInt& RHSVal = cast(RHSC)->getValue(); uint32_t Size = TySizeBits / 2; APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1)); APInt CFF80Val(-C0080Val); do { if (TySizeBits > Size) { // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) || (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) { // This is a sign extend if the top bits are known zero. if (!MaskedValueIsZero(XorLHS, APInt::getHighBitsSet(TySizeBits, TySizeBits - Size))) Size = 0; // Not a sign ext, but can't be any others either. break; } } Size >>= 1; C0080Val = APIntOps::lshr(C0080Val, Size); CFF80Val = APIntOps::ashr(CFF80Val, Size); } while (Size >= 1); // FIXME: This shouldn't be necessary. When the backends can handle types // with funny bit widths then this whole cascade of if statements should // be removed. It is just here to get the size of the "middle" type back // up to something that the back ends can handle. const Type *MiddleType = 0; switch (Size) { default: break; case 32: MiddleType = Type::Int32Ty; break; case 16: MiddleType = Type::Int16Ty; break; case 8: MiddleType = Type::Int8Ty; break; } if (MiddleType) { Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext"); InsertNewInstBefore(NewTrunc, I); return new SExtInst(NewTrunc, I.getType(), I.getName()); } } } // X + X --> X << 1 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) { if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; if (Instruction *RHSI = dyn_cast(RHS)) { if (RHSI->getOpcode() == Instruction::Sub) if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B return ReplaceInstUsesWith(I, RHSI->getOperand(0)); } if (Instruction *LHSI = dyn_cast(LHS)) { if (LHSI->getOpcode() == Instruction::Sub) if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B return ReplaceInstUsesWith(I, LHSI->getOperand(0)); } } // -A + B --> B - A if (Value *V = dyn_castNegVal(LHS)) return BinaryOperator::createSub(RHS, V); // A + -B --> A - B if (!isa(RHS)) if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::createSub(LHS, V); ConstantInt *C2; if (Value *X = dyn_castFoldableMul(LHS, C2)) { if (X == RHS) // X*C + X --> X * (C+1) return BinaryOperator::createMul(RHS, AddOne(C2)); // X*C1 + X*C2 --> X * (C1+C2) ConstantInt *C1; if (X == dyn_castFoldableMul(RHS, C1)) return BinaryOperator::createMul(X, Add(C1, C2)); } // X + X*C --> X * (C+1) if (dyn_castFoldableMul(RHS, C2) == LHS) return BinaryOperator::createMul(LHS, AddOne(C2)); // X + ~X --> -1 since ~X = -X-1 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R; if (ConstantInt *CRHS = dyn_cast(RHS)) { Value *X = 0; if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X return BinaryOperator::createSub(SubOne(CRHS), X); // (X & FF00) + xx00 -> (X+xx00) & FF00 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { Constant *Anded = And(CRHS, C2); if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. const APInt& AddRHSV = CRHS->getValue(); // Form a mask of all bits from the lowest bit added through the top. APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); // See if the and mask includes all of these bits. APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); if (AddRHSHighBits == AddRHSHighBitsAnd) { // Okay, the xform is safe. Insert the new add pronto. Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS, LHS->getName()), I); return BinaryOperator::createAnd(NewAdd, C2); } } } // Try to fold constant add into select arguments. if (SelectInst *SI = dyn_cast(LHS)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } // add (cast *A to intptrtype) B -> // cast (GEP (cast *A to sbyte*) B) -> // intptrtype { CastInst *CI = dyn_cast(LHS); Value *Other = RHS; if (!CI) { CI = dyn_cast(RHS); Other = LHS; } if (CI && CI->getType()->isSized() && (CI->getType()->getPrimitiveSizeInBits() == TD->getIntPtrType()->getPrimitiveSizeInBits()) && isa(CI->getOperand(0)->getType())) { Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0), PointerType::get(Type::Int8Ty), I); I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I); return new PtrToIntInst(I2, CI->getType()); } } return Changed ? &I : 0; } // isSignBit - Return true if the value represented by the constant only has the // highest order bit set. static bool isSignBit(ConstantInt *CI) { uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits(); return CI->getValue() == APInt::getSignBit(NumBits); } Instruction *InstCombiner::visitSub(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1) // sub X, X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // If this is a 'B = x-(-A)', change to B = x+A... if (Value *V = dyn_castNegVal(Op1)) return BinaryOperator::createAdd(Op0, V); if (isa(Op0)) return ReplaceInstUsesWith(I, Op0); // undef - X -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X - undef -> undef if (ConstantInt *C = dyn_cast(Op0)) { // Replace (-1 - A) with (~A)... if (C->isAllOnesValue()) return BinaryOperator::createNot(Op1); // C - ~X == X + (1+C) Value *X = 0; if (match(Op1, m_Not(m_Value(X)))) return BinaryOperator::createAdd(X, AddOne(C)); // -(X >>u 31) -> (X >>s 31) // -(X >>s 31) -> (X >>u 31) if (C->isZero()) { if (BinaryOperator *SI = dyn_cast(Op1)) if (SI->getOpcode() == Instruction::LShr) { if (ConstantInt *CU = dyn_cast(SI->getOperand(1))) { // Check to see if we are shifting out everything but the sign bit. if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == SI->getType()->getPrimitiveSizeInBits()-1) { // Ok, the transformation is safe. Insert AShr. return BinaryOperator::create(Instruction::AShr, SI->getOperand(0), CU, SI->getName()); } } } else if (SI->getOpcode() == Instruction::AShr) { if (ConstantInt *CU = dyn_cast(SI->getOperand(1))) { // Check to see if we are shifting out everything but the sign bit. if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) == SI->getType()->getPrimitiveSizeInBits()-1) { // Ok, the transformation is safe. Insert LShr. return BinaryOperator::createLShr( SI->getOperand(0), CU, SI->getName()); } } } } // Try to fold constant sub into select arguments. if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (BinaryOperator *Op1I = dyn_cast(Op1)) { if (Op1I->getOpcode() == Instruction::Add && !Op0->getType()->isFPOrFPVector()) { if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName()); else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName()); else if (ConstantInt *CI1 = dyn_cast(I.getOperand(0))) { if (ConstantInt *CI2 = dyn_cast(Op1I->getOperand(1))) // C1-(X+C2) --> (C1-C2)-X return BinaryOperator::createSub(Subtract(CI1, CI2), Op1I->getOperand(0)); } } if (Op1I->hasOneUse()) { // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression // is not used by anyone else... // if (Op1I->getOpcode() == Instruction::Sub && !Op1I->getType()->isFPOrFPVector()) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::createAdd(Op0, Op1); } // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... // if (Op1I->getOpcode() == Instruction::And && (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); Value *NewNot = InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I); return BinaryOperator::createAnd(Op0, NewNot); } // 0 - (X sdiv C) -> (X sdiv -C) if (Op1I->getOpcode() == Instruction::SDiv) if (ConstantInt *CSI = dyn_cast(Op0)) if (CSI->isZero()) if (Constant *DivRHS = dyn_cast(Op1I->getOperand(1))) return BinaryOperator::createSDiv(Op1I->getOperand(0), ConstantExpr::getNeg(DivRHS)); // X - X*C --> X * (1-C) ConstantInt *C2 = 0; if (dyn_castFoldableMul(Op1I, C2) == Op0) { Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2); return BinaryOperator::createMul(Op0, CP1); } // X - ((X / Y) * Y) --> X % Y if (Op1I->getOpcode() == Instruction::Mul) if (Instruction *I = dyn_cast(Op1I->getOperand(0))) if (Op0 == I->getOperand(0) && Op1I->getOperand(1) == I->getOperand(1)) { if (I->getOpcode() == Instruction::SDiv) return BinaryOperator::createSRem(Op0, Op1I->getOperand(1)); if (I->getOpcode() == Instruction::UDiv) return BinaryOperator::createURem(Op0, Op1I->getOperand(1)); } } } if (!Op0->getType()->isFPOrFPVector()) if (BinaryOperator *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Add) { if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(1)); else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(0)); } else if (Op0I->getOpcode() == Instruction::Sub) { if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName()); } ConstantInt *C1; if (Value *X = dyn_castFoldableMul(Op0, C1)) { if (X == Op1) // X*C - X --> X * (C-1) return BinaryOperator::createMul(Op1, SubOne(C1)); ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) if (X == dyn_castFoldableMul(Op1, C2)) return BinaryOperator::createMul(Op1, Subtract(C1, C2)); } return 0; } /// isSignBitCheck - Given an exploded icmp instruction, return true if the /// comparison only checks the sign bit. If it only checks the sign bit, set /// TrueIfSigned if the result of the comparison is true when the input value is /// signed. static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, bool &TrueIfSigned) { switch (pred) { case ICmpInst::ICMP_SLT: // True if LHS s< 0 TrueIfSigned = true; return RHS->isZero(); case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1 TrueIfSigned = true; return RHS->isAllOnesValue(); case ICmpInst::ICMP_SGT: // True if LHS s> -1 TrueIfSigned = false; return RHS->isAllOnesValue(); case ICmpInst::ICMP_UGT: // True if LHS u> RHS and RHS == high-bit-mask - 1 TrueIfSigned = true; return RHS->getValue() == APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits()); case ICmpInst::ICMP_UGE: // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) TrueIfSigned = true; return RHS->getValue() == APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits()); default: return false; } } Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0); if (isa(I.getOperand(1))) // undef * X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Simplify mul instructions with a constant RHS... if (Constant *Op1 = dyn_cast(I.getOperand(1))) { if (ConstantInt *CI = dyn_cast(Op1)) { // ((X << C1)*C2) == (X * (C2 << C1)) if (BinaryOperator *SI = dyn_cast(Op0)) if (SI->getOpcode() == Instruction::Shl) if (Constant *ShOp = dyn_cast(SI->getOperand(1))) return BinaryOperator::createMul(SI->getOperand(0), ConstantExpr::getShl(CI, ShOp)); if (CI->isZero()) return ReplaceInstUsesWith(I, Op1); // X * 0 == 0 if (CI->equalsInt(1)) // X * 1 == X return ReplaceInstUsesWith(I, Op0); if (CI->isAllOnesValue()) // X * -1 == 0 - X return BinaryOperator::createNeg(Op0, I.getName()); const APInt& Val = cast(CI)->getValue(); if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C return BinaryOperator::createShl(Op0, ConstantInt::get(Op0->getType(), Val.logBase2())); } } else if (ConstantFP *Op1F = dyn_cast(Op1)) { if (Op1F->isNullValue()) return ReplaceInstUsesWith(I, Op1); // "In IEEE floating point, x*1 is not equivalent to x for nans. However, // ANSI says we can drop signals, so we can do this anyway." (from GCC) // We need a better interface for long double here. if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy) if (Op1F->isExactlyValue(1.0)) return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' } if (BinaryOperator *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && isa(Op0I->getOperand(1))) { // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0), Op1, "tmp"); InsertNewInstBefore(Add, I); Value *C1C2 = ConstantExpr::getMul(Op1, cast(Op0I->getOperand(1))); return BinaryOperator::createAdd(Add, C1C2); } // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) return BinaryOperator::createMul(Op0v, Op1v); // If one of the operands of the multiply is a cast from a boolean value, then // we know the bool is either zero or one, so this is a 'masking' multiply. // See if we can simplify things based on how the boolean was originally // formed. CastInst *BoolCast = 0; if (ZExtInst *CI = dyn_cast(I.getOperand(0))) if (CI->getOperand(0)->getType() == Type::Int1Ty) BoolCast = CI; if (!BoolCast) if (ZExtInst *CI = dyn_cast(I.getOperand(1))) if (CI->getOperand(0)->getType() == Type::Int1Ty) BoolCast = CI; if (BoolCast) { if (ICmpInst *SCI = dyn_cast(BoolCast->getOperand(0))) { Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); const Type *SCOpTy = SCIOp0->getType(); bool TIS = false; // If the icmp is true iff the sign bit of X is set, then convert this // multiply into a shift/and combination. if (isa(SCIOp1) && isSignBitCheck(SCI->getPredicate(), cast(SCIOp1), TIS) && TIS) { // Shift the X value right to turn it into "all signbits". Constant *Amt = ConstantInt::get(SCIOp0->getType(), SCOpTy->getPrimitiveSizeInBits()-1); Value *V = InsertNewInstBefore( BinaryOperator::create(Instruction::AShr, SCIOp0, Amt, BoolCast->getOperand(0)->getName()+ ".mask"), I); // If the multiply type is not the same as the source type, sign extend // or truncate to the multiply type. if (I.getType() != V->getType()) { uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits(); uint32_t DstBits = I.getType()->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc)); V = InsertCastBefore(opcode, V, I.getType(), I); } Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; return BinaryOperator::createAnd(V, OtherOp); } } } return Changed ? &I : 0; } /// This function implements the transforms on div instructions that work /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is /// used by the visitors to those instructions. /// @brief Transforms common to all three div instructions Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // undef / X -> 0 if (isa(Op0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // X / undef -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // Handle cases involving: div X, (select Cond, Y, Z) if (SelectInst *SI = dyn_cast(Op1)) { // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the // same basic block, then we replace the select with Y, and the condition // of the select with false (if the cond value is in the same BB). If the // select has uses other than the div, this allows them to be simplified // also. Note that div X, Y is just as good as div X, 0 (undef) if (Constant *ST = dyn_cast(SI->getOperand(1))) if (ST->isNullValue()) { Instruction *CondI = dyn_cast(SI->getOperand(0)); if (CondI && CondI->getParent() == I.getParent()) UpdateValueUsesWith(CondI, ConstantInt::getFalse()); else if (I.getParent() != SI->getParent() || SI->hasOneUse()) I.setOperand(1, SI->getOperand(2)); else UpdateValueUsesWith(SI, SI->getOperand(2)); return &I; } // Likewise for: div X, (Cond ? Y : 0) -> div X, Y if (Constant *ST = dyn_cast(SI->getOperand(2))) if (ST->isNullValue()) { Instruction *CondI = dyn_cast(SI->getOperand(0)); if (CondI && CondI->getParent() == I.getParent()) UpdateValueUsesWith(CondI, ConstantInt::getTrue()); else if (I.getParent() != SI->getParent() || SI->hasOneUse()) I.setOperand(1, SI->getOperand(1)); else UpdateValueUsesWith(SI, SI->getOperand(1)); return &I; } } return 0; } /// This function implements the transforms common to both integer division /// instructions (udiv and sdiv). It is called by the visitors to those integer /// division instructions. /// @brief Common integer divide transforms Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *Common = commonDivTransforms(I)) return Common; if (ConstantInt *RHS = dyn_cast(Op1)) { // div X, 1 == X if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, Op0); // (X / C1) / C2 -> X / (C1*C2) if (Instruction *LHS = dyn_cast(Op0)) if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) if (ConstantInt *LHSRHS = dyn_cast(LHS->getOperand(1))) { return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0), Multiply(RHS, LHSRHS)); } if (!RHS->isZero()) { // avoid X udiv 0 if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } } // 0 / X == 0, we don't need to preserve faults! if (ConstantInt *LHS = dyn_cast(Op0)) if (LHS->equalsInt(0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return 0; } Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; // X udiv C^2 -> X >> C // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. if (ConstantInt *C = dyn_cast(Op1)) { if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2 return BinaryOperator::createLShr(Op0, ConstantInt::get(Op0->getType(), C->getValue().logBase2())); } // X udiv (C1 << N), where C1 is "1< X >> (N+C2) if (BinaryOperator *RHSI = dyn_cast(I.getOperand(1))) { if (RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { const APInt& C1 = cast(RHSI->getOperand(0))->getValue(); if (C1.isPowerOf2()) { Value *N = RHSI->getOperand(1); const Type *NTy = N->getType(); if (uint32_t C2 = C1.logBase2()) { Constant *C2V = ConstantInt::get(NTy, C2); N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I); } return BinaryOperator::createLShr(Op0, N); } } } // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) // where C1&C2 are powers of two. if (SelectInst *SI = dyn_cast(Op1)) if (ConstantInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantInt *SFO = dyn_cast(SI->getOperand(2))) { const APInt &TVA = STO->getValue(), &FVA = SFO->getValue(); if (TVA.isPowerOf2() && FVA.isPowerOf2()) { // Compute the shift amounts uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2(); // Construct the "on true" case of the select Constant *TC = ConstantInt::get(Op0->getType(), TSA); Instruction *TSI = BinaryOperator::createLShr( Op0, TC, SI->getName()+".t"); TSI = InsertNewInstBefore(TSI, I); // Construct the "on false" case of the select Constant *FC = ConstantInt::get(Op0->getType(), FSA); Instruction *FSI = BinaryOperator::createLShr( Op0, FC, SI->getName()+".f"); FSI = InsertNewInstBefore(FSI, I); // construct the select instruction and return it. return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName()); } } return 0; } Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; if (ConstantInt *RHS = dyn_cast(Op1)) { // sdiv X, -1 == -X if (RHS->isAllOnesValue()) return BinaryOperator::createNeg(Op0); // -X/C -> X/-C if (Value *LHSNeg = dyn_castNegVal(Op0)) return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS)); } // If the sign bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a udiv. if (I.getType()->isInteger()) { APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { return BinaryOperator::createUDiv(Op0, Op1, I.getName()); } } return 0; } Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { return commonDivTransforms(I); } /// GetFactor - If we can prove that the specified value is at least a multiple /// of some factor, return that factor. static Constant *GetFactor(Value *V) { if (ConstantInt *CI = dyn_cast(V)) return CI; // Unless we can be tricky, we know this is a multiple of 1. Constant *Result = ConstantInt::get(V->getType(), 1); Instruction *I = dyn_cast(V); if (!I) return Result; if (I->getOpcode() == Instruction::Mul) { // Handle multiplies by a constant, etc. return ConstantExpr::getMul(GetFactor(I->getOperand(0)), GetFactor(I->getOperand(1))); } else if (I->getOpcode() == Instruction::Shl) { // (X< X * (1 << C) if (Constant *ShRHS = dyn_cast(I->getOperand(1))) { ShRHS = ConstantExpr::getShl(Result, ShRHS); return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS); } } else if (I->getOpcode() == Instruction::And) { if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { // X & 0xFFF0 is known to be a multiple of 16. uint32_t Zeros = RHS->getValue().countTrailingZeros(); if (Zeros != V->getType()->getPrimitiveSizeInBits()) return ConstantExpr::getShl(Result, ConstantInt::get(Result->getType(), Zeros)); } } else if (CastInst *CI = dyn_cast(I)) { // Only handle int->int casts. if (!CI->isIntegerCast()) return Result; Value *Op = CI->getOperand(0); return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType()); } return Result; } /// This function implements the transforms on rem instructions that work /// regardless of the kind of rem instruction it is (urem, srem, or frem). It /// is used by the visitors to those instructions. /// @brief Transforms common to all three rem instructions Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // 0 % X == 0, we don't need to preserve faults! if (Constant *LHS = dyn_cast(Op0)) if (LHS->isNullValue()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(Op0)) // undef % X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X % undef -> undef // Handle cases involving: rem X, (select Cond, Y, Z) if (SelectInst *SI = dyn_cast(Op1)) { // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in // the same basic block, then we replace the select with Y, and the // condition of the select with false (if the cond value is in the same // BB). If the select has uses other than the div, this allows them to be // simplified also. if (Constant *ST = dyn_cast(SI->getOperand(1))) if (ST->isNullValue()) { Instruction *CondI = dyn_cast(SI->getOperand(0)); if (CondI && CondI->getParent() == I.getParent()) UpdateValueUsesWith(CondI, ConstantInt::getFalse()); else if (I.getParent() != SI->getParent() || SI->hasOneUse()) I.setOperand(1, SI->getOperand(2)); else UpdateValueUsesWith(SI, SI->getOperand(2)); return &I; } // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y if (Constant *ST = dyn_cast(SI->getOperand(2))) if (ST->isNullValue()) { Instruction *CondI = dyn_cast(SI->getOperand(0)); if (CondI && CondI->getParent() == I.getParent()) UpdateValueUsesWith(CondI, ConstantInt::getTrue()); else if (I.getParent() != SI->getParent() || SI->hasOneUse()) I.setOperand(1, SI->getOperand(1)); else UpdateValueUsesWith(SI, SI->getOperand(1)); return &I; } } return 0; } /// This function implements the transforms common to both integer remainder /// instructions (urem and srem). It is called by the visitors to those integer /// remainder instructions. /// @brief Common integer remainder transforms Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *common = commonRemTransforms(I)) return common; if (ConstantInt *RHS = dyn_cast(Op1)) { // X % 0 == undef, we don't need to preserve faults! if (RHS->equalsInt(0)) return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); if (RHS->equalsInt(1)) // X % 1 == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (Instruction *Op0I = dyn_cast(Op0)) { if (SelectInst *SI = dyn_cast(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } else if (isa(Op0I)) { if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // (X * C1) % C2 --> 0 iff C1 % C2 == 0 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } } return 0; } Instruction *InstCombiner::visitURem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *common = commonIRemTransforms(I)) return common; if (ConstantInt *RHS = dyn_cast(Op1)) { // X urem C^2 -> X and C // Check to see if this is an unsigned remainder with an exact power of 2, // if so, convert to a bitwise and. if (ConstantInt *C = dyn_cast(RHS)) if (C->getValue().isPowerOf2()) return BinaryOperator::createAnd(Op0, SubOne(C)); } if (Instruction *RHSI = dyn_cast(I.getOperand(1))) { // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) if (RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { if (cast(RHSI->getOperand(0))->getValue().isPowerOf2()) { Constant *N1 = ConstantInt::getAllOnesValue(I.getType()); Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1, "tmp"), I); return BinaryOperator::createAnd(Op0, Add); } } } // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) // where C1&C2 are powers of two. if (SelectInst *SI = dyn_cast(Op1)) { if (ConstantInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantInt *SFO = dyn_cast(SI->getOperand(2))) { // STO == 0 and SFO == 0 handled above. if ((STO->getValue().isPowerOf2()) && (SFO->getValue().isPowerOf2())) { Value *TrueAnd = InsertNewInstBefore( BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I); Value *FalseAnd = InsertNewInstBefore( BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I); return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd); } } } return 0; } Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Instruction *common = commonIRemTransforms(I)) return common; if (Value *RHSNeg = dyn_castNegVal(Op1)) if (!isa(RHSNeg) || cast(RHSNeg)->getValue().isStrictlyPositive()) { // X % -Y -> X % Y AddUsesToWorkList(I); I.setOperand(1, RHSNeg); return &I; } // If the top bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a urem. APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { // X srem Y -> X urem Y, iff X and Y don't have sign bit set return BinaryOperator::createURem(Op0, Op1, I.getName()); } return 0; } Instruction *InstCombiner::visitFRem(BinaryOperator &I) { return commonRemTransforms(I); } // isMaxValueMinusOne - return true if this is Max-1 static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) { uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits(); if (!isSigned) return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1; return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1; } // isMinValuePlusOne - return true if this is Min+1 static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) { if (!isSigned) return C->getValue() == 1; // unsigned // Calculate 1111111111000000000000 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits(); return C->getValue() == APInt::getSignedMinValue(TypeBits)+1; } // isOneBitSet - Return true if there is exactly one bit set in the specified // constant. static bool isOneBitSet(const ConstantInt *CI) { return CI->getValue().isPowerOf2(); } // isHighOnes - Return true if the constant is of the form 1+0+. // This is the same as lowones(~X). static bool isHighOnes(const ConstantInt *CI) { return (~CI->getValue() + 1).isPowerOf2(); } /// getICmpCode - Encode a icmp predicate into a three bit mask. These bits /// are carefully arranged to allow folding of expressions such as: /// /// (A < B) | (A > B) --> (A != B) /// /// Note that this is only valid if the first and second predicates have the /// same sign. Is illegal to do: (A u< B) | (A s> B) /// /// Three bits are used to represent the condition, as follows: /// 0 A > B /// 1 A == B /// 2 A < B /// /// <=> Value Definition /// 000 0 Always false /// 001 1 A > B /// 010 2 A == B /// 011 3 A >= B /// 100 4 A < B /// 101 5 A != B /// 110 6 A <= B /// 111 7 Always true /// static unsigned getICmpCode(const ICmpInst *ICI) { switch (ICI->getPredicate()) { // False -> 0 case ICmpInst::ICMP_UGT: return 1; // 001 case ICmpInst::ICMP_SGT: return 1; // 001 case ICmpInst::ICMP_EQ: return 2; // 010 case ICmpInst::ICMP_UGE: return 3; // 011 case ICmpInst::ICMP_SGE: return 3; // 011 case ICmpInst::ICMP_ULT: return 4; // 100 case ICmpInst::ICMP_SLT: return 4; // 100 case ICmpInst::ICMP_NE: return 5; // 101 case ICmpInst::ICMP_ULE: return 6; // 110 case ICmpInst::ICMP_SLE: return 6; // 110 // True -> 7 default: assert(0 && "Invalid ICmp predicate!"); return 0; } } /// getICmpValue - This is the complement of getICmpCode, which turns an /// opcode and two operands into either a constant true or false, or a brand /// new ICmp instruction. The sign is passed in to determine which kind /// of predicate to use in new icmp instructions. static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) { switch (code) { default: assert(0 && "Illegal ICmp code!"); case 0: return ConstantInt::getFalse(); case 1: if (sign) return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS); case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS); case 3: if (sign) return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS); case 4: if (sign) return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS); case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS); case 6: if (sign) return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS); else return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS); case 7: return ConstantInt::getTrue(); } } static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) { return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) || (ICmpInst::isSignedPredicate(p1) && (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) || (ICmpInst::isSignedPredicate(p2) && (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE)); } namespace { // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) struct FoldICmpLogical { InstCombiner &IC; Value *LHS, *RHS; ICmpInst::Predicate pred; FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI) : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)), pred(ICI->getPredicate()) {} bool shouldApply(Value *V) const { if (ICmpInst *ICI = dyn_cast(V)) if (PredicatesFoldable(pred, ICI->getPredicate())) return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS || ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS); return false; } Instruction *apply(Instruction &Log) const { ICmpInst *ICI = cast(Log.getOperand(0)); if (ICI->getOperand(0) != LHS) { assert(ICI->getOperand(1) == LHS); ICI->swapOperands(); // Swap the LHS and RHS of the ICmp } ICmpInst *RHSICI = cast(Log.getOperand(1)); unsigned LHSCode = getICmpCode(ICI); unsigned RHSCode = getICmpCode(RHSICI); unsigned Code; switch (Log.getOpcode()) { case Instruction::And: Code = LHSCode & RHSCode; break; case Instruction::Or: Code = LHSCode | RHSCode; break; case Instruction::Xor: Code = LHSCode ^ RHSCode; break; default: assert(0 && "Illegal logical opcode!"); return 0; } bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || ICmpInst::isSignedPredicate(ICI->getPredicate()); Value *RV = getICmpValue(isSigned, Code, LHS, RHS); if (Instruction *I = dyn_cast(RV)) return I; // Otherwise, it's a constant boolean value... return IC.ReplaceInstUsesWith(Log, RV); } }; } // end anonymous namespace // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is // guaranteed to be a binary operator. Instruction *InstCombiner::OptAndOp(Instruction *Op, ConstantInt *OpRHS, ConstantInt *AndRHS, BinaryOperator &TheAnd) { Value *X = Op->getOperand(0); Constant *Together = 0; if (!Op->isShift()) Together = And(AndRHS, OpRHS); switch (Op->getOpcode()) { case Instruction::Xor: if (Op->hasOneUse()) { // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) Instruction *And = BinaryOperator::createAnd(X, AndRHS); InsertNewInstBefore(And, TheAnd); And->takeName(Op); return BinaryOperator::createXor(And, Together); } break; case Instruction::Or: if (Together == AndRHS) // (X | C) & C --> C return ReplaceInstUsesWith(TheAnd, AndRHS); if (Op->hasOneUse() && Together != OpRHS) { // (X | C1) & C2 --> (X | (C1&C2)) & C2 Instruction *Or = BinaryOperator::createOr(X, Together); InsertNewInstBefore(Or, TheAnd); Or->takeName(Op); return BinaryOperator::createAnd(Or, AndRHS); } break; case Instruction::Add: if (Op->hasOneUse()) { // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. const APInt& AndRHSV = cast(AndRHS)->getValue(); // If there is only one bit set... if (isOneBitSet(cast(AndRHS))) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. const APInt& AddRHS = cast(OpRHS)->getValue(); // Check to see if any bits below the one bit set in AndRHSV are set. if ((AddRHS & (AndRHSV-1)) == 0) { // If not, the only thing that can effect the output of the AND is // the bit specified by AndRHSV. If that bit is set, the effect of // the XOR is to toggle the bit. If it is clear, then the ADD has // no effect. if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop TheAnd.setOperand(0, X); return &TheAnd; } else { // Pull the XOR out of the AND. Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS); InsertNewInstBefore(NewAnd, TheAnd); NewAnd->takeName(Op); return BinaryOperator::createXor(NewAnd, AndRHS); } } } } break; case Instruction::Shl: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! // uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal)); ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask); if (CI->getValue() == ShlMask) { // Masking out bits that the shift already masks return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. } else if (CI != AndRHS) { // Reducing bits set in and. TheAnd.setOperand(1, CI); return &TheAnd; } break; } case Instruction::LShr: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! This only applies to // unsigned shifts, because a signed shr may bring in set bits! // uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask); if (CI->getValue() == ShrMask) { // Masking out bits that the shift already masks. return ReplaceInstUsesWith(TheAnd, Op); } else if (CI != AndRHS) { TheAnd.setOperand(1, CI); // Reduce bits set in and cst. return &TheAnd; } break; } case Instruction::AShr: // Signed shr. // See if this is shifting in some sign extension, then masking it out // with an and. if (Op->hasOneUse()) { uint32_t BitWidth = AndRHS->getType()->getBitWidth(); uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth); APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal)); Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask); if (C == AndRHS) { // Masking out bits shifted in. // (Val ashr C1) & C2 -> (Val lshr C1) & C2 // Make the argument unsigned. Value *ShVal = Op->getOperand(0); ShVal = InsertNewInstBefore( BinaryOperator::createLShr(ShVal, OpRHS, Op->getName()), TheAnd); return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName()); } } break; } return 0; } /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient /// (V-Lo) (ConstantExpr::getICmp((isSigned ? ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() && "Lo is not <= Hi in range emission code!"); if (Inside) { if (Lo == Hi) // Trivially false. return new ICmpInst(ICmpInst::ICMP_NE, V, V); // V >= Min && V < Hi --> V < Hi if (cast(Lo)->isMinValue(isSigned)) { ICmpInst::Predicate pred = (isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT); return new ICmpInst(pred, V, Hi); } // Emit V-Lo getName()+".off"); InsertNewInstBefore(Add, IB); Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi); return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound); } if (Lo == Hi) // Trivially true. return new ICmpInst(ICmpInst::ICMP_EQ, V, V); // V < Min || V >= Hi -> V > Hi-1 Hi = SubOne(cast(Hi)); if (cast(Lo)->isMinValue(isSigned)) { ICmpInst::Predicate pred = (isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); return new ICmpInst(pred, V, Hi); } // Emit V-Lo >u Hi-1-Lo // Note that Hi has already had one subtracted from it, above. ConstantInt *NegLo = cast(ConstantExpr::getNeg(Lo)); Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off"); InsertNewInstBefore(Add, IB); Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi); return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound); } // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with // any number of 0s on either side. The 1s are allowed to wrap from LSB to // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1s are not contiguous. static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) { const APInt& V = Val->getValue(); uint32_t BitWidth = Val->getType()->getBitWidth(); if (!APIntOps::isShiftedMask(BitWidth, V)) return false; // look for the first zero bit after the run of ones MB = BitWidth - ((V - 1) ^ V).countLeadingZeros(); // look for the first non-zero bit ME = V.getActiveBits(); return true; } /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, /// where isSub determines whether the operator is a sub. If we can fold one of /// the following xforms: /// /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// /// return (A +/- B). /// Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask, bool isSub, Instruction &I) { Instruction *LHSI = dyn_cast(LHS); if (!LHSI || LHSI->getNumOperands() != 2 || !isa(LHSI->getOperand(1))) return 0; ConstantInt *N = cast(LHSI->getOperand(1)); switch (LHSI->getOpcode()) { default: return 0; case Instruction::And: if (And(N, Mask) == Mask) { // If the AndRHS is a power of two minus one (0+1+), this is simple. if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()) break; // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ // part, we don't need any explicit masks to take them out of A. If that // is all N is, ignore it. uint32_t MB = 0, ME = 0; if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive uint32_t BitWidth = cast(RHS->getType())->getBitWidth(); APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1)); if (MaskedValueIsZero(RHS, Mask)) break; } } return 0; case Instruction::Or: case Instruction::Xor: // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 if ((Mask->getValue().countLeadingZeros() + Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth() && And(N, Mask)->isZero()) break; return 0; } Instruction *New; if (isSub) New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold"); else New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold"); return InsertNewInstBefore(New, I); } Instruction *InstCombiner::visitAnd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X & undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // and X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op1); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { uint32_t BitWidth = cast(I.getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne)) return &I; } else { if (ConstantVector *CP = dyn_cast(Op1)) { if (CP->isAllOnesValue()) // X & <-1,-1> -> X return ReplaceInstUsesWith(I, I.getOperand(0)); } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0> } } if (ConstantInt *AndRHS = dyn_cast(Op1)) { const APInt& AndRHSMask = AndRHS->getValue(); APInt NotAndRHS(~AndRHSMask); // Optimize a variety of ((val OP C1) & C2) combinations... if (isa(Op0)) { Instruction *Op0I = cast(Op0); Value *Op0LHS = Op0I->getOperand(0); Value *Op0RHS = Op0I->getOperand(1); switch (Op0I->getOpcode()) { case Instruction::Xor: case Instruction::Or: // If the mask is only needed on one incoming arm, push it up. if (Op0I->hasOneUse()) { if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { // Not masking anything out for the LHS, move to RHS. Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS, Op0RHS->getName()+".masked"); InsertNewInstBefore(NewRHS, I); return BinaryOperator::create( cast(Op0I)->getOpcode(), Op0LHS, NewRHS); } if (!isa(Op0RHS) && MaskedValueIsZero(Op0RHS, NotAndRHS)) { // Not masking anything out for the RHS, move to LHS. Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS, Op0LHS->getName()+".masked"); InsertNewInstBefore(NewLHS, I); return BinaryOperator::create( cast(Op0I)->getOpcode(), NewLHS, Op0RHS); } } break; case Instruction::Add: // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) return BinaryOperator::createAnd(V, AndRHS); if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) return BinaryOperator::createAnd(V, AndRHS); // Add commutes break; case Instruction::Sub: // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) return BinaryOperator::createAnd(V, AndRHS); break; } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) return Res; } else if (CastInst *CI = dyn_cast(Op0)) { // If this is an integer truncation or change from signed-to-unsigned, and // if the source is an and/or with immediate, transform it. This // frequently occurs for bitfield accesses. if (Instruction *CastOp = dyn_cast(CI->getOperand(0))) { if ((isa(CI) || isa(CI)) && CastOp->getNumOperands() == 2) if (ConstantInt *AndCI = dyn_cast(CastOp->getOperand(1))) if (CastOp->getOpcode() == Instruction::And) { // Change: and (cast (and X, C1) to T), C2 // into : and (cast X to T), trunc_or_bitcast(C1)&C2 // This will fold the two constants together, which may allow // other simplifications. Instruction *NewCast = CastInst::createTruncOrBitCast( CastOp->getOperand(0), I.getType(), CastOp->getName()+".shrunk"); NewCast = InsertNewInstBefore(NewCast, I); // trunc_or_bitcast(C1)&C2 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); C3 = ConstantExpr::getAnd(C3, AndRHS); return BinaryOperator::createAnd(NewCast, C3); } else if (CastOp->getOpcode() == Instruction::Or) { // Change: and (cast (or X, C1) to T), C2 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType()); if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2 return ReplaceInstUsesWith(I, AndRHS); } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *Op0NotVal = dyn_castNotVal(Op0); Value *Op1NotVal = dyn_castNotVal(Op1); if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // (~A & ~B) == (~(A | B)) - De Morgan's Law if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal, I.getName()+".demorgan"); InsertNewInstBefore(Or, I); return BinaryOperator::createNot(Or); } { Value *A = 0, *B = 0, *C = 0, *D = 0; if (match(Op0, m_Or(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) // (A | ?) & A --> A return ReplaceInstUsesWith(I, Op1); // (A|B) & ~(A&B) -> A^B if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::createXor(A, B); } } if (match(Op1, m_Or(m_Value(A), m_Value(B)))) { if (A == Op0 || B == Op0) // A & (A | ?) --> A return ReplaceInstUsesWith(I, Op0); // ~(A&B) & (A|B) -> A^B if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::createXor(A, B); } } if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1) { // (A^B)&A -> A&(A^B) I.swapOperands(); // Simplify below std::swap(Op0, Op1); } else if (B == Op1) { // (A^B)&B -> B&(B^A) cast(Op0)->swapOperands(); I.swapOperands(); // Simplify below std::swap(Op0, Op1); } } if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_Value(B)))) { if (B == Op0) { // B&(A^B) -> B&(B^A) cast(Op1)->swapOperands(); std::swap(A, B); } if (A == Op0) { // A&(A^B) -> A & ~B Instruction *NotB = BinaryOperator::createNot(B, "tmp"); InsertNewInstBefore(NotB, I); return BinaryOperator::createAnd(A, NotB); } } } if (ICmpInst *RHS = dyn_cast(Op1)) { // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2) // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere. LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE && RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE && LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE && RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) { // Ensure that the larger constant is on the RHS. ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst); ICmpInst *LHS = cast(Op0); if (cast(Cmp)->getZExtValue()) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two icmp instructions // comparing a value against two constants and and'ing the result // together. Because of the above check, we know that we only have // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know // (from the FoldICmpLogical check above), that the two constants // are not equal and that the larger constant is on the RHS assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13 return ReplaceInstUsesWith(I, LHS); } case ICmpInst::ICMP_NE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_ULT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst); break; // (X != 13 & X u< 15) -> no change case ICmpInst::ICMP_SLT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst); break; // (X != 13 & X s< 15) -> no change case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_NE: if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1 Constant *AddCST = ConstantExpr::getNeg(LHSCst); Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST, LHSVal->getName()+".off"); InsertNewInstBefore(Add, I); return new ICmpInst(ICmpInst::ICMP_UGT, Add, ConstantInt::get(Add->getType(), 1)); } break; // (X != 13 & X != 15) -> no change } break; case ICmpInst::ICMP_ULT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change break; } break; case ICmpInst::ICMP_SLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false return ReplaceInstUsesWith(I, ConstantInt::getFalse()); case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change break; } break; case ICmpInst::ICMP_UGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change break; case ICmpInst::ICMP_NE: if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14 return new ICmpInst(LHSCC, LHSVal, RHSCst); break; // (X u> 13 & X != 15) -> no change case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) 13 & X s< 15) -> no change break; } break; case ICmpInst::ICMP_SGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X s> 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change break; case ICmpInst::ICMP_NE: if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14 return new ICmpInst(LHSCC, LHSVal, RHSCst); break; // (X s> 13 & X != 15) -> no change case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true, true, I); case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change break; } break; } } } // fold (and (cast A), (cast B)) -> (cast (and A, B)) if (CastInst *Op0C = dyn_cast(Op0)) if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ? const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); } } // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. if (BinaryOperator *SI1 = dyn_cast(Op1)) { if (BinaryOperator *SI0 = dyn_cast(Op0)) if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && SI0->getOperand(1) == SI1->getOperand(1) && (SI0->hasOneUse() || SI1->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0), SI1->getOperand(0), SI0->getName()), I); return BinaryOperator::create(SI1->getOpcode(), NewOp, SI1->getOperand(1)); } } return Changed ? &I : 0; } /// CollectBSwapParts - Look to see if the specified value defines a single byte /// in the result. If it does, and if the specified byte hasn't been filled in /// yet, fill it in and return false. static bool CollectBSwapParts(Value *V, SmallVector &ByteValues) { Instruction *I = dyn_cast(V); if (I == 0) return true; // If this is an or instruction, it is an inner node of the bswap. if (I->getOpcode() == Instruction::Or) return CollectBSwapParts(I->getOperand(0), ByteValues) || CollectBSwapParts(I->getOperand(1), ByteValues); uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits(); // If this is a shift by a constant int, and it is "24", then its operand // defines a byte. We only handle unsigned types here. if (I->isShift() && isa(I->getOperand(1))) { // Not shifting the entire input by N-1 bytes? if (cast(I->getOperand(1))->getLimitedValue(BitWidth) != 8*(ByteValues.size()-1)) return true; unsigned DestNo; if (I->getOpcode() == Instruction::Shl) { // X << 24 defines the top byte with the lowest of the input bytes. DestNo = ByteValues.size()-1; } else { // X >>u 24 defines the low byte with the highest of the input bytes. DestNo = 0; } // If the destination byte value is already defined, the values are or'd // together, which isn't a bswap (unless it's an or of the same bits). if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0)) return true; ByteValues[DestNo] = I->getOperand(0); return false; } // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we // don't have this. Value *Shift = 0, *ShiftLHS = 0; ConstantInt *AndAmt = 0, *ShiftAmt = 0; if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) || !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt)))) return true; Instruction *SI = cast(Shift); // Make sure that the shift amount is by a multiple of 8 and isn't too big. if (ShiftAmt->getLimitedValue(BitWidth) & 7 || ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size()) return true; // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc. unsigned DestByte; if (AndAmt->getValue().getActiveBits() > 64) return true; uint64_t AndAmtVal = AndAmt->getZExtValue(); for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte) if (AndAmtVal == uint64_t(0xFF) << 8*DestByte) break; // Unknown mask for bswap. if (DestByte == ByteValues.size()) return true; unsigned ShiftBytes = ShiftAmt->getZExtValue()/8; unsigned SrcByte; if (SI->getOpcode() == Instruction::Shl) SrcByte = DestByte - ShiftBytes; else SrcByte = DestByte + ShiftBytes; // If the SrcByte isn't a bswapped value from the DestByte, reject it. if (SrcByte != ByteValues.size()-DestByte-1) return true; // If the destination byte value is already defined, the values are or'd // together, which isn't a bswap (unless it's an or of the same bits). if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0)) return true; ByteValues[DestByte] = SI->getOperand(0); return false; } /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom. /// If so, insert the new bswap intrinsic and return it. Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) { const IntegerType *ITy = dyn_cast(I.getType()); if (!ITy || ITy->getBitWidth() % 16) return 0; // Can only bswap pairs of bytes. Can't do vectors. /// ByteValues - For each byte of the result, we keep track of which value /// defines each byte. SmallVector ByteValues; ByteValues.resize(ITy->getBitWidth()/8); // Try to find all the pieces corresponding to the bswap. if (CollectBSwapParts(I.getOperand(0), ByteValues) || CollectBSwapParts(I.getOperand(1), ByteValues)) return 0; // Check to see if all of the bytes come from the same value. Value *V = ByteValues[0]; if (V == 0) return 0; // Didn't find a byte? Must be zero. // Check to make sure that all of the bytes come from the same value. for (unsigned i = 1, e = ByteValues.size(); i != e; ++i) if (ByteValues[i] != V) return 0; const Type *Tys[] = { ITy }; Module *M = I.getParent()->getParent()->getParent(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); return new CallInst(F, V); } Instruction *InstCombiner::visitOr(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X | undef -> -1 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // or X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op0); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { uint32_t BitWidth = cast(I.getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne)) return &I; } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X } else if (ConstantVector *CP = dyn_cast(Op1)) { if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1> return ReplaceInstUsesWith(I, I.getOperand(1)); } // or X, -1 == -1 if (ConstantInt *RHS = dyn_cast(Op1)) { ConstantInt *C1 = 0; Value *X = 0; // (X & C1) | C2 --> (X | C2) & (C1|C2) if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { Instruction *Or = BinaryOperator::createOr(X, RHS); InsertNewInstBefore(Or, I); Or->takeName(Op0); return BinaryOperator::createAnd(Or, ConstantInt::get(RHS->getValue() | C1->getValue())); } // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { Instruction *Or = BinaryOperator::createOr(X, RHS); InsertNewInstBefore(Or, I); Or->takeName(Op0); return BinaryOperator::createXor(Or, ConstantInt::get(C1->getValue() & ~RHS->getValue())); } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *A = 0, *B = 0; ConstantInt *C1 = 0, *C2 = 0; if (match(Op0, m_And(m_Value(A), m_Value(B)))) if (A == Op1 || B == Op1) // (A & ?) | A --> A return ReplaceInstUsesWith(I, Op1); if (match(Op1, m_And(m_Value(A), m_Value(B)))) if (A == Op0 || B == Op0) // A | (A & ?) --> A return ReplaceInstUsesWith(I, Op0); // (A | B) | C and A | (B | C) -> bswap if possible. // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible. if (match(Op0, m_Or(m_Value(), m_Value())) || match(Op1, m_Or(m_Value(), m_Value())) || (match(Op0, m_Shift(m_Value(), m_Value())) && match(Op1, m_Shift(m_Value(), m_Value())))) { if (Instruction *BSwap = MatchBSwap(I)) return BSwap; } // (X^C)|Y -> (X|Y)^C iff Y&C == 0 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op1, C1->getValue())) { Instruction *NOr = BinaryOperator::createOr(A, Op1); InsertNewInstBefore(NOr, I); NOr->takeName(Op0); return BinaryOperator::createXor(NOr, C1); } // Y|(X^C) -> (X|Y)^C iff Y&C == 0 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op0, C1->getValue())) { Instruction *NOr = BinaryOperator::createOr(A, Op0); InsertNewInstBefore(NOr, I); NOr->takeName(Op0); return BinaryOperator::createXor(NOr, C1); } // (A & C)|(B & D) Value *C = 0, *D = 0; if (match(Op0, m_And(m_Value(A), m_Value(C))) && match(Op1, m_And(m_Value(B), m_Value(D)))) { Value *V1 = 0, *V2 = 0, *V3 = 0; C1 = dyn_cast(C); C2 = dyn_cast(D); if (C1 && C2) { // (A & C1)|(B & C2) // If we have: ((V + N) & C1) | (V & C2) // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 // replace with V+N. if (C1->getValue() == ~C2->getValue()) { if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+ match(A, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == B && MaskedValueIsZero(V2, C2->getValue())) return ReplaceInstUsesWith(I, A); if (V2 == B && MaskedValueIsZero(V1, C2->getValue())) return ReplaceInstUsesWith(I, A); } // Or commutes, try both ways. if ((C1->getValue() & (C1->getValue()+1)) == 0 && match(B, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == A && MaskedValueIsZero(V2, C1->getValue())) return ReplaceInstUsesWith(I, B); if (V2 == A && MaskedValueIsZero(V1, C1->getValue())) return ReplaceInstUsesWith(I, B); } } V1 = 0; V2 = 0; V3 = 0; } // Check to see if we have any common things being and'ed. If so, find the // terms for V1 & (V2|V3). if (isOnlyUse(Op0) || isOnlyUse(Op1)) { if (A == B) // (A & C)|(A & D) == A & (C|D) V1 = A, V2 = C, V3 = D; else if (A == D) // (A & C)|(B & A) == A & (B|C) V1 = A, V2 = B, V3 = C; else if (C == B) // (A & C)|(C & D) == C & (A|D) V1 = C, V2 = A, V3 = D; else if (C == D) // (A & C)|(B & C) == C & (A|B) V1 = C, V2 = A, V3 = B; if (V1) { Value *Or = InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I); return BinaryOperator::createAnd(V1, Or); } } } // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. if (BinaryOperator *SI1 = dyn_cast(Op1)) { if (BinaryOperator *SI0 = dyn_cast(Op0)) if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && SI0->getOperand(1) == SI1->getOperand(1) && (SI0->hasOneUse() || SI1->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0), SI1->getOperand(0), SI0->getName()), I); return BinaryOperator::create(SI1->getOpcode(), NewOp, SI1->getOperand(1)); } } if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1 if (A == Op1) // ~A | A == -1 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); } else { A = 0; } // Note, A is still live here! if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B if (Op0 == B) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); // (~A | ~B) == (~(A & B)) - De Morgan's Law if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B, I.getName()+".demorgan"), I); return BinaryOperator::createNot(And); } } // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) if (ICmpInst *RHS = dyn_cast(I.getOperand(1))) { if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; ICmpInst::Predicate LHSCC, RHSCC; if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2) // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere. LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE && RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE && LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE && RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE && // We can't fold (ugt x, C) | (sgt x, C2). PredicatesFoldable(LHSCC, RHSCC)) { // Ensure that the larger constant is on the RHS. ICmpInst *LHS = cast(Op0); bool NeedsSwap; if (ICmpInst::isSignedPredicate(LHSCC)) NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue()); else NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue()); if (NeedsSwap) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two icmp instructions // comparing a value against two constants and or'ing the result // together. Because of the above check, we know that we only have // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the // FoldICmpLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 getName()+".off"); InsertNewInstBefore(Add, I); AddCST = Subtract(AddOne(RHSCst), LHSCst); return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST); } break; // (X == 13 | X == 15) -> no change case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change break; case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15 return ReplaceInstUsesWith(I, RHS); } break; case ICmpInst::ICMP_NE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); } break; case ICmpInst::ICMP_ULT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change break; case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, false, I); case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change break; } break; case ICmpInst::ICMP_SLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change break; case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true, false, I); case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15 return ReplaceInstUsesWith(I, RHS); case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change break; } break; case ICmpInst::ICMP_UGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change break; case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change break; } break; case ICmpInst::ICMP_SGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change break; case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true return ReplaceInstUsesWith(I, ConstantInt::getTrue()); case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change break; } break; } } } // fold (or (cast A), (cast B)) -> (cast (or A, B)) if (CastInst *Op0C = dyn_cast(Op0)) if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ? const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); } } return Changed ? &I : 0; } // XorSelf - Implements: X ^ X --> 0 struct XorSelf { Value *RHS; XorSelf(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Xor) const { return &Xor; } }; Instruction *InstCombiner::visitXor(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef // xor X, X = 0, even if X is nested in a sequence of Xor's. if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result; return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. if (!isa(I.getType())) { uint32_t BitWidth = cast(I.getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne)) return &I; } else if (isa(Op1)) { return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X } // Is this a ~ operation? if (Value *NotOp = dyn_castNotVal(&I)) { // ~(~X & Y) --> (X | ~Y) - De Morgan's Law // ~(~X | Y) === (X & ~Y) - De Morgan's Law if (BinaryOperator *Op0I = dyn_cast(NotOp)) { if (Op0I->getOpcode() == Instruction::And || Op0I->getOpcode() == Instruction::Or) { if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { Instruction *NotY = BinaryOperator::createNot(Op0I->getOperand(1), Op0I->getOperand(1)->getName()+".not"); InsertNewInstBefore(NotY, I); if (Op0I->getOpcode() == Instruction::And) return BinaryOperator::createOr(Op0NotVal, NotY); else return BinaryOperator::createAnd(Op0NotVal, NotY); } } } } if (ConstantInt *RHS = dyn_cast(Op1)) { // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) { if (ICmpInst *ICI = dyn_cast(Op0)) return new ICmpInst(ICI->getInversePredicate(), ICI->getOperand(0), ICI->getOperand(1)); if (FCmpInst *FCI = dyn_cast(Op0)) return new FCmpInst(FCI->getInversePredicate(), FCI->getOperand(0), FCI->getOperand(1)); } if (BinaryOperator *Op0I = dyn_cast(Op0)) { // ~(c-X) == X-c-1 == X+(-c-1) if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) if (Constant *Op0I0C = dyn_cast(Op0I->getOperand(0))) { Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, ConstantInt::get(I.getType(), 1)); return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS); } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Op0I->getOpcode() == Instruction::Add) { // ~(X-c) --> (-c-1)-X if (RHS->isAllOnesValue()) { Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); return BinaryOperator::createSub( ConstantExpr::getSub(NegOp0CI, ConstantInt::get(I.getType(), 1)), Op0I->getOperand(0)); } else if (RHS->getValue().isSignBit()) { // (X + C) ^ signbit -> (X + C + signbit) Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue()); return BinaryOperator::createAdd(Op0I->getOperand(0), C); } } else if (Op0I->getOpcode() == Instruction::Or) { // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) { Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); // Anything in both C1 and C2 is known to be zero, remove it from // NewRHS. Constant *CommonBits = And(Op0CI, RHS); NewRHS = ConstantExpr::getAnd(NewRHS, ConstantExpr::getNot(CommonBits)); AddToWorkList(Op0I); I.setOperand(0, Op0I->getOperand(0)); I.setOperand(1, NewRHS); return &I; } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 if (X == Op1) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 if (X == Op0) return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType())); BinaryOperator *Op1I = dyn_cast(Op1); if (Op1I) { Value *A, *B; if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) { if (A == Op0) { // B^(B|A) == (A|B)^B Op1I->swapOperands(); I.swapOperands(); std::swap(Op0, Op1); } else if (B == Op0) { // B^(A|B) == (A|B)^B I.swapOperands(); // Simplified below. std::swap(Op0, Op1); } } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) { if (Op0 == A) // A^(A^B) == B return ReplaceInstUsesWith(I, B); else if (Op0 == B) // A^(B^A) == B return ReplaceInstUsesWith(I, A); } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){ if (A == Op0) { // A^(A&B) -> A^(B&A) Op1I->swapOperands(); std::swap(A, B); } if (B == Op0) { // A^(B&A) -> (B&A)^A I.swapOperands(); // Simplified below. std::swap(Op0, Op1); } } } BinaryOperator *Op0I = dyn_cast(Op0); if (Op0I) { Value *A, *B; if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) { if (A == Op1) // (B|A)^B == (A|B)^B std::swap(A, B); if (B == Op1) { // (A|B)^B == A & ~B Instruction *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I); return BinaryOperator::createAnd(A, NotB); } } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) { if (Op1 == A) // (A^B)^A == B return ReplaceInstUsesWith(I, B); else if (Op1 == B) // (B^A)^A == B return ReplaceInstUsesWith(I, A); } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){ if (A == Op1) // (A&B)^A -> (B&A)^A std::swap(A, B); if (B == Op1 && // (B&A)^A == ~B & A !isa(Op1)) { // Canonical form is (B&C)^C Instruction *N = InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I); return BinaryOperator::createAnd(N, Op1); } } } // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. if (Op0I && Op1I && Op0I->isShift() && Op0I->getOpcode() == Op1I->getOpcode() && Op0I->getOperand(1) == Op1I->getOperand(1) && (Op1I->hasOneUse() || Op1I->hasOneUse())) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0), Op1I->getOperand(0), Op0I->getName()), I); return BinaryOperator::create(Op1I->getOpcode(), NewOp, Op1I->getOperand(1)); } if (Op0I && Op1I) { Value *A, *B, *C, *D; // (A & B)^(A | B) -> A ^ B if (match(Op0I, m_And(m_Value(A), m_Value(B))) && match(Op1I, m_Or(m_Value(C), m_Value(D)))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::createXor(A, B); } // (A | B)^(A & B) -> A ^ B if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && match(Op1I, m_And(m_Value(C), m_Value(D)))) { if ((A == C && B == D) || (A == D && B == C)) return BinaryOperator::createXor(A, B); } // (A & B)^(C & D) if ((Op0I->hasOneUse() || Op1I->hasOneUse()) && match(Op0I, m_And(m_Value(A), m_Value(B))) && match(Op1I, m_And(m_Value(C), m_Value(D)))) { // (X & Y)^(X & Y) -> (Y^Z) & X Value *X = 0, *Y = 0, *Z = 0; if (A == C) X = A, Y = B, Z = D; else if (A == D) X = A, Y = B, Z = C; else if (B == C) X = B, Y = A, Z = D; else if (B == D) X = B, Y = A, Z = C; if (X) { Instruction *NewOp = InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I); return BinaryOperator::createAnd(NewOp, X); } } } // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) if (ICmpInst *RHS = dyn_cast(I.getOperand(1))) if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS))) return R; // fold (xor (cast A), (cast B)) -> (cast (xor A, B)) if (CastInst *Op0C = dyn_cast(Op0)) if (CastInst *Op1C = dyn_cast(Op1)) if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind? const Type *SrcTy = Op0C->getOperand(0)->getType(); if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() && // Only do this if the casts both really cause code to be generated. ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), I.getType(), TD) && ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), I.getType(), TD)) { Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0), Op1C->getOperand(0), I.getName()); InsertNewInstBefore(NewOp, I); return CastInst::create(Op0C->getOpcode(), NewOp, I.getType()); } } return Changed ? &I : 0; } /// AddWithOverflow - Compute Result = In1+In2, returning true if the result /// overflowed for this type. static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2, bool IsSigned = false) { Result = cast(Add(In1, In2)); if (IsSigned) if (In2->getValue().isNegative()) return Result->getValue().sgt(In1->getValue()); else return Result->getValue().slt(In1->getValue()); else return Result->getValue().ult(In1->getValue()); } /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the /// code necessary to compute the offset from the base pointer (without adding /// in the base pointer). Return the result as a signed integer of intptr size. static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { TargetData &TD = IC.getTargetData(); gep_type_iterator GTI = gep_type_begin(GEP); const Type *IntPtrTy = TD.getIntPtrType(); Value *Result = Constant::getNullValue(IntPtrTy); // Build a mask for high order bits. unsigned IntPtrWidth = TD.getPointerSize()*8; uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { Value *Op = GEP->getOperand(i); uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask; if (ConstantInt *OpC = dyn_cast(Op)) { if (OpC->isZero()) continue; // Handle a struct index, which adds its field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); if (ConstantInt *RC = dyn_cast(Result)) Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size)); else Result = IC.InsertNewInstBefore( BinaryOperator::createAdd(Result, ConstantInt::get(IntPtrTy, Size), GEP->getName()+".offs"), I); continue; } Constant *Scale = ConstantInt::get(IntPtrTy, Size); Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/); Scale = ConstantExpr::getMul(OC, Scale); if (Constant *RC = dyn_cast(Result)) Result = ConstantExpr::getAdd(RC, Scale); else { // Emit an add instruction. Result = IC.InsertNewInstBefore( BinaryOperator::createAdd(Result, Scale, GEP->getName()+".offs"), I); } continue; } // Convert to correct type. if (Op->getType() != IntPtrTy) { if (Constant *OpC = dyn_cast(Op)) Op = ConstantExpr::getSExt(OpC, IntPtrTy); else Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy, Op->getName()+".c"), I); } if (Size != 1) { Constant *Scale = ConstantInt::get(IntPtrTy, Size); if (Constant *OpC = dyn_cast(Op)) Op = ConstantExpr::getMul(OpC, Scale); else // We'll let instcombine(mul) convert this to a shl if possible. Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale, GEP->getName()+".idx"), I); } // Emit an add instruction. if (isa(Op) && isa(Result)) Result = ConstantExpr::getAdd(cast(Op), cast(Result)); else Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result, GEP->getName()+".offs"), I); } return Result; } /// FoldGEPICmp - Fold comparisons between a GEP instruction and something /// else. At this point we know that the GEP is on the LHS of the comparison. Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I) { assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!"); if (CastInst *CI = dyn_cast(RHS)) if (isa(CI->getOperand(0)->getType())) RHS = CI->getOperand(0); Value *PtrBase = GEPLHS->getOperand(0); if (PtrBase == RHS) { // As an optimization, we don't actually have to compute the actual value of // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether // each index is zero or not. if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) { Instruction *InVal = 0; gep_type_iterator GTI = gep_type_begin(GEPLHS); for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) { bool EmitIt = true; if (Constant *C = dyn_cast(GEPLHS->getOperand(i))) { if (isa(C)) // undef index -> undef. return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); if (C->isNullValue()) EmitIt = false; else if (TD->getTypeSize(GTI.getIndexedType()) == 0) { EmitIt = false; // This is indexing into a zero sized array? } else if (isa(C)) return ReplaceInstUsesWith(I, // No comparison is needed here. ConstantInt::get(Type::Int1Ty, Cond == ICmpInst::ICMP_NE)); } if (EmitIt) { Instruction *Comp = new ICmpInst(Cond, GEPLHS->getOperand(i), Constant::getNullValue(GEPLHS->getOperand(i)->getType())); if (InVal == 0) InVal = Comp; else { InVal = InsertNewInstBefore(InVal, I); InsertNewInstBefore(Comp, I); if (Cond == ICmpInst::ICMP_NE) // True if any are unequal InVal = BinaryOperator::createOr(InVal, Comp); else // True if all are equal InVal = BinaryOperator::createAnd(InVal, Comp); } } } if (InVal) return InVal; else // No comparison is needed here, all indexes = 0 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, Cond == ICmpInst::ICMP_EQ)); } // Only lower this if the icmp is the only user of the GEP or if we expect // the result to fold to a constant! if (isa(GEPLHS) || GEPLHS->hasOneUse()) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). Value *Offset = EmitGEPOffset(GEPLHS, I, *this); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset, Constant::getNullValue(Offset->getType())); } } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) { // If the base pointers are different, but the indices are the same, just // compare the base pointer. if (PtrBase != GEPRHS->getOperand(0)) { bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); IndicesTheSame &= GEPLHS->getOperand(0)->getType() == GEPRHS->getOperand(0)->getType(); if (IndicesTheSame) for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { IndicesTheSame = false; break; } // If all indices are the same, just compare the base pointers. if (IndicesTheSame) return new ICmpInst(ICmpInst::getSignedPredicate(Cond), GEPLHS->getOperand(0), GEPRHS->getOperand(0)); // Otherwise, the base pointers are different and the indices are // different, bail out. return 0; } // If one of the GEPs has all zero indices, recurse. bool AllZeros = true; for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (!isa(GEPLHS->getOperand(i)) || !cast(GEPLHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0), ICmpInst::getSwappedPredicate(Cond), I); // If the other GEP has all zero indices, recurse. AllZeros = true; for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (!isa(GEPRHS->getOperand(i)) || !cast(GEPRHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I); if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { // If the GEPs only differ by one index, compare it. unsigned NumDifferences = 0; // Keep track of # differences. unsigned DiffOperand = 0; // The operand that differs. for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { // Irreconcilable differences. NumDifferences = 2; break; } else { if (NumDifferences++) break; DiffOperand = i; } } if (NumDifferences == 0) // SAME GEP? return ReplaceInstUsesWith(I, // No comparison is needed here. ConstantInt::get(Type::Int1Ty, isTrueWhenEqual(Cond))); else if (NumDifferences == 1) { Value *LHSV = GEPLHS->getOperand(DiffOperand); Value *RHSV = GEPRHS->getOperand(DiffOperand); // Make sure we do a signed comparison here. return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV); } } // Only lower this if the icmp is the only user of the GEP or if we expect // the result to fold to a constant! if ((isa(GEPLHS) || GEPLHS->hasOneUse()) && (isa(GEPRHS) || GEPRHS->hasOneUse())) { // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) Value *L = EmitGEPOffset(GEPLHS, I, *this); Value *R = EmitGEPOffset(GEPRHS, I, *this); return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R); } } return 0; } Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { bool Changed = SimplifyCompare(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // Fold trivial predicates. if (I.getPredicate() == FCmpInst::FCMP_FALSE) return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty)); if (I.getPredicate() == FCmpInst::FCMP_TRUE) return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1)); // Simplify 'fcmp pred X, X' if (Op0 == Op1) { switch (I.getPredicate()) { default: assert(0 && "Unknown predicate!"); case FCmpInst::FCMP_UEQ: // True if unordered or equal case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1)); case FCmpInst::FCMP_OGT: // True if ordered and greater than case FCmpInst::FCMP_OLT: // True if ordered and less than case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0)); case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y) case FCmpInst::FCMP_ULT: // True if unordered or less than case FCmpInst::FCMP_UGT: // True if unordered or greater than case FCmpInst::FCMP_UNE: // True if unordered or not equal // Canonicalize these to be 'fcmp uno %X, 0.0'. I.setPredicate(FCmpInst::FCMP_UNO); I.setOperand(1, Constant::getNullValue(Op0->getType())); return &I; case FCmpInst::FCMP_ORD: // True if ordered (no nans) case FCmpInst::FCMP_OEQ: // True if ordered and equal case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal case FCmpInst::FCMP_OLE: // True if ordered and less than or equal // Canonicalize these to be 'fcmp ord %X, 0.0'. I.setPredicate(FCmpInst::FCMP_ORD); I.setOperand(1, Constant::getNullValue(Op0->getType())); return &I; } } if (isa(Op1)) // fcmp pred X, undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); // Handle fcmp with constant RHS if (Constant *RHSC = dyn_cast(Op1)) { if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::PHI: if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::Select: // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); // Insert a new FCmp of the other select operand. Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), LHSI->getOperand(2), RHSC, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC); // Insert a new FCmp of the other select operand. Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(), LHSI->getOperand(1), RHSC, I.getName()), I); } } if (Op1) return new SelectInst(LHSI->getOperand(0), Op1, Op2); break; } } return Changed ? &I : 0; } Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { bool Changed = SimplifyCompare(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); // icmp X, X if (Op0 == Op1) return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, isTrueWhenEqual(I))); if (isa(Op1)) // X icmp undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty)); // icmp , - Global/Stack value // addresses never equal each other! We already know that Op0 != Op1. if ((isa(Op0) || isa(Op0) || isa(Op0)) && (isa(Op1) || isa(Op1) || isa(Op1))) return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, !isTrueWhenEqual(I))); // icmp's with boolean values can always be turned into bitwise operations if (Ty == Type::Int1Ty) { switch (I.getPredicate()) { default: assert(0 && "Invalid icmp instruction!"); case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B) Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp"); InsertNewInstBefore(Xor, I); return BinaryOperator::createNot(Xor); } case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B return BinaryOperator::createXor(Op0, Op1); case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: std::swap(Op0, Op1); // Change icmp gt -> icmp lt // FALL THROUGH case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createAnd(Not, Op1); } case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_SGE: std::swap(Op0, Op1); // Change icmp ge -> icmp le // FALL THROUGH case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createOr(Not, Op1); } } } // See if we are doing a comparison between a constant and an instruction that // can be folded into the comparison. if (ConstantInt *CI = dyn_cast(Op1)) { switch (I.getPredicate()) { default: break; case ICmpInst::ICMP_ULT: // A FALSE if (CI->isMinValue(false)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (CI->isMaxValue(false)) // A A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1); if (isMinValuePlusOne(CI,false)) // A A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); // (x (x >s -1) -> true if sign bit clear if (CI->isMinValue(true)) return new ICmpInst(ICmpInst::ICMP_SGT, Op0, ConstantInt::getAllOnesValue(Op0->getType())); break; case ICmpInst::ICMP_SLT: if (CI->isMinValue(true)) // A FALSE return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (CI->isMaxValue(true)) // A A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (isMinValuePlusOne(CI,true)) // A A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI)); break; case ICmpInst::ICMP_UGT: if (CI->isMaxValue(false)) // A >u MAX -> FALSE return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (CI->isMinValue(false)) // A >u MIN -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); // (x >u 2147483647) -> (x true if sign bit set if (CI->isMaxValue(true)) return new ICmpInst(ICmpInst::ICMP_SLT, Op0, ConstantInt::getNullValue(Op0->getType())); break; case ICmpInst::ICMP_SGT: if (CI->isMaxValue(true)) // A >s MAX -> FALSE return ReplaceInstUsesWith(I, ConstantInt::getFalse()); if (CI->isMinValue(true)) // A >s MIN -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1); if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI)); break; case ICmpInst::ICMP_ULE: if (CI->isMaxValue(false)) // A <=u MAX -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (CI->isMinValue(false)) // A <=u MIN -> A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI)); break; case ICmpInst::ICMP_SLE: if (CI->isMaxValue(true)) // A <=s MAX -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (CI->isMinValue(true)) // A <=s MIN -> A == MIN return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI)); break; case ICmpInst::ICMP_UGE: if (CI->isMinValue(false)) // A >=u MIN -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI)); break; case ICmpInst::ICMP_SGE: if (CI->isMinValue(true)) // A >=s MIN -> TRUE return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1); if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI)); break; } // If we still have a icmp le or icmp ge instruction, turn it into the // appropriate icmp lt or icmp gt instruction. Since the border cases have // already been handled above, this requires little checking. // switch (I.getPredicate()) { default: break; case ICmpInst::ICMP_ULE: return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI)); case ICmpInst::ICMP_SLE: return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI)); case ICmpInst::ICMP_UGE: return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI)); case ICmpInst::ICMP_SGE: return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI)); } // See if we can fold the comparison based on bits known to be zero or one // in the input. If this comparison is a normal comparison, it demands all // bits, if it is a sign bit comparison, it only demands the sign bit. bool UnusedBit; bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit); uint32_t BitWidth = cast(Ty)->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); if (SimplifyDemandedBits(Op0, isSignBit ? APInt::getSignBit(BitWidth) : APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 0)) return &I; // Given the known and unknown bits, compute a range that the LHS could be // in. if ((KnownOne | KnownZero) != 0) { // Compute the Min, Max and RHS values based on the known bits. For the // EQ and NE we use unsigned values. APInt Min(BitWidth, 0), Max(BitWidth, 0); const APInt& RHSVal = CI->getValue(); if (ICmpInst::isSignedPredicate(I.getPredicate())) { ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max); } else { ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max); } switch (I.getPredicate()) { // LE/GE have been folded already. default: assert(0 && "Unknown icmp opcode!"); case ICmpInst::ICMP_EQ: if (Max.ult(RHSVal) || Min.ugt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_NE: if (Max.ult(RHSVal) || Min.ugt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); break; case ICmpInst::ICMP_ULT: if (Max.ult(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Min.uge(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_UGT: if (Min.ugt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Max.ule(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_SLT: if (Max.slt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Min.sgt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; case ICmpInst::ICMP_SGT: if (Min.sgt(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getTrue()); if (Max.sle(RHSVal)) return ReplaceInstUsesWith(I, ConstantInt::getFalse()); break; } } // Since the RHS is a ConstantInt (CI), if the left hand side is an // instruction, see if that instruction also has constants so that the // instruction can be folded into the icmp if (Instruction *LHSI = dyn_cast(Op0)) if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) return Res; } // Handle icmp with constant (but not simple integer constant) RHS if (Constant *RHSC = dyn_cast(Op1)) { if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::GetElementPtr: if (RHSC->isNullValue()) { // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null bool isAllZeros = true; for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) if (!isa(LHSI->getOperand(i)) || !cast(LHSI->getOperand(i))->isNullValue()) { isAllZeros = false; break; } if (isAllZeros) return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); } break; case Instruction::PHI: if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::Select: { // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); // Insert a new ICmp of the other select operand. Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), LHSI->getOperand(2), RHSC, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC); // Insert a new ICmp of the other select operand. Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(), LHSI->getOperand(1), RHSC, I.getName()), I); } } if (Op1) return new SelectInst(LHSI->getOperand(0), Op1, Op2); break; } case Instruction::Malloc: // If we have (malloc != null), and if the malloc has a single use, we // can assume it is successful and remove the malloc. if (LHSI->hasOneUse() && isa(RHSC)) { AddToWorkList(LHSI); return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, !isTrueWhenEqual(I))); } break; } } // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now. if (User *GEP = dyn_castGetElementPtr(Op0)) if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I)) return NI; if (User *GEP = dyn_castGetElementPtr(Op1)) if (Instruction *NI = FoldGEPICmp(GEP, Op0, ICmpInst::getSwappedPredicate(I.getPredicate()), I)) return NI; // Test to see if the operands of the icmp are casted versions of other // values. If the ptr->ptr cast can be stripped off both arguments, we do so // now. if (BitCastInst *CI = dyn_cast(Op0)) { if (isa(Op0->getType()) && (isa(Op1) || isa(Op1))) { // We keep moving the cast from the left operand over to the right // operand, where it can often be eliminated completely. Op0 = CI->getOperand(0); // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast // so eliminate it as well. if (BitCastInst *CI2 = dyn_cast(Op1)) Op1 = CI2->getOperand(0); // If Op1 is a constant, we can fold the cast into the constant. if (Op0->getType() != Op1->getType()) if (Constant *Op1C = dyn_cast(Op1)) { Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType()); } else { // Otherwise, cast the RHS right before the icmp Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I); } return new ICmpInst(I.getPredicate(), Op0, Op1); } } if (isa(Op0)) { // Handle the special case of: icmp (cast bool to X), // This comes up when you have code like // int X = A < B; // if (X) ... // For generality, we handle any zero-extension of any operand comparison // with a constant or another cast from the same type. if (isa(Op1) || isa(Op1)) if (Instruction *R = visitICmpInstWithCastAndCast(I)) return R; } if (I.isEquality()) { Value *A, *B, *C, *D; if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) { if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0 Value *OtherVal = A == Op1 ? B : A; return new ICmpInst(I.getPredicate(), OtherVal, Constant::getNullValue(A->getType())); } if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) { // A^c1 == C^c2 --> A == C^(c1^c2) if (ConstantInt *C1 = dyn_cast(B)) if (ConstantInt *C2 = dyn_cast(D)) if (Op1->hasOneUse()) { Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue()); Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp"); return new ICmpInst(I.getPredicate(), A, InsertNewInstBefore(Xor, I)); } // A^B == A^D -> B == D if (A == C) return new ICmpInst(I.getPredicate(), B, D); if (A == D) return new ICmpInst(I.getPredicate(), B, C); if (B == C) return new ICmpInst(I.getPredicate(), A, D); if (B == D) return new ICmpInst(I.getPredicate(), A, C); } } if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 Value *OtherVal = A == Op0 ? B : A; return new ICmpInst(I.getPredicate(), OtherVal, Constant::getNullValue(A->getType())); } if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) { // (A-B) == A -> B == 0 return new ICmpInst(I.getPredicate(), B, Constant::getNullValue(B->getType())); } if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) { // A == (A-B) -> B == 0 return new ICmpInst(I.getPredicate(), B, Constant::getNullValue(B->getType())); } // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 if (Op0->hasOneUse() && Op1->hasOneUse() && match(Op0, m_And(m_Value(A), m_Value(B))) && match(Op1, m_And(m_Value(C), m_Value(D)))) { Value *X = 0, *Y = 0, *Z = 0; if (A == C) { X = B; Y = D; Z = A; } else if (A == D) { X = B; Y = C; Z = A; } else if (B == C) { X = A; Y = D; Z = B; } else if (B == D) { X = A; Y = C; Z = B; } if (X) { // Build (X^Y) & Z Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I); Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I); I.setOperand(0, Op1); I.setOperand(1, Constant::getNullValue(Op1->getType())); return &I; } } } return Changed ? &I : 0; } /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS /// and CmpRHS are both known to be integer constants. Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS) { ConstantInt *CmpRHS = cast(ICI.getOperand(1)); const APInt &CmpRHSV = CmpRHS->getValue(); // FIXME: If the operand types don't match the type of the divide // then don't attempt this transform. The code below doesn't have the // logic to deal with a signed divide and an unsigned compare (and // vice versa). This is because (x /s C1) getOpcode() == Instruction::SDiv; if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate()) return 0; if (DivRHS->isZero()) return 0; // The ProdOV computation fails on divide by zero. // Compute Prod = CI * DivRHS. We are essentially solving an equation // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and // C2 (CI). By solving for X we can turn this into a range check // instead of computing a divide. ConstantInt *Prod = Multiply(CmpRHS, DivRHS); // Determine if the product overflows by seeing if the product is // not equal to the divide. Make sure we do the same kind of divide // as in the LHS instruction that we're folding. bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; // Get the ICmp opcode ICmpInst::Predicate Pred = ICI.getPredicate(); // Figure out the interval that is being checked. For example, a comparison // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). // Compute this interval based on the constants involved and the signedness of // the compare/divide. This computes a half-open interval, keeping track of // whether either value in the interval overflows. After analysis each // overflow variable is set to 0 if it's corresponding bound variable is valid // -1 if overflowed off the bottom end, or +1 if overflowed off the top end. int LoOverflow = 0, HiOverflow = 0; ConstantInt *LoBound = 0, *HiBound = 0; if (!DivIsSigned) { // udiv // e.g. X/5 op 3 --> [15, 20) LoBound = Prod; HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false); } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0. if (CmpRHSV == 0) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) LoBound = cast(ConstantExpr::getNeg(SubOne(DivRHS))); HiBound = DivRHS; } else if (CmpRHSV.isPositive()) { // (X / pos) op pos LoBound = Prod; // e.g. X/5 op 3 --> [15, 20) HiOverflow = LoOverflow = ProdOV; if (!HiOverflow) HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true); } else { // (X / pos) op neg // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14) Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS)); LoOverflow = AddWithOverflow(LoBound, Prod, cast(DivRHSH), true) ? -1 : 0; HiBound = AddOne(Prod); HiOverflow = ProdOV ? -1 : 0; } } else { // Divisor is < 0. if (CmpRHSV == 0) { // (X / neg) op 0 // e.g. X/-5 op 0 --> [-4, 5) LoBound = AddOne(DivRHS); HiBound = cast(ConstantExpr::getNeg(DivRHS)); if (HiBound == DivRHS) { // -INTMIN = INTMIN HiOverflow = 1; // [INTMIN+1, overflow) HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN } } else if (CmpRHSV.isPositive()) { // (X / neg) op pos // e.g. X/-5 op 3 --> [-19, -14) HiOverflow = LoOverflow = ProdOV ? -1 : 0; if (!LoOverflow) LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0; HiBound = AddOne(Prod); } else { // (X / neg) op neg // e.g. X/-5 op -3 --> [15, 20) LoBound = Prod; LoOverflow = HiOverflow = ProdOV ? 1 : 0; HiBound = Subtract(Prod, DivRHS); } // Dividing by a negative swaps the condition. LT <-> GT Pred = ICmpInst::getSwappedPredicate(Pred); } Value *X = DivI->getOperand(0); switch (Pred) { default: assert(0 && "Unhandled icmp opcode!"); case ICmpInst::ICMP_EQ: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); else if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, LoBound); else if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI); case ICmpInst::ICMP_NE: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); else if (HiOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, X, LoBound); else if (LoOverflow) return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI); case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: if (LoOverflow == +1) // Low bound is greater than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); if (LoOverflow == -1) // Low bound is less than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); return new ICmpInst(Pred, X, LoBound); case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: if (HiOverflow == +1) // High bound greater than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); else if (HiOverflow == -1) // High bound less than input range. return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); if (Pred == ICmpInst::ICMP_UGT) return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound); else return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound); } } /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)". /// Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHSI, ConstantInt *RHS) { const APInt &RHSV = RHS->getValue(); switch (LHSI->getOpcode()) { case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) if (ConstantInt *XorCST = dyn_cast(LHSI->getOperand(1))) { // If this is a comparison that tests the signbit (X < 0) or (x > -1), // fold the xor. if (ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0 || ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue()) { Value *CompareVal = LHSI->getOperand(0); // If the sign bit of the XorCST is not set, there is no change to // the operation, just stop using the Xor. if (!XorCST->getValue().isNegative()) { ICI.setOperand(0, CompareVal); AddToWorkList(LHSI); return &ICI; } // Was the old condition true if the operand is positive? bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; // If so, the new one isn't. isTrueIfPositive ^= true; if (isTrueIfPositive) return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS)); else return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS)); } } break; case Instruction::And: // (icmp pred (and X, AndCST), RHS) if (LHSI->hasOneUse() && isa(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { ConstantInt *AndCST = cast(LHSI->getOperand(1)); // If the LHS is an AND of a truncating cast, we can widen the // and/compare to be the input width without changing the value // produced, eliminating a cast. if (TruncInst *Cast = dyn_cast(LHSI->getOperand(0))) { // We can do this transformation if either the AND constant does not // have its sign bit set or if it is an equality comparison. // Extending a relational comparison when we're checking the sign // bit would not work. if (Cast->hasOneUse() && (ICI.isEquality() || AndCST->getValue().isPositive() && RHSV.isPositive())) { uint32_t BitWidth = cast(Cast->getOperand(0)->getType())->getBitWidth(); APInt NewCST = AndCST->getValue(); NewCST.zext(BitWidth); APInt NewCI = RHSV; NewCI.zext(BitWidth); Instruction *NewAnd = BinaryOperator::createAnd(Cast->getOperand(0), ConstantInt::get(NewCST),LHSI->getName()); InsertNewInstBefore(NewAnd, ICI); return new ICmpInst(ICI.getPredicate(), NewAnd, ConstantInt::get(NewCI)); } } // If this is: (X >> C1) & C2 != C3 (where any shift and any compare // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This // happens a LOT in code produced by the C front-end, for bitfield // access. BinaryOperator *Shift = dyn_cast(LHSI->getOperand(0)); if (Shift && !Shift->isShift()) Shift = 0; ConstantInt *ShAmt; ShAmt = Shift ? dyn_cast(Shift->getOperand(1)) : 0; const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. const Type *AndTy = AndCST->getType(); // Type of the and. // We can fold this as long as we can't shift unknown bits // into the mask. This can only happen with signed shift // rights, as they sign-extend. if (ShAmt) { bool CanFold = Shift->isLogicalShift(); if (!CanFold) { // To test for the bad case of the signed shr, see if any // of the bits shifted in could be tested after the mask. uint32_t TyBits = Ty->getPrimitiveSizeInBits(); int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & AndCST->getValue()) == 0) CanFold = true; } if (CanFold) { Constant *NewCst; if (Shift->getOpcode() == Instruction::Shl) NewCst = ConstantExpr::getLShr(RHS, ShAmt); else NewCst = ConstantExpr::getShl(RHS, ShAmt); // Check to see if we are shifting out any of the bits being // compared. if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) { // If we shifted bits out, the fold is not going to work out. // As a special case, check to see if this means that the // result is always true or false now. if (ICI.getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); if (ICI.getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); } else { ICI.setOperand(1, NewCst); Constant *NewAndCST; if (Shift->getOpcode() == Instruction::Shl) NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt); else NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); LHSI->setOperand(1, NewAndCST); LHSI->setOperand(0, Shift->getOperand(0)); AddToWorkList(Shift); // Shift is dead. AddUsesToWorkList(ICI); return &ICI; } } } // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is // preferable because it allows the C<hasOneUse() && RHSV == 0 && ICI.isEquality() && !Shift->isArithmeticShift() && isa(Shift->getOperand(0))) { // Compute C << Y. Value *NS; if (Shift->getOpcode() == Instruction::LShr) { NS = BinaryOperator::createShl(AndCST, Shift->getOperand(1), "tmp"); } else { // Insert a logical shift. NS = BinaryOperator::createLShr(AndCST, Shift->getOperand(1), "tmp"); } InsertNewInstBefore(cast(NS), ICI); // Compute X & (C << Y). Instruction *NewAnd = BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName()); InsertNewInstBefore(NewAnd, ICI); ICI.setOperand(0, NewAnd); return &ICI; } } break; case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) ConstantInt *ShAmt = dyn_cast(LHSI->getOperand(1)); if (!ShAmt) break; uint32_t TypeBits = RHSV.getBitWidth(); // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. if (ShAmt->uge(TypeBits)) break; if (ICI.isEquality()) { // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt); if (Comp != RHS) {// Comparing against a bit that we know is zero. bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); Constant *Mask = ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal)); Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(ICI.getPredicate(), And, ConstantInt::get(RHSV.lshr(ShAmtVal))); } } // Otherwise, if this is a comparison of the sign bit, simplify to and/test. bool TrueIfSigned = false; if (LHSI->hasOneUse() && isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { // (X << 31) (X&1) != 0 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) << (TypeBits-ShAmt->getZExtValue()-1)); Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ, And, Constant::getNullValue(And->getType())); } break; } case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) case Instruction::AShr: { ConstantInt *ShAmt = dyn_cast(LHSI->getOperand(1)); if (!ShAmt) break; if (ICI.isEquality()) { // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. uint32_t TypeBits = RHSV.getBitWidth(); if (ShAmt->uge(TypeBits)) break; uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); // If we are comparing against bits always shifted out, the // comparison cannot succeed. APInt Comp = RHSV << ShAmtVal; if (LHSI->getOpcode() == Instruction::LShr) Comp = Comp.lshr(ShAmtVal); else Comp = Comp.ashr(ShAmtVal); if (Comp != RHSV) { // Comparing against a bit that we know is zero. bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } if (LHSI->hasOneUse() || RHSV == 0) { // Otherwise strength reduce the shift into an and. APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); Constant *Mask = ConstantInt::get(Val); Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, ICI); return new ICmpInst(ICI.getPredicate(), And, ConstantExpr::getShl(RHS, ShAmt)); } } break; } case Instruction::SDiv: case Instruction::UDiv: // Fold: icmp pred ([us]div X, C1), C2 -> range test // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. // See: InsertRangeTest above for the kinds of replacements possible. if (ConstantInt *DivRHS = dyn_cast(LHSI->getOperand(1))) if (Instruction *R = FoldICmpDivCst(ICI, cast(LHSI), DivRHS)) return R; break; } // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. if (ICI.isEquality()) { bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; // If the first operand is (add|sub|and|or|xor|rem) with a constant, and // the second operand is a constant, simplify a bit. if (BinaryOperator *BO = dyn_cast(LHSI)) { switch (BO->getOpcode()) { case Instruction::SRem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (RHSV == 0 && isa(BO->getOperand(1)) &&BO->hasOneUse()){ const APInt &V = cast(BO->getOperand(1))->getValue(); if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) { Instruction *NewRem = BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1), BO->getName()); InsertNewInstBefore(NewRem, ICI); return new ICmpInst(ICI.getPredicate(), NewRem, Constant::getNullValue(BO->getType())); } } break; case Instruction::Add: // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. if (ConstantInt *BOp1C = dyn_cast(BO->getOperand(1))) { if (BO->hasOneUse()) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), Subtract(RHS, BOp1C)); } else if (RHSV == 0) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); if (Value *NegVal = dyn_castNegVal(BOp1)) return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); else if (Value *NegVal = dyn_castNegVal(BOp0)) return new ICmpInst(ICI.getPredicate(), NegVal, BOp1); else if (BO->hasOneUse()) { Instruction *Neg = BinaryOperator::createNeg(BOp1); InsertNewInstBefore(Neg, ICI); Neg->takeName(BO); return new ICmpInst(ICI.getPredicate(), BOp0, Neg); } } break; case Instruction::Xor: // For the xor case, we can xor two constants together, eliminating // the explicit xor. if (Constant *BOC = dyn_cast(BO->getOperand(1))) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), ConstantExpr::getXor(RHS, BOC)); // FALLTHROUGH case Instruction::Sub: // Replace (([sub|xor] A, B) != 0) with (A != B) if (RHSV == 0) return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), BO->getOperand(1)); break; case Instruction::Or: // If bits are being or'd in that are not present in the constant we // are comparing against, then the comparison could never succeed! if (Constant *BOC = dyn_cast(BO->getOperand(1))) { Constant *NotCI = ConstantExpr::getNot(RHS); if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, isICMP_NE)); } break; case Instruction::And: if (ConstantInt *BOC = dyn_cast(BO->getOperand(1))) { // If bits are being compared against that are and'd out, then the // comparison can never succeed! if ((RHSV & ~BOC->getValue()) != 0) return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty, isICMP_NE)); // If we have ((X & C) == C), turn it into ((X & C) != 0). if (RHS == BOC && RHSV.isPowerOf2()) return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, LHSI, Constant::getNullValue(RHS->getType())); // Replace (and X, (1 << size(X)-1) != 0) with x s< 0 if (isSignBit(BOC)) { Value *X = BO->getOperand(0); Constant *Zero = Constant::getNullValue(X->getType()); ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; return new ICmpInst(pred, X, Zero); } // ((X & ~7) == 0) --> X < 8 if (RHSV == 0 && isHighOnes(BOC)) { Value *X = BO->getOperand(0); Constant *NegX = ConstantExpr::getNeg(BOC); ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(pred, X, NegX); } } default: break; } } else if (IntrinsicInst *II = dyn_cast(LHSI)) { // Handle icmp {eq|ne} , intcst. if (II->getIntrinsicID() == Intrinsic::bswap) { AddToWorkList(II); ICI.setOperand(0, II->getOperand(1)); ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap())); return &ICI; } } } else { // Not a ICMP_EQ/ICMP_NE // If the LHS is a cast from an integral value of the same size, // then since we know the RHS is a constant, try to simlify. if (CastInst *Cast = dyn_cast(LHSI)) { Value *CastOp = Cast->getOperand(0); const Type *SrcTy = CastOp->getType(); uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits(); if (SrcTy->isInteger() && SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) { // If this is an unsigned comparison, try to make the comparison use // smaller constant values. if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) { // X u< 128 => X s> -1 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp, ConstantInt::get(APInt::getAllOnesValue(SrcTySize))); } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT && RHSV == APInt::getSignedMaxValue(SrcTySize)) { // X u> 127 => X s< 0 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp, Constant::getNullValue(SrcTy)); } } } } return 0; } /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst). /// We only handle extending casts so far. /// Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { const CastInst *LHSCI = cast(ICI.getOperand(0)); Value *LHSCIOp = LHSCI->getOperand(0); const Type *SrcTy = LHSCIOp->getType(); const Type *DestTy = LHSCI->getType(); Value *RHSCIOp; // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. if (LHSCI->getOpcode() == Instruction::PtrToInt && getTargetData().getPointerSizeInBits() == cast(DestTy)->getBitWidth()) { Value *RHSOp = 0; if (Constant *RHSC = dyn_cast(ICI.getOperand(1))) { RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy); } else if (PtrToIntInst *RHSC = dyn_cast(ICI.getOperand(1))) { RHSOp = RHSC->getOperand(0); // If the pointer types don't match, insert a bitcast. if (LHSCIOp->getType() != RHSOp->getType()) RHSOp = InsertCastBefore(Instruction::BitCast, RHSOp, LHSCIOp->getType(), ICI); } if (RHSOp) return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); } // The code below only handles extension cast instructions, so far. // Enforce this. if (LHSCI->getOpcode() != Instruction::ZExt && LHSCI->getOpcode() != Instruction::SExt) return 0; bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt; bool isSignedCmp = ICI.isSignedPredicate(); if (CastInst *CI = dyn_cast(ICI.getOperand(1))) { // Not an extension from the same type? RHSCIOp = CI->getOperand(0); if (RHSCIOp->getType() != LHSCIOp->getType()) return 0; // If the signedness of the two compares doesn't agree (i.e. one is a sext // and the other is a zext), then we can't handle this. if (CI->getOpcode() != LHSCI->getOpcode()) return 0; // Likewise, if the signedness of the [sz]exts and the compare don't match, // then we can't handle this. if (isSignedExt != isSignedCmp && !ICI.isEquality()) return 0; // Okay, just insert a compare of the reduced operands now! return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp); } // If we aren't dealing with a constant on the RHS, exit early ConstantInt *CI = dyn_cast(ICI.getOperand(1)); if (!CI) return 0; // Compute the constant that would happen if we truncated to SrcTy then // reextended to DestTy. Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy); Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy); // If the re-extended constant didn't change... if (Res2 == CI) { // Make sure that sign of the Cmp and the sign of the Cast are the same. // For example, we might have: // %A = sext short %X to uint // %B = icmp ugt uint %A, 1330 // It is incorrect to transform this into // %B = icmp ugt short %X, 1330 // because %A may have negative value. // // However, it is OK if SrcTy is bool (See cast-set.ll testcase) // OR operation is EQ/NE. if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality()) return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1); else return 0; } // The re-extended constant changed so the constant cannot be represented // in the shorter type. Consequently, we cannot emit a simple comparison. // First, handle some easy cases. We know the result cannot be equal at this // point so handle the ICI.isEquality() cases if (ICI.getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse()); if (ICI.getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue()); // Evaluate the comparison for LT (we invert for GT below). LE and GE cases // should have been folded away previously and not enter in here. Value *Result; if (isSignedCmp) { // We're performing a signed comparison. if (cast(CI)->getValue().isNegative()) Result = ConstantInt::getFalse(); // X < (small) --> false else Result = ConstantInt::getTrue(); // X < (large) --> true } else { // We're performing an unsigned comparison. if (isSignedExt) { // We're performing an unsigned comp with a sign extended value. // This is true if the input is >= 0. [aka >s -1] Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy); Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp, NegOne, ICI.getName()), ICI); } else { // Unsigned extend & unsigned compare -> always true. Result = ConstantInt::getTrue(); } } // Finally, return the value computed. if (ICI.getPredicate() == ICmpInst::ICMP_ULT || ICI.getPredicate() == ICmpInst::ICMP_SLT) { return ReplaceInstUsesWith(ICI, Result); } else { assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || ICI.getPredicate()==ICmpInst::ICMP_SGT) && "ICmp should be folded!"); if (Constant *CI = dyn_cast(Result)) return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI)); else return BinaryOperator::createNot(Result); } } Instruction *InstCombiner::visitShl(BinaryOperator &I) { return commonShiftTransforms(I); } Instruction *InstCombiner::visitLShr(BinaryOperator &I) { return commonShiftTransforms(I); } Instruction *InstCombiner::visitAShr(BinaryOperator &I) { return commonShiftTransforms(I); } Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Op1->getType()) || Op0 == Constant::getNullValue(Op0->getType())) return ReplaceInstUsesWith(I, Op0); if (isa(Op0)) { if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef return ReplaceInstUsesWith(I, Op0); else // undef << X -> 0, undef >>u X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (isa(Op1)) { if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X return ReplaceInstUsesWith(I, Op0); else // X << undef, X >>u undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) if (I.getOpcode() == Instruction::AShr) if (ConstantInt *CSI = dyn_cast(Op0)) if (CSI->isAllOnesValue()) return ReplaceInstUsesWith(I, CSI); // Try to fold constant and into select arguments. if (isa(Op0)) if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; // See if we can turn a signed shr into an unsigned shr. if (I.isArithmeticShift()) { if (MaskedValueIsZero(Op0, APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()))) { return BinaryOperator::createLShr(Op0, Op1, I.getName()); } } if (ConstantInt *CUI = dyn_cast(Op1)) if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) return Res; return 0; } Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, BinaryOperator &I) { bool isLeftShift = I.getOpcode() == Instruction::Shl; // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits(); APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0); if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits), KnownZero, KnownOne)) return &I; // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr // of a signed value. // if (Op1->uge(TypeBits)) { if (I.getOpcode() != Instruction::AShr) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); else { I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); return &I; } } // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast(BO->getOperand(1))) return BinaryOperator::createMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, Op1)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; if (Op0->hasOneUse()) { if (BinaryOperator *Op0BO = dyn_cast(Op0)) { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) Value *V1, *V2; ConstantInt *CC; switch (Op0BO->getOpcode()) { default: break; case Instruction::Add: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // These operators commute. // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { Instruction *YS = BinaryOperator::createShl( Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::create(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(1)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::createAnd(X, ConstantInt::get( APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) Value *Op0BOOp1 = Op0BO->getOperand(1); if (isLeftShift && Op0BOOp1->hasOneUse() && match(Op0BOOp1, m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) && cast(Op0BOOp1)->getOperand(0)->hasOneUse() && V2 == Op1) { Instruction *YS = BinaryOperator::createShl( Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::create(Op0BO->getOpcode(), YS, XM); } } // FALL THROUGH. case Instruction::Sub: { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { Instruction *YS = BinaryOperator::createShl( Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::create(Op0BO->getOpcode(), V1, YS, Op0BO->getOperand(0)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::createAnd(X, ConstantInt::get( APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_And(m_Shr(m_Value(V1), m_Value(V2)), m_ConstantInt(CC))) && V2 == Op1 && cast(Op0BO->getOperand(0)) ->getOperand(0)->hasOneUse()) { Instruction *YS = BinaryOperator::createShl( Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::create(Op0BO->getOpcode(), XM, YS); } break; } } // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (ConstantInt *Op0C = dyn_cast(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) { isValid = Op0C->getValue()[TypeBits-1] == highBitSet; } if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); Instruction *NewShift = BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1); InsertNewInstBefore(NewShift, I); NewShift->takeName(Op0BO); return BinaryOperator::create(Op0BO->getOpcode(), NewShift, NewRHS); } } } } // Find out if this is a shift of a shift by a constant. BinaryOperator *ShiftOp = dyn_cast(Op0); if (ShiftOp && !ShiftOp->isShift()) ShiftOp = 0; if (ShiftOp && isa(ShiftOp->getOperand(1))) { ConstantInt *ShiftAmt1C = cast(ShiftOp->getOperand(1)); uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. Value *X = ShiftOp->getOperand(0); uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. if (AmtSum > TypeBits) AmtSum = TypeBits; const IntegerType *Ty = cast(I.getType()); // Check for (X << c1) << c2 and (X >> c1) >> c2 if (I.getOpcode() == ShiftOp->getOpcode()) { return BinaryOperator::create(I.getOpcode(), X, ConstantInt::get(Ty, AmtSum)); } else if (ShiftOp->getOpcode() == Instruction::LShr && I.getOpcode() == Instruction::AShr) { // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0. return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum)); } else if (ShiftOp->getOpcode() == Instruction::AShr && I.getOpcode() == Instruction::LShr) { // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0. Instruction *Shift = BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask)); } // Okay, if we get here, one shift must be left, and the other shift must be // right. See if the amounts are equal. if (ShiftAmt1 == ShiftAmt2) { // If we have ((X >>? C) << C), turn this into X & (-1 << C). if (I.getOpcode() == Instruction::Shl) { APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::createAnd(X, ConstantInt::get(Mask)); } // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). if (I.getOpcode() == Instruction::LShr) { APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::createAnd(X, ConstantInt::get(Mask)); } // We can simplify ((X << C) >>s C) into a trunc + sext. // NOTE: we could do this for any C, but that would make 'unusual' integer // types. For now, just stick to ones well-supported by the code // generators. const Type *SExtType = 0; switch (Ty->getBitWidth() - ShiftAmt1) { case 1 : case 8 : case 16 : case 32 : case 64 : case 128: SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1); break; default: break; } if (SExtType) { Instruction *NewTrunc = new TruncInst(X, SExtType, "sext"); InsertNewInstBefore(NewTrunc, I); return new SExtInst(NewTrunc, Ty); } // Otherwise, we can't handle it yet. } else if (ShiftAmt1 < ShiftAmt2) { uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) if (I.getOpcode() == Instruction::Shl) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); Instruction *Shift = BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask)); } // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr) { assert(ShiftOp->getOpcode() == Instruction::Shl); Instruction *Shift = BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. } else { assert(ShiftAmt2 < ShiftAmt1); uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) if (I.getOpcode() == Instruction::Shl) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); Instruction *Shift = BinaryOperator::create(ShiftOp->getOpcode(), X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask)); } // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr) { assert(ShiftOp->getOpcode() == Instruction::Shl); Instruction *Shift = BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff)); InsertNewInstBefore(Shift, I); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask)); } // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. } } return 0; } /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear /// expression. If so, decompose it, returning some value X, such that Val is /// X*Scale+Offset. /// static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, int &Offset) { assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!"); if (ConstantInt *CI = dyn_cast(Val)) { Offset = CI->getZExtValue(); Scale = 1; return ConstantInt::get(Type::Int32Ty, 0); } else if (Instruction *I = dyn_cast(Val)) { if (I->getNumOperands() == 2) { if (ConstantInt *CUI = dyn_cast(I->getOperand(1))) { if (I->getOpcode() == Instruction::Shl) { // This is a value scaled by '1 << the shift amt'. Scale = 1U << CUI->getZExtValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Mul) { // This value is scaled by 'CUI'. Scale = CUI->getZExtValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Add) { // We have X+C. Check to see if we really have (X*C2)+C1, // where C1 is divisible by C2. unsigned SubScale; Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); Offset += CUI->getZExtValue(); if (SubScale > 1 && (Offset % SubScale == 0)) { Scale = SubScale; return SubVal; } } } } } // Otherwise, we can't look past this. Scale = 1; Offset = 0; return Val; } /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, /// try to eliminate the cast by moving the type information into the alloc. Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI) { const PointerType *PTy = cast(CI.getType()); // Remove any uses of AI that are dead. assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { Instruction *User = cast(*UI++); if (isInstructionTriviallyDead(User)) { while (UI != E && *UI == User) ++UI; // If this instruction uses AI more than once, don't break UI. ++NumDeadInst; DOUT << "IC: DCE: " << *User; EraseInstFromFunction(*User); } } // Get the type really allocated and the type casted to. const Type *AllocElTy = AI.getAllocatedType(); const Type *CastElTy = PTy->getElementType(); if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); if (CastElTyAlign < AllocElTyAlign) return 0; // If the allocation has multiple uses, only promote it if we are strictly // increasing the alignment of the resultant allocation. If we keep it the // same, we open the door to infinite loops of various kinds. if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; uint64_t AllocElTySize = TD->getTypeSize(AllocElTy); uint64_t CastElTySize = TD->getTypeSize(CastElTy); if (CastElTySize == 0 || AllocElTySize == 0) return 0; // See if we can satisfy the modulus by pulling a scale out of the array // size argument. unsigned ArraySizeScale; int ArrayOffset; Value *NumElements = // See if the array size is a decomposable linear expr. DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); // If we can now satisfy the modulus, by using a non-1 scale, we really can // do the xform. if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; Value *Amt = 0; if (Scale == 1) { Amt = NumElements; } else { // If the allocation size is constant, form a constant mul expression Amt = ConstantInt::get(Type::Int32Ty, Scale); if (isa(NumElements)) Amt = Multiply(cast(NumElements), cast(Amt)); // otherwise multiply the amount and the number of elements else if (Scale != 1) { Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } } if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true); Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } AllocationInst *New; if (isa(AI)) New = new MallocInst(CastElTy, Amt, AI.getAlignment()); else New = new AllocaInst(CastElTy, Amt, AI.getAlignment()); InsertNewInstBefore(New, AI); New->takeName(&AI); // If the allocation has multiple uses, insert a cast and change all things // that used it to use the new cast. This will also hack on CI, but it will // die soon. if (!AI.hasOneUse()) { AddUsesToWorkList(AI); // New is the allocation instruction, pointer typed. AI is the original // allocation instruction, also pointer typed. Thus, cast to use is BitCast. CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast"); InsertNewInstBefore(NewCast, AI); AI.replaceAllUsesWith(NewCast); } return ReplaceInstUsesWith(CI, New); } /// CanEvaluateInDifferentType - Return true if we can take the specified value /// and return it as type Ty without inserting any new casts and without /// changing the computed value. This is used by code that tries to decide /// whether promoting or shrinking integer operations to wider or smaller types /// will allow us to eliminate a truncate or extend. /// /// This is a truncation operation if Ty is smaller than V->getType(), or an /// extension operation if Ty is larger. static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty, unsigned CastOpc, int &NumCastsRemoved) { // We can always evaluate constants in another type. if (isa(V)) return true; Instruction *I = dyn_cast(V); if (!I) return false; const IntegerType *OrigTy = cast(V->getType()); // If this is an extension or truncate, we can often eliminate it. if (isa(I) || isa(I) || isa(I)) { // If this is a cast from the destination type, we can trivially eliminate // it, and this will remove a cast overall. if (I->getOperand(0)->getType() == Ty) { // If the first operand is itself a cast, and is eliminable, do not count // this as an eliminable cast. We would prefer to eliminate those two // casts first. if (!isa(I->getOperand(0))) ++NumCastsRemoved; return true; } } // We can't extend or shrink something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; switch (I->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Xor: // These operators can all arbitrarily be extended or truncated. return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved) && CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc, NumCastsRemoved); case Instruction::Shl: // If we are truncating the result of this SHL, and if it's a shift of a // constant amount, we can always perform a SHL in a smaller type. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint32_t BitWidth = Ty->getBitWidth(); if (BitWidth < OrigTy->getBitWidth() && CI->getLimitedValue(BitWidth) < BitWidth) return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved); } break; case Instruction::LShr: // If this is a truncate of a logical shr, we can truncate it to a smaller // lshr iff we know that the bits we would otherwise be shifting in are // already zeros. if (ConstantInt *CI = dyn_cast(I->getOperand(1))) { uint32_t OrigBitWidth = OrigTy->getBitWidth(); uint32_t BitWidth = Ty->getBitWidth(); if (BitWidth < OrigBitWidth && MaskedValueIsZero(I->getOperand(0), APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && CI->getLimitedValue(BitWidth) < BitWidth) { return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc, NumCastsRemoved); } } break; case Instruction::ZExt: case Instruction::SExt: case Instruction::Trunc: // If this is the same kind of case as our original (e.g. zext+zext), we // can safely replace it. Note that replacing it does not reduce the number // of casts in the input. if (I->getOpcode() == CastOpc) return true; break; default: // TODO: Can handle more cases here. break; } return false; } /// EvaluateInDifferentType - Given an expression that /// CanEvaluateInDifferentType returns true for, actually insert the code to /// evaluate the expression. Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned) { if (Constant *C = dyn_cast(V)) return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); // Otherwise, it must be an instruction. Instruction *I = cast(V); Instruction *Res = 0; switch (I->getOpcode()) { case Instruction::Add: case Instruction::Sub: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::AShr: case Instruction::LShr: case Instruction::Shl: { Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(), LHS, RHS, I->getName()); break; } case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: // If the source type of the cast is the type we're trying for then we can // just return the source. There's no need to insert it because it is not // new. if (I->getOperand(0)->getType() == Ty) return I->getOperand(0); // Otherwise, must be the same type of case, so just reinsert a new one. Res = CastInst::create(cast(I)->getOpcode(), I->getOperand(0), Ty, I->getName()); break; default: // TODO: Can handle more cases here. assert(0 && "Unreachable!"); break; } return InsertNewInstBefore(Res, *I); } /// @brief Implement the transforms common to all CastInst visitors. Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); // Many cases of "cast of a cast" are eliminable. If it's eliminable we just // eliminate it now. if (CastInst *CSrc = dyn_cast(Src)) { // A->B->C cast if (Instruction::CastOps opc = isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { // The first cast (CSrc) is eliminable so we need to fix up or replace // the second cast (CI). CSrc will then have a good chance of being dead. return CastInst::create(opc, CSrc->getOperand(0), CI.getType()); } } // If we are casting a select then fold the cast into the select if (SelectInst *SI = dyn_cast(Src)) if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) return NV; // If we are casting a PHI then fold the cast into the PHI if (isa(Src)) if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; return 0; } /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { Value *Src = CI.getOperand(0); if (GetElementPtrInst *GEP = dyn_cast(Src)) { // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! if (GEP->hasAllZeroIndices()) { // Changing the cast operand is usually not a good idea but it is safe // here because the pointer operand is being replaced with another // pointer operand so the opcode doesn't need to change. AddToWorkList(GEP); CI.setOperand(0, GEP->getOperand(0)); return &CI; } // If the GEP has a single use, and the base pointer is a bitcast, and the // GEP computes a constant offset, see if we can convert these three // instructions into fewer. This typically happens with unions and other // non-type-safe code. if (GEP->hasOneUse() && isa(GEP->getOperand(0))) { if (GEP->hasAllConstantIndices()) { // We are guaranteed to get a constant from EmitGEPOffset. ConstantInt *OffsetV = cast(EmitGEPOffset(GEP, CI, *this)); int64_t Offset = OffsetV->getSExtValue(); // Get the base pointer input of the bitcast, and the type it points to. Value *OrigBase = cast(GEP->getOperand(0))->getOperand(0); const Type *GEPIdxTy = cast(OrigBase->getType())->getElementType(); if (GEPIdxTy->isSized()) { SmallVector NewIndices; // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] const Type *IntPtrTy = TD->getIntPtrType(); int64_t FirstIdx = 0; if (int64_t TySize = TD->getTypeSize(GEPIdxTy)) { FirstIdx = Offset/TySize; Offset %= TySize; // Handle silly modulus not returning values values [0..TySize). if (Offset < 0) { --FirstIdx; Offset += TySize; assert(Offset >= 0); } assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset"); } NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); // Index into the types. If we fail, set OrigBase to null. while (Offset) { if (const StructType *STy = dyn_cast(GEPIdxTy)) { const StructLayout *SL = TD->getStructLayout(STy); if (Offset < (int64_t)SL->getSizeInBytes()) { unsigned Elt = SL->getElementContainingOffset(Offset); NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt)); Offset -= SL->getElementOffset(Elt); GEPIdxTy = STy->getElementType(Elt); } else { // Otherwise, we can't index into this, bail out. Offset = 0; OrigBase = 0; } } else if (isa(GEPIdxTy) || isa(GEPIdxTy)) { const SequentialType *STy = cast(GEPIdxTy); if (uint64_t EltSize = TD->getTypeSize(STy->getElementType())) { NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); Offset %= EltSize; } else { NewIndices.push_back(ConstantInt::get(IntPtrTy, 0)); } GEPIdxTy = STy->getElementType(); } else { // Otherwise, we can't index into this, bail out. Offset = 0; OrigBase = 0; } } if (OrigBase) { // If we were able to index down into an element, create the GEP // and bitcast the result. This eliminates one bitcast, potentially // two. Instruction *NGEP = new GetElementPtrInst(OrigBase, NewIndices.begin(), NewIndices.end(), ""); InsertNewInstBefore(NGEP, CI); NGEP->takeName(GEP); if (isa(CI)) return new BitCastInst(NGEP, CI.getType()); assert(isa(CI)); return new PtrToIntInst(NGEP, CI.getType()); } } } } } return commonCastTransforms(CI); } /// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as /// integer types. This function implements the common transforms for all those /// cases. /// @brief Implement the transforms common to CastInst with integer operands Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) { if (Instruction *Result = commonCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI.getType(); uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits(); uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits(); // See if we can simplify any instructions used by the LHS whose sole // purpose is to compute bits we don't care about. APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0); if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize), KnownZero, KnownOne)) return &CI; // If the source isn't an instruction or has more than one use then we // can't do anything more. Instruction *SrcI = dyn_cast(Src); if (!SrcI || !Src->hasOneUse()) return 0; // Attempt to propagate the cast into the instruction for int->int casts. int NumCastsRemoved = 0; if (!isa(CI) && CanEvaluateInDifferentType(SrcI, cast(DestTy), CI.getOpcode(), NumCastsRemoved)) { // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. If this is a zero-extension, // we need to do an AND to maintain the clear top-part of the computation, // so we require that the input have eliminated at least one cast. If this // is a sign extension, we insert two new casts (to do the extension) so we // require that two casts have been eliminated. bool DoXForm; switch (CI.getOpcode()) { default: // All the others use floating point so we shouldn't actually // get here because of the check above. assert(0 && "Unknown cast type"); case Instruction::Trunc: DoXForm = true; break; case Instruction::ZExt: DoXForm = NumCastsRemoved >= 1; break; case Instruction::SExt: DoXForm = NumCastsRemoved >= 2; break; } if (DoXForm) { Value *Res = EvaluateInDifferentType(SrcI, DestTy, CI.getOpcode() == Instruction::SExt); assert(Res->getType() == DestTy); switch (CI.getOpcode()) { default: assert(0 && "Unknown cast type!"); case Instruction::Trunc: case Instruction::BitCast: // Just replace this cast with the result. return ReplaceInstUsesWith(CI, Res); case Instruction::ZExt: { // We need to emit an AND to clear the high bits. assert(SrcBitSize < DestBitSize && "Not a zext?"); Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize, SrcBitSize)); return BinaryOperator::createAnd(Res, C); } case Instruction::SExt: // We need to emit a cast to truncate, then a cast to sext. return CastInst::create(Instruction::SExt, InsertCastBefore(Instruction::Trunc, Res, Src->getType(), CI), DestTy); } } } Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; switch (SrcI->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: // If we are discarding information, rewrite. if (DestBitSize <= SrcBitSize && DestBitSize != 1) { // Don't insert two casts if they cannot be eliminated. We allow // two casts to be inserted if the sizes are the same. This could // only be converting signedness, which is a noop. if (DestBitSize == SrcBitSize || !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) || !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { Instruction::CastOps opcode = CI.getOpcode(); Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI); Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI); return BinaryOperator::create( cast(SrcI)->getOpcode(), Op0c, Op1c); } } // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 if (isa(CI) && SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor && Op1 == ConstantInt::getTrue() && (!Op0->hasOneUse() || !isa(Op0))) { Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI); return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1)); } break; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: // If we are just changing the sign, rewrite. if (DestBitSize == SrcBitSize) { // Don't insert two casts if they cannot be eliminated. We allow // two casts to be inserted if the sizes are the same. This could // only be converting signedness, which is a noop. if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) || !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) { Value *Op0c = InsertOperandCastBefore(Instruction::BitCast, Op0, DestTy, SrcI); Value *Op1c = InsertOperandCastBefore(Instruction::BitCast, Op1, DestTy, SrcI); return BinaryOperator::create( cast(SrcI)->getOpcode(), Op0c, Op1c); } } break; case Instruction::Shl: // Allow changing the sign of the source operand. Do not allow // changing the size of the shift, UNLESS the shift amount is a // constant. We must not change variable sized shifts to a smaller // size, because it is undefined to shift more bits out than exist // in the value. if (DestBitSize == SrcBitSize || (DestBitSize < SrcBitSize && isa(Op1))) { Instruction::CastOps opcode = (DestBitSize == SrcBitSize ? Instruction::BitCast : Instruction::Trunc); Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI); Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI); return BinaryOperator::createShl(Op0c, Op1c); } break; case Instruction::AShr: // If this is a signed shr, and if all bits shifted in are about to be // truncated off, turn it into an unsigned shr to allow greater // simplifications. if (DestBitSize < SrcBitSize && isa(Op1)) { uint32_t ShiftAmt = cast(Op1)->getLimitedValue(SrcBitSize); if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) { // Insert the new logical shift right. return BinaryOperator::createLShr(Op0, Op1); } } break; } return 0; } Instruction *InstCombiner::visitTrunc(TruncInst &CI) { if (Instruction *Result = commonIntCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); const Type *Ty = CI.getType(); uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits(); uint32_t SrcBitWidth = cast(Src->getType())->getBitWidth(); if (Instruction *SrcI = dyn_cast(Src)) { switch (SrcI->getOpcode()) { default: break; case Instruction::LShr: // We can shrink lshr to something smaller if we know the bits shifted in // are already zeros. if (ConstantInt *ShAmtV = dyn_cast(SrcI->getOperand(1))) { uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth); // Get a mask for the bits shifting in. APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth)); Value* SrcIOp0 = SrcI->getOperand(0); if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) { if (ShAmt >= DestBitWidth) // All zeros. return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty)); // Okay, we can shrink this. Truncate the input, then return a new // shift. Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI); Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1), Ty, CI); return BinaryOperator::createLShr(V1, V2); } } else { // This is a variable shr. // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is // more LLVM instructions, but allows '1 << Y' to be hoisted if // loop-invariant and CSE'd. if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) { Value *One = ConstantInt::get(SrcI->getType(), 1); Value *V = InsertNewInstBefore( BinaryOperator::createShl(One, SrcI->getOperand(1), "tmp"), CI); V = InsertNewInstBefore(BinaryOperator::createAnd(V, SrcI->getOperand(0), "tmp"), CI); Value *Zero = Constant::getNullValue(V->getType()); return new ICmpInst(ICmpInst::ICMP_NE, V, Zero); } } break; } } return 0; } Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // If one of the common conversion will work .. if (Instruction *Result = commonIntCastTransforms(CI)) return Result; Value *Src = CI.getOperand(0); // If this is a cast of a cast if (CastInst *CSrc = dyn_cast(Src)) { // A->B->C cast // If this is a TRUNC followed by a ZEXT then we are dealing with integral // types and if the sizes are just right we can convert this into a logical // 'and' which will be much cheaper than the pair of casts. if (isa(CSrc)) { // Get the sizes of the types involved Value *A = CSrc->getOperand(0); uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits(); uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits(); uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits(); // If we're actually extending zero bits and the trunc is a no-op if (MidSize < DstSize && SrcSize == DstSize) { // Replace both of the casts with an And of the type mask. APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); Constant *AndConst = ConstantInt::get(AndValue); Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndConst); // Unfortunately, if the type changed, we need to cast it back. if (And->getType() != CI.getType()) { And->setName(CSrc->getName()+".mask"); InsertNewInstBefore(And, CI); And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/); } return And; } } } if (ICmpInst *ICI = dyn_cast(Src)) { // If we are just checking for a icmp eq of a single bit and zext'ing it // to an integer, then shift the bit to the appropriate place and then // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast(ICI->getOperand(1))) { const APInt &Op1CV = Op1C->getValue(); // zext (x x>>u31 true if signbit set. // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){ Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), In->getType()->getPrimitiveSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh, In->getName()+".lobit"), CI); if (In->getType() != CI.getType()) In = CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/, "tmp", &CI); if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { Constant *One = ConstantInt::get(In->getType(), 1); In = InsertNewInstBefore(BinaryOperator::createXor(In, One, In->getName()+".not"), CI); } return ReplaceInstUsesWith(CI, In); } // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. // zext (X == 1) to i32 --> X iff X has only the low bit set. // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 0) to i32 --> X iff X has only the low bit set. // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. if ((Op1CV == 0 || Op1CV.isPowerOf2()) && // This only works for EQ and NE ICI->isEquality()) { // If Op1C some other power of two, convert: uint32_t BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); APInt TypeMask(APInt::getAllOnesValue(BitWidth)); ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { // (X&4) == 2 --> false // (X&4) != 2 --> true Constant *Res = ConstantInt::get(Type::Int1Ty, isNE); Res = ConstantExpr::getZExt(Res, CI.getType()); return ReplaceInstUsesWith(CI, Res); } uint32_t ShiftAmt = KnownZeroMask.logBase2(); Value *In = ICI->getOperand(0); if (ShiftAmt) { // Perform a logical shr by shiftamt. // Insert the shift to put the result in the low bit. In = InsertNewInstBefore( BinaryOperator::createLShr(In, ConstantInt::get(In->getType(), ShiftAmt), In->getName()+".lobit"), CI); } if ((Op1CV != 0) == isNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = BinaryOperator::createXor(In, One, "tmp"); InsertNewInstBefore(cast(In), CI); } if (CI.getType() == In->getType()) return ReplaceInstUsesWith(CI, In); else return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/); } } } } return 0; } Instruction *InstCombiner::visitSExt(SExtInst &CI) { if (Instruction *I = commonIntCastTransforms(CI)) return I; Value *Src = CI.getOperand(0); // sext (x ashr x, 31 -> all ones if signed // sext (x >s -1) -> ashr x, 31 -> all ones if not signed if (ICmpInst *ICI = dyn_cast(Src)) { // If we are just checking for a icmp eq of a single bit and zext'ing it // to an integer, then shift the bit to the appropriate place and then // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast(ICI->getOperand(1))) { const APInt &Op1CV = Op1C->getValue(); // sext (x x>>s31 true if signbit set. // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear. if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){ Value *In = ICI->getOperand(0); Value *Sh = ConstantInt::get(In->getType(), In->getType()->getPrimitiveSizeInBits()-1); In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh, In->getName()+".lobit"), CI); if (In->getType() != CI.getType()) In = CastInst::createIntegerCast(In, CI.getType(), true/*SExt*/, "tmp", &CI); if (ICI->getPredicate() == ICmpInst::ICMP_SGT) In = InsertNewInstBefore(BinaryOperator::createNot(In, In->getName()+".not"), CI); return ReplaceInstUsesWith(CI, In); } } } return 0; } Instruction *InstCombiner::visitFPTrunc(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitFPExt(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitFPToUI(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitFPToSI(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitUIToFP(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitSIToFP(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitPtrToInt(CastInst &CI) { return commonPointerCastTransforms(CI); } Instruction *InstCombiner::visitIntToPtr(CastInst &CI) { return commonCastTransforms(CI); } Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { // If the operands are integer typed then apply the integer transforms, // otherwise just apply the common ones. Value *Src = CI.getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI.getType(); if (SrcTy->isInteger() && DestTy->isInteger()) { if (Instruction *Result = commonIntCastTransforms(CI)) return Result; } else if (isa(SrcTy)) { if (Instruction *I = commonPointerCastTransforms(CI)) return I; } else { if (Instruction *Result = commonCastTransforms(CI)) return Result; } // Get rid of casts from one type to the same type. These are useless and can // be replaced by the operand. if (DestTy == Src->getType()) return ReplaceInstUsesWith(CI, Src); if (const PointerType *DstPTy = dyn_cast(DestTy)) { const PointerType *SrcPTy = cast(SrcTy); const Type *DstElTy = DstPTy->getElementType(); const Type *SrcElTy = SrcPTy->getElementType(); // If we are casting a malloc or alloca to a pointer to a type of the same // size, rewrite the allocation instruction to allocate the "right" type. if (AllocationInst *AI = dyn_cast(Src)) if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) return V; // If the source and destination are pointers, and this cast is equivalent // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. // This can enhance SROA and other transforms that want type-safe pointers. Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty); unsigned NumZeros = 0; while (SrcElTy != DstElTy && isa(SrcElTy) && !isa(SrcElTy) && SrcElTy->getNumContainedTypes() /* not "{}" */) { SrcElTy = cast(SrcElTy)->getTypeAtIndex(ZeroUInt); ++NumZeros; } // If we found a path from the src to dest, create the getelementptr now. if (SrcElTy == DstElTy) { SmallVector Idxs(NumZeros+1, ZeroUInt); return new GetElementPtrInst(Src, Idxs.begin(), Idxs.end(), "", ((Instruction*) NULL)); } } if (ShuffleVectorInst *SVI = dyn_cast(Src)) { if (SVI->hasOneUse()) { // Okay, we have (bitconvert (shuffle ..)). Check to see if this is // a bitconvert to a vector with the same # elts. if (isa(DestTy) && cast(DestTy)->getNumElements() == SVI->getType()->getNumElements()) { CastInst *Tmp; // If either of the operands is a cast from CI.getType(), then // evaluating the shuffle in the casted destination's type will allow // us to eliminate at least one cast. if (((Tmp = dyn_cast(SVI->getOperand(0))) && Tmp->getOperand(0)->getType() == DestTy) || ((Tmp = dyn_cast(SVI->getOperand(1))) && Tmp->getOperand(0)->getType() == DestTy)) { Value *LHS = InsertOperandCastBefore(Instruction::BitCast, SVI->getOperand(0), DestTy, &CI); Value *RHS = InsertOperandCastBefore(Instruction::BitCast, SVI->getOperand(1), DestTy, &CI); // Return a new shuffle vector. Use the same element ID's, as we // know the vector types match #elts. return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); } } } } return 0; } /// GetSelectFoldableOperands - We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned GetSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::LShr: case Instruction::AShr: return 1; default: return 0; // Cannot fold } } /// GetSelectFoldableConstant - For the same transformation as the previous /// function, return the identity constant that goes into the select. static Constant *GetSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: assert(0 && "This cannot happen!"); abort(); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return Constant::getNullValue(I->getType()); case Instruction::And: return Constant::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI /// have the same opcode and only one use each. Try to simplify this. Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { if (TI->getNumOperands() == 1) { // If this is a non-volatile load or a cast from the same type, // merge. if (TI->isCast()) { if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) return 0; } else { return 0; // unknown unary op. } // Fold this by inserting a select from the input values. SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0), FI->getOperand(0), SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI, TI->getType()); } // Only handle binary operators here. if (!isa(TI)) return 0; // Figure out if the operations have any operands in common. Value *MatchOp, *OtherOpT, *OtherOpF; bool MatchIsOpZero; if (TI->getOperand(0) == FI->getOperand(0)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(1)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; } else if (!TI->isCommutative()) { return 0; } else if (TI->getOperand(0) == FI->getOperand(1)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(0)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else { return 0; } // If we reach here, they do have operations in common. SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT, OtherOpF, SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); if (BinaryOperator *BO = dyn_cast(TI)) { if (MatchIsOpZero) return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI); else return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp); } assert(0 && "Shouldn't get here"); return 0; } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // select true, X, Y -> X // select false, X, Y -> Y if (ConstantInt *C = dyn_cast(CondVal)) return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal); // select C, X, X -> X if (TrueVal == FalseVal) return ReplaceInstUsesWith(SI, TrueVal); if (isa(TrueVal)) // select C, undef, X -> X return ReplaceInstUsesWith(SI, FalseVal); if (isa(FalseVal)) // select C, X, undef -> X return ReplaceInstUsesWith(SI, TrueVal); if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return ReplaceInstUsesWith(SI, TrueVal); else return ReplaceInstUsesWith(SI, FalseVal); } if (SI.getType() == Type::Int1Ty) { if (ConstantInt *C = dyn_cast(TrueVal)) { if (C->getZExtValue()) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::createOr(CondVal, FalseVal); } else { // Change: A = select B, false, C --> A = and !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createAnd(NotCond, FalseVal); } } else if (ConstantInt *C = dyn_cast(FalseVal)) { if (C->getZExtValue() == false) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::createAnd(CondVal, TrueVal); } else { // Change: A = select B, C, true --> A = or !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createOr(NotCond, TrueVal); } } } // Selecting between two integer constants? if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { // select C, 1, 0 -> zext C to int if (FalseValC->isZero() && TrueValC->getValue() == 1) { return CastInst::create(Instruction::ZExt, CondVal, SI.getType()); } else if (TrueValC->isZero() && FalseValC->getValue() == 1) { // select C, 0, 1 -> zext !C to int Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return CastInst::create(Instruction::ZExt, NotCond, SI.getType()); } // FIXME: Turn select 0/-1 and -1/0 into sext from condition! if (ICmpInst *IC = dyn_cast(SI.getCondition())) { // (x ashr x, 31 if (TrueValC->isAllOnesValue() && FalseValC->isZero()) if (ConstantInt *CmpCst = dyn_cast(IC->getOperand(1))) { if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) { // The comparison constant and the result are not neccessarily the // same width. Make an all-ones value by inserting a AShr. Value *X = IC->getOperand(0); uint32_t Bits = X->getType()->getPrimitiveSizeInBits(); Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1); Instruction *SRA = BinaryOperator::create(Instruction::AShr, X, ShAmt, "ones"); InsertNewInstBefore(SRA, SI); // Finally, convert to the type of the select RHS. We figure out // if this requires a SExt, Trunc or BitCast based on the sizes. Instruction::CastOps opc = Instruction::BitCast; uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits(); uint32_t SISize = SI.getType()->getPrimitiveSizeInBits(); if (SRASize < SISize) opc = Instruction::SExt; else if (SRASize > SISize) opc = Instruction::Trunc; return CastInst::create(opc, SRA, SI.getType()); } } // If one of the constants is zero (we know they can't both be) and we // have an icmp instruction with zero, and we have an 'and' with the // non-constant value, eliminate this whole mess. This corresponds to // cases like this: ((X & 27) ? 27 : 0) if (TrueValC->isZero() || FalseValC->isZero()) if (IC->isEquality() && isa(IC->getOperand(1)) && cast(IC->getOperand(1))->isNullValue()) if (Instruction *ICA = dyn_cast(IC->getOperand(0))) if (ICA->getOpcode() == Instruction::And && isa(ICA->getOperand(1)) && (ICA->getOperand(1) == TrueValC || ICA->getOperand(1) == FalseValC) && isOneBitSet(cast(ICA->getOperand(1)))) { // Okay, now we know that everything is set up, we just don't // know whether we have a icmp_ne or icmp_eq and whether the // true or false val is the zero. bool ShouldNotVal = !TrueValC->isZero(); ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; Value *V = ICA; if (ShouldNotVal) V = InsertNewInstBefore(BinaryOperator::create( Instruction::Xor, V, ICA->getOperand(1)), SI); return ReplaceInstUsesWith(SI, V); } } } // See if we are selecting two values based on a comparison of the two values. if (FCmpInst *FCI = dyn_cast(CondVal)) { if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? X : Y -> X if (FCI->getPredicate() == FCmpInst::FCMP_ONE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? Y : X -> Y if (FCI->getPredicate() == FCmpInst::FCMP_ONE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } } // See if we are selecting two values based on a comparison of the two values. if (ICmpInst *ICI = dyn_cast(CondVal)) { if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (ICI->getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? X : Y -> X if (ICI->getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (ICI->getPredicate() == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? Y : X -> Y if (ICI->getPredicate() == ICmpInst::ICMP_NE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } } if (Instruction *TI = dyn_cast(TrueVal)) if (Instruction *FI = dyn_cast(FalseVal)) if (TI->hasOneUse() && FI->hasOneUse()) { Instruction *AddOp = 0, *SubOp = 0; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) if (TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) return IV; // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is // even legal for FP. if (TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) { AddOp = FI; SubOp = TI; } else if (FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = 0; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (Constant *C = dyn_cast(SubOp->getOperand(1))) { NegVal = ConstantExpr::getNeg(C); } else { NegVal = InsertNewInstBefore( BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Instruction *NewSel = new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p"); NewSel = InsertNewInstBefore(NewSel, SI); return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel); } } } // See if we can fold the select into one of our operands. if (SI.getType()->isInteger()) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast(TrueVal)) if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa(FalseVal)) if (unsigned SFO = GetSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(TVI); Instruction *NewSel = new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C); InsertNewInstBefore(NewSel, SI); NewSel->takeName(TVI); if (BinaryOperator *BO = dyn_cast(TVI)) return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } if (Instruction *FVI = dyn_cast(FalseVal)) if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa(TrueVal)) if (unsigned SFO = GetSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(FVI); Instruction *NewSel = new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold)); InsertNewInstBefore(NewSel, SI); NewSel->takeName(FVI); if (BinaryOperator *BO = dyn_cast(FVI)) return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel); else assert(0 && "Unknown instruction!!"); } } } if (BinaryOperator::isNot(CondVal)) { SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); SI.setOperand(1, FalseVal); SI.setOperand(2, TrueVal); return &SI; } return 0; } /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that /// we can determine, return it, otherwise return 0. If PrefAlign is specified, /// and it is more than the alignment of the ultimate object, see if we can /// increase the alignment of the ultimate object, making this check succeed. static unsigned GetOrEnforceKnownAlignment(Value *V, TargetData *TD, unsigned PrefAlign = 0) { if (GlobalVariable *GV = dyn_cast(V)) { unsigned Align = GV->getAlignment(); if (Align == 0 && TD) Align = TD->getPrefTypeAlignment(GV->getType()->getElementType()); // If there is a large requested alignment and we can, bump up the alignment // of the global. if (PrefAlign > Align && GV->hasInitializer()) { GV->setAlignment(PrefAlign); Align = PrefAlign; } return Align; } else if (AllocationInst *AI = dyn_cast(V)) { unsigned Align = AI->getAlignment(); if (Align == 0 && TD) { if (isa(AI)) Align = TD->getPrefTypeAlignment(AI->getType()->getElementType()); else if (isa(AI)) { // Malloc returns maximally aligned memory. Align = TD->getABITypeAlignment(AI->getType()->getElementType()); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::DoubleTy)); Align = std::max(Align, (unsigned)TD->getABITypeAlignment(Type::Int64Ty)); } } // If there is a requested alignment and if this is an alloca, round up. We // don't do this for malloc, because some systems can't respect the request. if (PrefAlign > Align && isa(AI)) { AI->setAlignment(PrefAlign); Align = PrefAlign; } return Align; } else if (isa(V) || (isa(V) && cast(V)->getOpcode() == Instruction::BitCast)) { return GetOrEnforceKnownAlignment(cast(V)->getOperand(0), TD, PrefAlign); } else if (User *GEPI = dyn_castGetElementPtr(V)) { // If all indexes are zero, it is just the alignment of the base pointer. bool AllZeroOperands = true; for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i) if (!isa(GEPI->getOperand(i)) || !cast(GEPI->getOperand(i))->isNullValue()) { AllZeroOperands = false; break; } if (AllZeroOperands) { // Treat this like a bitcast. return GetOrEnforceKnownAlignment(GEPI->getOperand(0), TD, PrefAlign); } unsigned BaseAlignment = GetOrEnforceKnownAlignment(GEPI->getOperand(0),TD); if (BaseAlignment == 0) return 0; // Otherwise, if the base alignment is >= the alignment we expect for the // base pointer type, then we know that the resultant pointer is aligned at // least as much as its type requires. if (!TD) return 0; const Type *BasePtrTy = GEPI->getOperand(0)->getType(); const PointerType *PtrTy = cast(BasePtrTy); unsigned Align = TD->getABITypeAlignment(PtrTy->getElementType()); if (Align <= BaseAlignment) { const Type *GEPTy = GEPI->getType(); const PointerType *GEPPtrTy = cast(GEPTy); Align = std::min(Align, (unsigned) TD->getABITypeAlignment(GEPPtrTy->getElementType())); return Align; } return 0; } return 0; } /// visitCallInst - CallInst simplification. This mostly only handles folding /// of intrinsic instructions. For normal calls, it allows visitCallSite to do /// the heavy lifting. /// Instruction *InstCombiner::visitCallInst(CallInst &CI) { IntrinsicInst *II = dyn_cast(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getZExtValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast(II)) { if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getParent()->getParent()->getParent(); const char *Name; if (CI.getCalledFunction()->getFunctionType()->getParamType(2) == Type::Int32Ty) Name = "llvm.memcpy.i32"; else Name = "llvm.memcpy.i64"; Constant *MemCpy = M->getOrInsertFunction(Name, CI.getCalledFunction()->getFunctionType()); CI.setOperand(0, MemCpy); Changed = true; } } // If we can determine a pointer alignment that is bigger than currently // set, update the alignment. if (isa(MI) || isa(MI)) { unsigned Alignment1 = GetOrEnforceKnownAlignment(MI->getOperand(1), TD); unsigned Alignment2 = GetOrEnforceKnownAlignment(MI->getOperand(2), TD); unsigned Align = std::min(Alignment1, Alignment2); if (MI->getAlignment()->getZExtValue() < Align) { MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align)); Changed = true; } } else if (isa(MI)) { unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest(), TD); if (MI->getAlignment()->getZExtValue() < Alignment) { MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment)); Changed = true; } } if (Changed) return II; } else { switch (II->getIntrinsicID()) { default: break; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: case Intrinsic::x86_sse_loadu_ps: case Intrinsic::x86_sse2_loadu_pd: case Intrinsic::x86_sse2_loadu_dq: // Turn PPC lvx -> load if the pointer is known aligned. // Turn X86 loadups -> load if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) { Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1), PointerType::get(II->getType()), CI); return new LoadInst(Ptr); } break; case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: // Turn stvx -> store if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(2), TD, 16) >= 16) { const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType()); Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2), OpPtrTy, CI); return new StoreInst(II->getOperand(1), Ptr); } break; case Intrinsic::x86_sse_storeu_ps: case Intrinsic::x86_sse2_storeu_pd: case Intrinsic::x86_sse2_storeu_dq: case Intrinsic::x86_sse2_storel_dq: // Turn X86 storeu -> store if the pointer is known aligned. if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) { const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType()); Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1), OpPtrTy, CI); return new StoreInst(II->getOperand(2), Ptr); } break; case Intrinsic::x86_sse_cvttss2si: { // These intrinsics only demands the 0th element of its input vector. If // we can simplify the input based on that, do so now. uint64_t UndefElts; if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1, UndefElts)) { II->setOperand(1, V); return II; } break; } case Intrinsic::ppc_altivec_vperm: // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. if (ConstantVector *Mask = dyn_cast(II->getOperand(3))) { assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); // Check that all of the elements are integer constants or undefs. bool AllEltsOk = true; for (unsigned i = 0; i != 16; ++i) { if (!isa(Mask->getOperand(i)) && !isa(Mask->getOperand(i))) { AllEltsOk = false; break; } } if (AllEltsOk) { // Cast the input vectors to byte vectors. Value *Op0 = InsertCastBefore(Instruction::BitCast, II->getOperand(1), Mask->getType(), CI); Value *Op1 = InsertCastBefore(Instruction::BitCast, II->getOperand(2), Mask->getType(), CI); Value *Result = UndefValue::get(Op0->getType()); // Only extract each element once. Value *ExtractedElts[32]; memset(ExtractedElts, 0, sizeof(ExtractedElts)); for (unsigned i = 0; i != 16; ++i) { if (isa(Mask->getOperand(i))) continue; unsigned Idx=cast(Mask->getOperand(i))->getZExtValue(); Idx &= 31; // Match the hardware behavior. if (ExtractedElts[Idx] == 0) { Instruction *Elt = new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp"); InsertNewInstBefore(Elt, CI); ExtractedElts[Idx] = Elt; } // Insert this value into the result vector. Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp"); InsertNewInstBefore(cast(Result), CI); } return CastInst::create(Instruction::BitCast, Result, CI.getType()); } } break; case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast(II->getOperand(1))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { BasicBlock::iterator BI = SS; if (&*++BI == II) return EraseInstFromFunction(CI); } } // If the stack restore is in a return/unwind block and if there are no // allocas or calls between the restore and the return, nuke the restore. TerminatorInst *TI = II->getParent()->getTerminator(); if (isa(TI) || isa(TI)) { BasicBlock::iterator BI = II; bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa(BI) || (isa(BI) && !isa(BI))) { CannotRemove = true; break; } } if (!CannotRemove) return EraseInstFromFunction(CI); } break; } } } return visitCallSite(II); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { bool Changed = false; // If the callee is a constexpr cast of a function, attempt to move the cast // to the arguments of the call/invoke. if (transformConstExprCastCall(CS)) return 0; Value *Callee = CS.getCalledValue(); if (Function *CalleeF = dyn_cast(Callee)) if (CalleeF->getCallingConv() != CS.getCallingConv()) { Instruction *OldCall = CS.getInstruction(); // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall); if (!OldCall->use_empty()) OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); if (isa(OldCall)) // Not worth removing an invoke here. return EraseInstFromFunction(*OldCall); return 0; } if (isa(Callee) || isa(Callee)) { // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::get(Type::Int1Ty)), CS.getInstruction()); if (!CS.getInstruction()->use_empty()) CS.getInstruction()-> replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); if (InvokeInst *II = dyn_cast(CS.getInstruction())) { // Don't break the CFG, insert a dummy cond branch. new BranchInst(II->getNormalDest(), II->getUnwindDest(), ConstantInt::getTrue(), II); } return EraseInstFromFunction(*CS.getInstruction()); } if (BitCastInst *BC = dyn_cast(Callee)) if (IntrinsicInst *In = dyn_cast(BC->getOperand(0))) if (In->getIntrinsicID() == Intrinsic::init_trampoline) return transformCallThroughTrampoline(CS); const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), E = CS.arg_end(); I != E; ++I) if (CastInst *CI = dyn_cast(*I)) { // If this cast does not effect the value passed through the varargs // area, we can eliminate the use of the cast. Value *Op = CI->getOperand(0); if (CI->isLosslessCast()) { *I = Op; Changed = true; } } } return Changed ? CS.getInstruction() : 0; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { if (!isa(CS.getCalledValue())) return false; ConstantExpr *CE = cast(CS.getCalledValue()); if (CE->getOpcode() != Instruction::BitCast || !isa(CE->getOperand(0))) return false; Function *Callee = cast(CE->getOperand(0)); Instruction *Caller = CS.getInstruction(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // const FunctionType *FT = Callee->getFunctionType(); const Type *OldRetTy = Caller->getType(); const FunctionType *ActualFT = cast(cast(CE->getType())->getElementType()); // If the parameter attributes don't match up, don't do the xform. We don't // want to lose an sret attribute or something. if (FT->getParamAttrs() != ActualFT->getParamAttrs()) return false; // Check to see if we are changing the return type... if (OldRetTy != FT->getReturnType()) { if (Callee->isDeclaration() && !Caller->use_empty() && // Conversion is ok if changing from pointer to int of same size. !(isa(FT->getReturnType()) && TD->getIntPtrType() == OldRetTy)) return false; // Cannot transform this return value. // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast(Caller)) for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); UI != E; ++UI) if (PHINode *PN = dyn_cast(*UI)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); const Type *ActTy = (*AI)->getType(); ConstantInt *c = dyn_cast(*AI); //Some conversions are safe even if we do not have a body. //Either we can cast directly, or we can upconvert the argument bool isConvertible = ActTy == ParamTy || (isa(ParamTy) && isa(ActTy)) || (ParamTy->isInteger() && ActTy->isInteger() && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) || (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits() && c->getValue().isStrictlyPositive()); if (Callee->isDeclaration() && !isConvertible) return false; // Most other conversions can be done if we have a body, even if these // lose information, e.g. int->short. // Some conversions cannot be done at all, e.g. float to pointer. // Logic here parallels CastInst::getCastOpcode (the design there // requires legality checks like this be done before calling it). if (ParamTy->isInteger()) { if (const VectorType *VActTy = dyn_cast(ActTy)) { if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits()) return false; } if (!ActTy->isInteger() && !ActTy->isFloatingPoint() && !isa(ActTy)) return false; } else if (ParamTy->isFloatingPoint()) { if (const VectorType *VActTy = dyn_cast(ActTy)) { if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits()) return false; } if (!ActTy->isInteger() && !ActTy->isFloatingPoint()) return false; } else if (const VectorType *VParamTy = dyn_cast(ParamTy)) { if (const VectorType *VActTy = dyn_cast(ActTy)) { if (VActTy->getBitWidth() != VParamTy->getBitWidth()) return false; } if (VParamTy->getBitWidth() != ActTy->getPrimitiveSizeInBits()) return false; } else if (isa(ParamTy)) { if (!ActTy->isInteger() && !isa(ActTy)) return false; } else { return false; } } if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && Callee->isDeclaration()) return false; // Do not delete arguments unless we have a function body... // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary... std::vector Args; Args.reserve(NumActualArgs); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, ParamTy, false); CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp"); Args.push_back(InsertNewInstBefore(NewCast, *Caller)); } } // If the function takes more arguments than the call was taking, add them // now... for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning... if (FT->getNumParams() < NumActualArgs) if (!FT->isVarArg()) { cerr << "WARNING: While resolving call to function '" << Callee->getName() << "' arguments were dropped!\n"; } else { // Add all of the arguments in their promoted form to the arg list... for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { const Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false, PTy, false); Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp"); InsertNewInstBefore(Cast, *Caller); Args.push_back(Cast); } else { Args.push_back(*AI); } } } if (FT->getReturnType() == Type::VoidTy) Caller->setName(""); // Void type should not have a name. Instruction *NC; if (InvokeInst *II = dyn_cast(Caller)) { NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(), Args.begin(), Args.end(), Caller->getName(), Caller); cast(NC)->setCallingConv(II->getCallingConv()); } else { NC = new CallInst(Callee, Args.begin(), Args.end(), Caller->getName(), Caller); if (cast(Caller)->isTailCall()) cast(NC)->setTailCall(); cast(NC)->setCallingConv(cast(Caller)->getCallingConv()); } // Insert a cast of the return type as necessary. Value *NV = NC; if (Caller->getType() != NV->getType() && !Caller->use_empty()) { if (NV->getType() != Type::VoidTy) { const Type *CallerTy = Caller->getType(); Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, CallerTy, false); NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp"); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->begin(); while (isa(I)) ++I; InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call instr InsertNewInstBefore(NC, *Caller); } AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NV); Caller->eraseFromParent(); RemoveFromWorkList(Caller); return true; } // transformCallThroughTrampoline - Turn a call to a function created by the // init_trampoline intrinsic into a direct call to the underlying function. // Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { Value *Callee = CS.getCalledValue(); const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); IntrinsicInst *Tramp = cast(cast(Callee)->getOperand(0)); Function *NestF = cast(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2))); const PointerType *NestFPTy = cast(NestF->getType()); const FunctionType *NestFTy = cast(NestFPTy->getElementType()); if (const ParamAttrsList *NestAttrs = NestFTy->getParamAttrs()) { unsigned NestIdx = 1; const Type *NestTy = 0; uint16_t NestAttr = 0; // Look for a parameter marked with the 'nest' attribute. for (FunctionType::param_iterator I = NestFTy->param_begin(), E = NestFTy->param_end(); I != E; ++NestIdx, ++I) if (NestAttrs->paramHasAttr(NestIdx, ParamAttr::Nest)) { // Record the parameter type and any other attributes. NestTy = *I; NestAttr = NestAttrs->getParamAttrs(NestIdx); break; } if (NestTy) { Instruction *Caller = CS.getInstruction(); std::vector NewArgs; NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); // Insert the nest argument into the call argument list, which may // mean appending it. { unsigned Idx = 1; CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); do { if (Idx == NestIdx) { // Add the chain argument. Value *NestVal = Tramp->getOperand(3); if (NestVal->getType() != NestTy) NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); NewArgs.push_back(NestVal); } if (I == E) break; // Add the original argument. NewArgs.push_back(*I); ++Idx, ++I; } while (1); } // The trampoline may have been bitcast to a bogus type (FTy). // Handle this by synthesizing a new function type, equal to FTy // with the chain parameter inserted. Likewise for attributes. const ParamAttrsList *Attrs = FTy->getParamAttrs(); std::vector NewTypes; ParamAttrsVector NewAttrs; NewTypes.reserve(FTy->getNumParams()+1); // Add any function result attributes. uint16_t Attr = Attrs ? Attrs->getParamAttrs(0) : 0; if (Attr) NewAttrs.push_back (ParamAttrsWithIndex::get(0, Attr)); // Insert the chain's type into the list of parameter types, which may // mean appending it. Likewise for the chain's attributes. { unsigned Idx = 1; FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); do { if (Idx == NestIdx) { // Add the chain's type and attributes. NewTypes.push_back(NestTy); NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr)); } if (I == E) break; // Add the original type and attributes. NewTypes.push_back(*I); Attr = Attrs ? Attrs->getParamAttrs(Idx) : 0; if (Attr) NewAttrs.push_back (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr)); ++Idx, ++I; } while (1); } // Replace the trampoline call with a direct call. Let the generic // code sort out any function type mismatches. FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg(), ParamAttrsList::get(NewAttrs)); Constant *NewCallee = NestF->getType() == PointerType::get(NewFTy) ? NestF : ConstantExpr::getBitCast(NestF, PointerType::get(NewFTy)); Instruction *NewCaller; if (InvokeInst *II = dyn_cast(Caller)) { NewCaller = new InvokeInst(NewCallee, II->getNormalDest(), II->getUnwindDest(), NewArgs.begin(), NewArgs.end(), Caller->getName(), Caller); cast(NewCaller)->setCallingConv(II->getCallingConv()); } else { NewCaller = new CallInst(NewCallee, NewArgs.begin(), NewArgs.end(), Caller->getName(), Caller); if (cast(Caller)->isTailCall()) cast(NewCaller)->setTailCall(); cast(NewCaller)-> setCallingConv(cast(Caller)->getCallingConv()); } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NewCaller); Caller->eraseFromParent(); RemoveFromWorkList(Caller); return 0; } } // Replace the trampoline call with a direct call. Since there is no 'nest' // parameter, there is no need to adjust the argument list. Let the generic // code sort out any function type mismatches. Constant *NewCallee = NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy); CS.setCalledFunction(NewCallee); return CS.getInstruction(); } /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)] /// and if a/b/c/d and the add's all have a single use, turn this into two phi's /// and a single binop. Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); assert(isa(FirstInst) || isa(FirstInst) || isa(FirstInst)); unsigned Opc = FirstInst->getOpcode(); Value *LHSVal = FirstInst->getOperand(0); Value *RHSVal = FirstInst->getOperand(1); const Type *LHSType = LHSVal->getType(); const Type *RHSType = RHSVal->getType(); // Scan to see if all operands are the same opcode, all have one use, and all // kill their operands (i.e. the operands have one use). for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) { Instruction *I = dyn_cast(PN.getIncomingValue(i)); if (!I || I->getOpcode() != Opc || !I->hasOneUse() || // Verify type of the LHS matches so we don't fold cmp's of different // types or GEP's with different index types. I->getOperand(0)->getType() != LHSType || I->getOperand(1)->getType() != RHSType) return 0; // If they are CmpInst instructions, check their predicates if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) if (cast(I)->getPredicate() != cast(FirstInst)->getPredicate()) return 0; // Keep track of which operand needs a phi node. if (I->getOperand(0) != LHSVal) LHSVal = 0; if (I->getOperand(1) != RHSVal) RHSVal = 0; } // Otherwise, this is safe to transform, determine if it is profitable. // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out. // Indexes are often folded into load/store instructions, so we don't want to // hide them behind a phi. if (isa(FirstInst) && RHSVal == 0) return 0; Value *InLHS = FirstInst->getOperand(0); Value *InRHS = FirstInst->getOperand(1); PHINode *NewLHS = 0, *NewRHS = 0; if (LHSVal == 0) { NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn"); NewLHS->reserveOperandSpace(PN.getNumOperands()/2); NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewLHS, PN); LHSVal = NewLHS; } if (RHSVal == 0) { NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn"); NewRHS->reserveOperandSpace(PN.getNumOperands()/2); NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); InsertNewInstBefore(NewRHS, PN); RHSVal = NewRHS; } // Add all operands to the new PHIs. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { if (NewLHS) { Value *NewInLHS =cast(PN.getIncomingValue(i))->getOperand(0); NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); } if (NewRHS) { Value *NewInRHS =cast(PN.getIncomingValue(i))->getOperand(1); NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); } } if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal); else if (CmpInst *CIOp = dyn_cast(FirstInst)) return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal, RHSVal); else { assert(isa(FirstInst)); return new GetElementPtrInst(LHSVal, RHSVal); } } /// isSafeToSinkLoad - Return true if we know that it is safe sink the load out /// of the block that defines it. This means that it must be obvious the value /// of the load is not changed from the point of the load to the end of the /// block it is in. /// /// Finally, it is safe, but not profitable, to sink a load targetting a /// non-address-taken alloca. Doing so will cause us to not promote the alloca /// to a register. static bool isSafeToSinkLoad(LoadInst *L) { BasicBlock::iterator BBI = L, E = L->getParent()->end(); for (++BBI; BBI != E; ++BBI) if (BBI->mayWriteToMemory()) return false; // Check for non-address taken alloca. If not address-taken already, it isn't // profitable to do this xform. if (AllocaInst *AI = dyn_cast(L->getOperand(0))) { bool isAddressTaken = false; for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ++UI) { if (isa(UI)) continue; if (StoreInst *SI = dyn_cast(*UI)) { // If storing TO the alloca, then the address isn't taken. if (SI->getOperand(1) == AI) continue; } isAddressTaken = true; break; } if (!isAddressTaken) return false; } return true; } // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); // Scan the instruction, looking for input operations that can be folded away. // If all input operands to the phi are the same instruction (e.g. a cast from // the same type or "+42") we can pull the operation through the PHI, reducing // code size and simplifying code. Constant *ConstantOp = 0; const Type *CastSrcTy = 0; bool isVolatile = false; if (isa(FirstInst)) { CastSrcTy = FirstInst->getOperand(0)->getType(); } else if (isa(FirstInst) || isa(FirstInst)) { // Can fold binop, compare or shift here if the RHS is a constant, // otherwise call FoldPHIArgBinOpIntoPHI. ConstantOp = dyn_cast(FirstInst->getOperand(1)); if (ConstantOp == 0) return FoldPHIArgBinOpIntoPHI(PN); } else if (LoadInst *LI = dyn_cast(FirstInst)) { isVolatile = LI->isVolatile(); // We can't sink the load if the loaded value could be modified between the // load and the PHI. if (LI->getParent() != PN.getIncomingBlock(0) || !isSafeToSinkLoad(LI)) return 0; } else if (isa(FirstInst)) { if (FirstInst->getNumOperands() == 2) return FoldPHIArgBinOpIntoPHI(PN); // Can't handle general GEPs yet. return 0; } else { return 0; // Cannot fold this operation. } // Check to see if all arguments are the same operation. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isa(PN.getIncomingValue(i))) return 0; Instruction *I = cast(PN.getIncomingValue(i)); if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst)) return 0; if (CastSrcTy) { if (I->getOperand(0)->getType() != CastSrcTy) return 0; // Cast operation must match. } else if (LoadInst *LI = dyn_cast(I)) { // We can't sink the load if the loaded value could be modified between // the load and the PHI. if (LI->isVolatile() != isVolatile || LI->getParent() != PN.getIncomingBlock(i) || !isSafeToSinkLoad(LI)) return 0; } else if (I->getOperand(1) != ConstantOp) { return 0; } } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(), PN.getName()+".in"); NewPN->reserveOperandSpace(PN.getNumOperands()/2); Value *InVal = FirstInst->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); // Add all operands to the new PHI. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { Value *NewInVal = cast(PN.getIncomingValue(i))->getOperand(0); if (NewInVal != InVal) InVal = 0; NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); } Value *PhiVal; if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. PhiVal = InVal; delete NewPN; } else { InsertNewInstBefore(NewPN, PN); PhiVal = NewPN; } // Insert and return the new operation. if (CastInst* FirstCI = dyn_cast(FirstInst)) return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType()); else if (isa(FirstInst)) return new LoadInst(PhiVal, "", isVolatile); else if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp); else if (CmpInst *CIOp = dyn_cast(FirstInst)) return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), PhiVal, ConstantOp); else assert(0 && "Unknown operation"); return 0; } /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle /// that is dead. static bool DeadPHICycle(PHINode *PN, SmallPtrSet &PotentiallyDeadPHIs) { if (PN->use_empty()) return true; if (!PN->hasOneUse()) return false; // Remember this node, and if we find the cycle, return. if (!PotentiallyDeadPHIs.insert(PN)) return true; // Don't scan crazily complex things. if (PotentiallyDeadPHIs.size() == 16) return false; if (PHINode *PU = dyn_cast(PN->use_back())) return DeadPHICycle(PU, PotentiallyDeadPHIs); return false; } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode &PN) { // If LCSSA is around, don't mess with Phi nodes if (MustPreserveLCSSA) return 0; if (Value *V = PN.hasConstantValue()) return ReplaceInstUsesWith(PN, V); // If all PHI operands are the same operation, pull them through the PHI, // reducing code size. if (isa(PN.getIncomingValue(0)) && PN.getIncomingValue(0)->hasOneUse()) if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) return Result; // If this is a trivial cycle in the PHI node graph, remove it. Basically, if // this PHI only has a single use (a PHI), and if that PHI only has one use (a // PHI)... break the cycle. if (PN.hasOneUse()) { Instruction *PHIUser = cast(PN.use_back()); if (PHINode *PU = dyn_cast(PHIUser)) { SmallPtrSet PotentiallyDeadPHIs; PotentiallyDeadPHIs.insert(&PN); if (DeadPHICycle(PU, PotentiallyDeadPHIs)) return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); } // If this phi has a single use, and if that use just computes a value for // the next iteration of a loop, delete the phi. This occurs with unused // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this // common case here is good because the only other things that catch this // are induction variable analysis (sometimes) and ADCE, which is only run // late. if (PHIUser->hasOneUse() && (isa(PHIUser) || isa(PHIUser)) && PHIUser->use_back() == &PN) { return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); } } return 0; } static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy, Instruction *InsertPoint, InstCombiner *IC) { unsigned PtrSize = DTy->getPrimitiveSizeInBits(); unsigned VTySize = V->getType()->getPrimitiveSizeInBits(); // We must cast correctly to the pointer type. Ensure that we // sign extend the integer value if it is smaller as this is // used for address computation. Instruction::CastOps opcode = (VTySize < PtrSize ? Instruction::SExt : (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc)); return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint); } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); // Is it 'getelementptr %P, i32 0' or 'getelementptr %P' // If so, eliminate the noop. if (GEP.getNumOperands() == 1) return ReplaceInstUsesWith(GEP, PtrOp); if (isa(GEP.getOperand(0))) return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); bool HasZeroPointerIndex = false; if (Constant *C = dyn_cast(GEP.getOperand(1))) HasZeroPointerIndex = C->isNullValue(); if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) return ReplaceInstUsesWith(GEP, PtrOp); // Eliminate unneeded casts for indices. bool MadeChange = false; gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) { if (isa(*GTI)) { if (CastInst *CI = dyn_cast(GEP.getOperand(i))) { if (CI->getOpcode() == Instruction::ZExt || CI->getOpcode() == Instruction::SExt) { const Type *SrcTy = CI->getOperand(0)->getType(); // We can eliminate a cast from i32 to i64 iff the target // is a 32-bit pointer target. if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { MadeChange = true; GEP.setOperand(i, CI->getOperand(0)); } } } // If we are using a wider index than needed for this platform, shrink it // to what we need. If the incoming value needs a cast instruction, // insert it. This explicit cast can make subsequent optimizations more // obvious. Value *Op = GEP.getOperand(i); if (TD->getTypeSize(Op->getType()) > TD->getPointerSize()) if (Constant *C = dyn_cast(Op)) { GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType())); MadeChange = true; } else { Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(), GEP); GEP.setOperand(i, Op); MadeChange = true; } } } if (MadeChange) return &GEP; // If this GEP instruction doesn't move the pointer, and if the input operand // is a bitcast of another pointer, just replace the GEP with a bitcast of the // real input to the dest type. if (GEP.hasAllZeroIndices() && isa(GEP.getOperand(0))) return new BitCastInst(cast(GEP.getOperand(0))->getOperand(0), GEP.getType()); // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // SmallVector SrcGEPOperands; if (User *Src = dyn_castGetElementPtr(PtrOp)) SrcGEPOperands.append(Src->op_begin(), Src->op_end()); if (!SrcGEPOperands.empty()) { // Note that if our source is a gep chain itself that we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. // if (isa(SrcGEPOperands[0]) && cast(SrcGEPOperands[0])->getNumOperands() == 2) return 0; // Wait until our source is folded to completion. SmallVector Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*cast(PtrOp)), E = gep_type_end(*cast(PtrOp)); I != E; ++I) EndsWithSequential = !isa(*I); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... // Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); if (SO1 == Constant::getNullValue(SO1->getType())) { Sum = GO1; } else if (GO1 == Constant::getNullValue(GO1->getType())) { Sum = SO1; } else { // If they aren't the same type, convert both to an integer of the // target's pointer size. if (SO1->getType() != GO1->getType()) { if (Constant *SO1C = dyn_cast(SO1)) { SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true); } else if (Constant *GO1C = dyn_cast(GO1)) { GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true); } else { unsigned PS = TD->getPointerSize(); if (TD->getTypeSize(SO1->getType()) == PS) { // Convert GO1 to SO1's type. GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this); } else if (TD->getTypeSize(GO1->getType()) == PS) { // Convert SO1 to GO1's type. SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this); } else { const Type *PT = TD->getIntPtrType(); SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this); GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this); } } } if (isa(SO1) && isa(GO1)) Sum = ConstantExpr::getAdd(cast(SO1), cast(GO1)); else { Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum"); InsertNewInstBefore(cast(Sum), GEP); } } // Recycle the GEP we already have if possible. if (SrcGEPOperands.size() == 2) { GEP.setOperand(0, SrcGEPOperands[0]); GEP.setOperand(1, Sum); return &GEP; } else { Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()-1); Indices.push_back(Sum); Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); } } else if (isa(*GEP.idx_begin()) && cast(*GEP.idx_begin())->isNullValue() && SrcGEPOperands.size() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()); Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return new GetElementPtrInst(SrcGEPOperands[0], Indices.begin(), Indices.end(), GEP.getName()); } else if (GlobalValue *GV = dyn_cast(PtrOp)) { // GEP of global variable. If all of the indices for this GEP are // constants, we can promote this to a constexpr instead of an instruction. // Scan for nonconstants... SmallVector Indices; User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); for (; I != E && isa(*I); ++I) Indices.push_back(cast(*I)); if (I == E) { // If they are all constants... Constant *CE = ConstantExpr::getGetElementPtr(GV, &Indices[0],Indices.size()); // Replace all uses of the GEP with the new constexpr... return ReplaceInstUsesWith(GEP, CE); } } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast? if (!isa(X->getType())) { // Not interesting. Source pointer must be a cast from pointer. } else if (HasZeroPointerIndex) { // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ... // into : GEP [10 x ubyte]* X, long 0, ... // // This occurs when the program declares an array extern like "int X[];" // const PointerType *CPTy = cast(PtrOp->getType()); const PointerType *XTy = cast(X->getType()); if (const ArrayType *XATy = dyn_cast(XTy->getElementType())) if (const ArrayType *CATy = dyn_cast(CPTy->getElementType())) if (CATy->getElementType() == XATy->getElementType()) { // At this point, we know that the cast source type is a pointer // to an array of the same type as the destination pointer // array. Because the array type is never stepped over (there // is a leading zero) we can fold the cast into this GEP. GEP.setOperand(0, X); return &GEP; } } else if (GEP.getNumOperands() == 2) { // Transform things like: // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast const Type *SrcElTy = cast(X->getType())->getElementType(); const Type *ResElTy=cast(PtrOp->getType())->getElementType(); if (isa(SrcElTy) && TD->getTypeSize(cast(SrcElTy)->getElementType()) == TD->getTypeSize(ResElTy)) { Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::Int32Ty); Idx[1] = GEP.getOperand(1); Value *V = InsertNewInstBefore( new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()), GEP); // V and GEP are both pointer types --> BitCast return new BitCastInst(V, GEP.getType()); } // Transform things like: // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, int 0, int %tmp.2 if (isa(SrcElTy) && (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) { uint64_t ArrayEltSize = TD->getTypeSize(cast(SrcElTy)->getElementType()); // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We // allow either a mul, shift, or constant here. Value *NewIdx = 0; ConstantInt *Scale = 0; if (ArrayEltSize == 1) { NewIdx = GEP.getOperand(1); Scale = ConstantInt::get(NewIdx->getType(), 1); } else if (ConstantInt *CI = dyn_cast(GEP.getOperand(1))) { NewIdx = ConstantInt::get(CI->getType(), 1); Scale = CI; } else if (Instruction *Inst =dyn_cast(GEP.getOperand(1))){ if (Inst->getOpcode() == Instruction::Shl && isa(Inst->getOperand(1))) { ConstantInt *ShAmt = cast(Inst->getOperand(1)); uint32_t ShAmtVal = ShAmt->getLimitedValue(64); Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal); NewIdx = Inst->getOperand(0); } else if (Inst->getOpcode() == Instruction::Mul && isa(Inst->getOperand(1))) { Scale = cast(Inst->getOperand(1)); NewIdx = Inst->getOperand(0); } } // If the index will be to exactly the right offset with the scale taken // out, perform the transformation. if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) { if (isa(Scale)) Scale = ConstantInt::get(Scale->getType(), Scale->getZExtValue() / ArrayEltSize); if (Scale->getZExtValue() != 1) { Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), true /*SExt*/); Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale"); NewIdx = InsertNewInstBefore(Sc, GEP); } // Insert the new GEP instruction. Value *Idx[2]; Idx[0] = Constant::getNullValue(Type::Int32Ty); Idx[1] = NewIdx; Instruction *NewGEP = new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()); NewGEP = InsertNewInstBefore(NewGEP, GEP); // The NewGEP must be pointer typed, so must the old one -> BitCast return new BitCastInst(NewGEP, GEP.getType()); } } } } return 0; } Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 if (AI.isArrayAllocation()) // Check C != 1 if (const ConstantInt *C = dyn_cast(AI.getArraySize())) { const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); AllocationInst *New = 0; // Create and insert the replacement instruction... if (isa(AI)) New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName()); else { assert(isa(AI) && "Unknown type of allocation inst!"); New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName()); } InsertNewInstBefore(New, AI); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible... // BasicBlock::iterator It = New; while (isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // Value *NullIdx = Constant::getNullValue(Type::Int32Ty); Value *Idx[2]; Idx[0] = NullIdx; Idx[1] = NullIdx; Value *V = new GetElementPtrInst(New, Idx, Idx + 2, New->getName()+".sub", It); // Now make everything use the getelementptr instead of the original // allocation. return ReplaceInstUsesWith(AI, V); } else if (isa(AI.getArraySize())) { return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); } // If alloca'ing a zero byte object, replace the alloca with a null pointer. // Note that we only do this for alloca's, because malloc should allocate and // return a unique pointer, even for a zero byte allocation. if (isa(AI) && AI.getAllocatedType()->isSized() && TD->getTypeSize(AI.getAllocatedType()) == 0) return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); return 0; } Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { Value *Op = FI.getOperand(0); // free undef -> unreachable. if (isa(Op)) { // Insert a new store to null because we cannot modify the CFG here. new StoreInst(ConstantInt::getTrue(), UndefValue::get(PointerType::get(Type::Int1Ty)), &FI); return EraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa(Op)) return EraseInstFromFunction(FI); // Change free * (cast * X to *) into free * X if (BitCastInst *CI = dyn_cast(Op)) { FI.setOperand(0, CI->getOperand(0)); return &FI; } // Change free (gep X, 0,0,0,0) into free(X) if (GetElementPtrInst *GEPI = dyn_cast(Op)) { if (GEPI->hasAllZeroIndices()) { AddToWorkList(GEPI); FI.setOperand(0, GEPI->getOperand(0)); return &FI; } } // Change free(malloc) into nothing, if the malloc has a single use. if (MallocInst *MI = dyn_cast(Op)) if (MI->hasOneUse()) { EraseInstFromFunction(FI); return EraseInstFromFunction(*MI); } return 0; } /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) { User *CI = cast(LI.getOperand(0)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isInteger() || isa(DestPTy) || isa(DestPTy)) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { Value *Idxs[2]; Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty); CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if ((SrcPTy->isInteger() || isa(SrcPTy) || isa(SrcPTy)) && // Do not allow turning this into a load of an integer, which is then // casted to a pointer, this pessimizes pointer analysis a lot. (isa(SrcPTy) == isa(LI.getType())) && IC.getTargetData().getTypeSizeInBits(SrcPTy) == IC.getTargetData().getTypeSizeInBits(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp, CI->getName(), LI.isVolatile()),LI); // Now cast the result of the load. return new BitCastInst(NewLoad, LI.getType()); } } } return 0; } /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca it is always safe to load from. if (isa(V)) return true; // If it is a global variable it is mostly safe to load from. if (const GlobalValue *GV = dyn_cast(V)) // Don't try to evaluate aliases. External weak GV can be null. return !isa(GV) && !GV->hasExternalWeakLinkage(); // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == V) return true; } return false; } /// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts /// until we find the underlying object a pointer is referring to or something /// we don't understand. Note that the returned pointer may be offset from the /// input, because we ignore GEP indices. static Value *GetUnderlyingObject(Value *Ptr) { while (1) { if (ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::BitCast || CE->getOpcode() == Instruction::GetElementPtr) Ptr = CE->getOperand(0); else return Ptr; } else if (BitCastInst *BCI = dyn_cast(Ptr)) { Ptr = BCI->getOperand(0); } else if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { Ptr = GEP->getOperand(0); } else { return Ptr; } } } Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); // Attempt to improve the alignment. unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD); if (KnownAlign > LI.getAlignment()) LI.setAlignment(KnownAlign); // load (cast X) --> cast (load X) iff safe if (isa(Op)) if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; // None of the following transforms are legal for volatile loads. if (LI.isVolatile()) return 0; if (&LI.getParent()->front() != &LI) { BasicBlock::iterator BBI = &LI; --BBI; // If the instruction immediately before this is a store to the same // address, do a simple form of store->load forwarding. if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == LI.getOperand(0)) return ReplaceInstUsesWith(LI, SI->getOperand(0)); if (LoadInst *LIB = dyn_cast(BBI)) if (LIB->getOperand(0) == LI.getOperand(0)) return ReplaceInstUsesWith(LI, LIB); } if (GetElementPtrInst *GEPI = dyn_cast(Op)) if (isa(GEPI->getOperand(0))) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } if (Constant *C = dyn_cast(Op)) { // load null/undef -> undef if ((C->isNullValue() || isa(C))) { // Insert a new store to null instruction before the load to indicate that // this code is not reachable. We do this instead of inserting an // unreachable instruction directly because we cannot modify the CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } // Instcombine load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Op)) if (GV->isConstant() && !GV->isDeclaration()) return ReplaceInstUsesWith(LI, GV->getInitializer()); // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. if (ConstantExpr *CE = dyn_cast(Op)) if (CE->getOpcode() == Instruction::GetElementPtr) { if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) if (GV->isConstant() && !GV->isDeclaration()) if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) return ReplaceInstUsesWith(LI, V); if (CE->getOperand(0)->isNullValue()) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } else if (CE->isCast()) { if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; } } // If this load comes from anywhere in a constant global, and if the global // is all undef or zero, we know what it loads. if (GlobalVariable *GV = dyn_cast(GetUnderlyingObject(Op))) { if (GV->isConstant() && GV->hasInitializer()) { if (GV->getInitializer()->isNullValue()) return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType())); else if (isa(GV->getInitializer())) return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), SI->getOperand(1)->getName()+".val"), LI); Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), SI->getOperand(2)->getName()+".val"), LI); return new SelectInst(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (Constant *C = dyn_cast(SI->getOperand(1))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(2)); return &LI; } // load (select (cond, P, null)) -> load P if (Constant *C = dyn_cast(SI->getOperand(2))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(1)); return &LI; } } } return 0; } /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P /// when possible. static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { User *CI = cast(SI.getOperand(1)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isInteger() || isa(DestPTy)) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { Value* Idxs[2]; Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty); CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if ((SrcPTy->isInteger() || isa(SrcPTy)) && IC.getTargetData().getTypeSizeInBits(SrcPTy) == IC.getTargetData().getTypeSizeInBits(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before // the store, cast the value to be stored. Value *NewCast; Value *SIOp0 = SI.getOperand(0); Instruction::CastOps opcode = Instruction::BitCast; const Type* CastSrcTy = SIOp0->getType(); const Type* CastDstTy = SrcPTy; if (isa(CastDstTy)) { if (CastSrcTy->isInteger()) opcode = Instruction::IntToPtr; } else if (isa(CastDstTy)) { if (isa(SIOp0->getType())) opcode = Instruction::PtrToInt; } if (Constant *C = dyn_cast(SIOp0)) NewCast = ConstantExpr::getCast(opcode, C, CastDstTy); else NewCast = IC.InsertNewInstBefore( CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"), SI); return new StoreInst(NewCast, CastOp); } } } return 0; } Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); if (isa(Ptr)) { // store X, undef -> noop (even if volatile) EraseInstFromFunction(SI); ++NumCombined; return 0; } // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. if (Ptr->hasOneUse()) { if (isa(Ptr)) { EraseInstFromFunction(SI); ++NumCombined; return 0; } if (GetElementPtrInst *GEP = dyn_cast(Ptr)) if (isa(GEP->getOperand(0)) && GEP->getOperand(0)->hasOneUse()) { EraseInstFromFunction(SI); ++NumCombined; return 0; } } // Attempt to improve the alignment. unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD); if (KnownAlign > SI.getAlignment()) SI.setAlignment(KnownAlign); // Do really simple DSE, to catch cases where there are several consequtive // stores to the same location, separated by a few arithmetic operations. This // situation often occurs with bitfield accesses. BasicBlock::iterator BBI = &SI; for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; --ScanInsts) { --BBI; if (StoreInst *PrevSI = dyn_cast(BBI)) { // Prev store isn't volatile, and stores to the same location? if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) { ++NumDeadStore; ++BBI; EraseInstFromFunction(*PrevSI); continue; } break; } // If this is a load, we have to stop. However, if the loaded value is from // the pointer we're loading and is producing the pointer we're storing, // then *this* store is dead (X = load P; store X -> P). if (LoadInst *LI = dyn_cast(BBI)) { if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) { EraseInstFromFunction(SI); ++NumCombined; return 0; } // Otherwise, this is a load from some other location. Stores before it // may not be dead. break; } // Don't skip over loads or things that can modify memory. if (BBI->mayWriteToMemory()) break; } if (SI.isVolatile()) return 0; // Don't hack volatile stores. // store X, null -> turns into 'unreachable' in SimplifyCFG if (isa(Ptr)) { if (!isa(Val)) { SI.setOperand(0, UndefValue::get(Val->getType())); if (Instruction *U = dyn_cast(Val)) AddToWorkList(U); // Dropped a use. ++NumCombined; } return 0; // Do not modify these! } // store undef, Ptr -> noop if (isa(Val)) { EraseInstFromFunction(SI); ++NumCombined; return 0; } // If the pointer destination is a cast, see if we can fold the cast into the // source instead. if (isa(Ptr)) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->isCast()) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; // If this store is the last instruction in the basic block, and if the block // ends with an unconditional branch, try to move it to the successor block. BBI = &SI; ++BBI; if (BranchInst *BI = dyn_cast(BBI)) if (BI->isUnconditional()) if (SimplifyStoreAtEndOfBlock(SI)) return 0; // xform done! return 0; } /// SimplifyStoreAtEndOfBlock - Turn things like: /// if () { *P = v1; } else { *P = v2 } /// into a phi node with a store in the successor. /// /// Simplify things like: /// *P = v1; if () { *P = v2; } /// into a phi node with a store in the successor. /// bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BasicBlock *StoreBB = SI.getParent(); // Check to see if the successor block has exactly two incoming edges. If // so, see if the other predecessor contains a store to the same location. // if so, insert a PHI node (if needed) and move the stores down. BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); // Determine whether Dest has exactly two predecessors and, if so, compute // the other predecessor. pred_iterator PI = pred_begin(DestBB); BasicBlock *OtherBB = 0; if (*PI != StoreBB) OtherBB = *PI; ++PI; if (PI == pred_end(DestBB)) return false; if (*PI != StoreBB) { if (OtherBB) return false; OtherBB = *PI; } if (++PI != pred_end(DestBB)) return false; // Verify that the other block ends in a branch and is not otherwise empty. BasicBlock::iterator BBI = OtherBB->getTerminator(); BranchInst *OtherBr = dyn_cast(BBI); if (!OtherBr || BBI == OtherBB->begin()) return false; // If the other block ends in an unconditional branch, check for the 'if then // else' case. there is an instruction before the branch. StoreInst *OtherStore = 0; if (OtherBr->isUnconditional()) { // If this isn't a store, or isn't a store to the same location, bail out. --BBI; OtherStore = dyn_cast(BBI); if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1)) return false; } else { // Otherwise, the other block ended with a conditional branch. If one of the // destinations is StoreBB, then we have the if/then case. if (OtherBr->getSuccessor(0) != StoreBB && OtherBr->getSuccessor(1) != StoreBB) return false; // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an // if/then triangle. See if there is a store to the same ptr as SI that // lives in OtherBB. for (;; --BBI) { // Check to see if we find the matching store. if ((OtherStore = dyn_cast(BBI))) { if (OtherStore->getOperand(1) != SI.getOperand(1)) return false; break; } // If we find something that may be using the stored value, or if we run // out of instructions, we can't do the xform. if (isa(BBI) || BBI->mayWriteToMemory() || BBI == OtherBB->begin()) return false; } // In order to eliminate the store in OtherBr, we have to // make sure nothing reads the stored value in StoreBB. for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { // FIXME: This should really be AA driven. if (isa(I) || I->mayWriteToMemory()) return false; } } // Insert a PHI node now if we need it. Value *MergedVal = OtherStore->getOperand(0); if (MergedVal != SI.getOperand(0)) { PHINode *PN = new PHINode(MergedVal->getType(), "storemerge"); PN->reserveOperandSpace(2); PN->addIncoming(SI.getOperand(0), SI.getParent()); PN->addIncoming(OtherStore->getOperand(0), OtherBB); MergedVal = InsertNewInstBefore(PN, DestBB->front()); } // Advance to a place where it is safe to insert the new store and // insert it. BBI = DestBB->begin(); while (isa(BBI)) ++BBI; InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), OtherStore->isVolatile()), *BBI); // Nuke the old stores. EraseInstFromFunction(SI); EraseInstFromFunction(*OtherStore); ++NumCombined; return true; } Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Change br (not X), label True, label False to: br X, label False, True Value *X = 0; BasicBlock *TrueDest; BasicBlock *FalseDest; if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && !isa(X)) { // Swap Destinations and condition... BI.setCondition(X); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); return &BI; } // Cannonicalize fcmp_one -> fcmp_oeq FCmpInst::Predicate FPred; Value *Y; if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) { FCmpInst *I = cast(BI.getCondition()); FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred); Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I); NewSCC->takeName(I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); RemoveFromWorkList(I); I->eraseFromParent(); AddToWorkList(NewSCC); return &BI; } // Cannonicalize icmp_ne -> icmp_eq ICmpInst::Predicate IPred; if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) { ICmpInst *I = cast(BI.getCondition()); ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred); Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I); NewSCC->takeName(I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); RemoveFromWorkList(I); I->eraseFromParent();; AddToWorkList(NewSCC); return &BI; } return 0; } Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); if (Instruction *I = dyn_cast(Cond)) { if (I->getOpcode() == Instruction::Add) if (ConstantInt *AddRHS = dyn_cast(I->getOperand(1))) { // change 'switch (X+4) case 1:' into 'switch (X) case -3' for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) SI.setOperand(i,ConstantExpr::getSub(cast(SI.getOperand(i)), AddRHS)); SI.setOperand(0, I->getOperand(0)); AddToWorkList(I); return &SI; } } return 0; } /// CheapToScalarize - Return true if the value is cheaper to scalarize than it /// is to leave as a vector operation. static bool CheapToScalarize(Value *V, bool isConstant) { if (isa(V)) return true; if (ConstantVector *C = dyn_cast(V)) { if (isConstant) return true; // If all elts are the same, we can extract. Constant *Op0 = C->getOperand(0); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != Op0) return false; return true; } Instruction *I = dyn_cast(V); if (!I) return false; // Insert element gets simplified to the inserted element or is deleted if // this is constant idx extract element and its a constant idx insertelt. if (I->getOpcode() == Instruction::InsertElement && isConstant && isa(I->getOperand(2))) return true; if (I->getOpcode() == Instruction::Load && I->hasOneUse()) return true; if (BinaryOperator *BO = dyn_cast(I)) if (BO->hasOneUse() && (CheapToScalarize(BO->getOperand(0), isConstant) || CheapToScalarize(BO->getOperand(1), isConstant))) return true; if (CmpInst *CI = dyn_cast(I)) if (CI->hasOneUse() && (CheapToScalarize(CI->getOperand(0), isConstant) || CheapToScalarize(CI->getOperand(1), isConstant))) return true; return false; } /// Read and decode a shufflevector mask. /// /// It turns undef elements into values that are larger than the number of /// elements in the input. static std::vector getShuffleMask(const ShuffleVectorInst *SVI) { unsigned NElts = SVI->getType()->getNumElements(); if (isa(SVI->getOperand(2))) return std::vector(NElts, 0); if (isa(SVI->getOperand(2))) return std::vector(NElts, 2*NElts); std::vector Result; const ConstantVector *CP = cast(SVI->getOperand(2)); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) if (isa(CP->getOperand(i))) Result.push_back(NElts*2); // undef -> 8 else Result.push_back(cast(CP->getOperand(i))->getZExtValue()); return Result; } /// FindScalarElement - Given a vector and an element number, see if the scalar /// value is already around as a register, for example if it were inserted then /// extracted from the vector. static Value *FindScalarElement(Value *V, unsigned EltNo) { assert(isa(V->getType()) && "Not looking at a vector?"); const VectorType *PTy = cast(V->getType()); unsigned Width = PTy->getNumElements(); if (EltNo >= Width) // Out of range access. return UndefValue::get(PTy->getElementType()); if (isa(V)) return UndefValue::get(PTy->getElementType()); else if (isa(V)) return Constant::getNullValue(PTy->getElementType()); else if (ConstantVector *CP = dyn_cast(V)) return CP->getOperand(EltNo); else if (InsertElementInst *III = dyn_cast(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa(III->getOperand(2))) return 0; unsigned IIElt = cast(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the // inserted value. if (EltNo == IIElt) return III->getOperand(1); // Otherwise, the insertelement doesn't modify the value, recurse on its // vector input. return FindScalarElement(III->getOperand(0), EltNo); } else if (ShuffleVectorInst *SVI = dyn_cast(V)) { unsigned InEl = getShuffleMask(SVI)[EltNo]; if (InEl < Width) return FindScalarElement(SVI->getOperand(0), InEl); else if (InEl < Width*2) return FindScalarElement(SVI->getOperand(1), InEl - Width); else return UndefValue::get(PTy->getElementType()); } // Otherwise, we don't know. return 0; } Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { // If vector val is undef, replace extract with scalar undef. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // If vector val is constant 0, replace extract with scalar 0. if (isa(EI.getOperand(0))) return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType())); if (ConstantVector *C = dyn_cast(EI.getOperand(0))) { // If vector val is constant with uniform operands, replace EI // with that operand Constant *op0 = C->getOperand(0); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != op0) { op0 = 0; break; } if (op0) return ReplaceInstUsesWith(EI, op0); } // If extracting a specified index from the vector, see if we can recursively // find a previously computed scalar that was inserted into the vector. if (ConstantInt *IdxC = dyn_cast(EI.getOperand(1))) { unsigned IndexVal = IdxC->getZExtValue(); unsigned VectorWidth = cast(EI.getOperand(0)->getType())->getNumElements(); // If this is extracting an invalid index, turn this into undef, to avoid // crashing the code below. if (IndexVal >= VectorWidth) return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); // This instruction only demands the single element from the input vector. // If the input vector has a single use, simplify it based on this use // property. if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) { uint64_t UndefElts; if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0), 1 << IndexVal, UndefElts)) { EI.setOperand(0, V); return &EI; } } if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal)) return ReplaceInstUsesWith(EI, Elt); // If the this extractelement is directly using a bitcast from a vector of // the same number of elements, see if we can find the source element from // it. In this case, we will end up needing to bitcast the scalars. if (BitCastInst *BCI = dyn_cast(EI.getOperand(0))) { if (const VectorType *VT = dyn_cast(BCI->getOperand(0)->getType())) if (VT->getNumElements() == VectorWidth) if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal)) return new BitCastInst(Elt, EI.getType()); } } if (Instruction *I = dyn_cast(EI.getOperand(0))) { if (I->hasOneUse()) { // Push extractelement into predecessor operation if legal and // profitable to do so if (BinaryOperator *BO = dyn_cast(I)) { bool isConstantElt = isa(EI.getOperand(1)); if (CheapToScalarize(BO, isConstantElt)) { ExtractElementInst *newEI0 = new ExtractElementInst(BO->getOperand(0), EI.getOperand(1), EI.getName()+".lhs"); ExtractElementInst *newEI1 = new ExtractElementInst(BO->getOperand(1), EI.getOperand(1), EI.getName()+".rhs"); InsertNewInstBefore(newEI0, EI); InsertNewInstBefore(newEI1, EI); return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1); } } else if (isa(I)) { Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0), PointerType::get(EI.getType()), EI); GetElementPtrInst *GEP = new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep"); InsertNewInstBefore(GEP, EI); return new LoadInst(GEP); } } if (InsertElementInst *IE = dyn_cast(I)) { // Extracting the inserted element? if (IE->getOperand(2) == EI.getOperand(1)) return ReplaceInstUsesWith(EI, IE->getOperand(1)); // If the inserted and extracted elements are constants, they must not // be the same value, extract from the pre-inserted value instead. if (isa(IE->getOperand(2)) && isa(EI.getOperand(1))) { AddUsesToWorkList(EI); EI.setOperand(0, IE->getOperand(0)); return &EI; } } else if (ShuffleVectorInst *SVI = dyn_cast(I)) { // If this is extracting an element from a shufflevector, figure out where // it came from and extract from the appropriate input element instead. if (ConstantInt *Elt = dyn_cast(EI.getOperand(1))) { unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()]; Value *Src; if (SrcIdx < SVI->getType()->getNumElements()) Src = SVI->getOperand(0); else if (SrcIdx < SVI->getType()->getNumElements()*2) { SrcIdx -= SVI->getType()->getNumElements(); Src = SVI->getOperand(1); } else { return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType())); } return new ExtractElementInst(Src, SrcIdx); } } } return 0; } /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns /// elements from either LHS or RHS, return the shuffle mask and true. /// Otherwise, return false. static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS, std::vector &Mask) { assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() && "Invalid CollectSingleShuffleElements"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); return true; } else if (V == LHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); return true; } else if (V == RHS) { for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts)); return true; } else if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (!isa(IdxOp)) return false; unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (isa(ScalarOp)) { // inserting undef into vector. // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted undef. Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty); return true; } } else if (ExtractElementInst *EI = dyn_cast(ScalarOp)){ if (isa(EI->getOperand(1)) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); // This must be extracting from either LHS or RHS. if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) { // Okay, we can handle this if the vector we are insertinting into is // transitively ok. if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) { // If so, update the mask to reflect the inserted value. if (EI->getOperand(0) == LHS) { Mask[InsertedIdx & (NumElts-1)] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); } else { assert(EI->getOperand(0) == RHS); Mask[InsertedIdx & (NumElts-1)] = ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts); } return true; } } } } } // TODO: Handle shufflevector here! return false; } /// CollectShuffleElements - We are building a shuffle of V, using RHS as the /// RHS of the shuffle instruction, if it is not null. Return a shuffle mask /// that computes V and the LHS value of the shuffle. static Value *CollectShuffleElements(Value *V, std::vector &Mask, Value *&RHS) { assert(isa(V->getType()) && (RHS == 0 || V->getType() == RHS->getType()) && "Invalid shuffle!"); unsigned NumElts = cast(V->getType())->getNumElements(); if (isa(V)) { Mask.assign(NumElts, UndefValue::get(Type::Int32Ty)); return V; } else if (isa(V)) { Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0)); return V; } else if (InsertElementInst *IEI = dyn_cast(V)) { // If this is an insert of an extract from some other vector, include it. Value *VecOp = IEI->getOperand(0); Value *ScalarOp = IEI->getOperand(1); Value *IdxOp = IEI->getOperand(2); if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == V->getType()) { unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); // Either the extracted from or inserted into vector must be RHSVec, // otherwise we'd end up with a shuffle of three inputs. if (EI->getOperand(0) == RHS || RHS == 0) { RHS = EI->getOperand(0); Value *V = CollectShuffleElements(VecOp, Mask, RHS); Mask[InsertedIdx & (NumElts-1)] = ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx); return V; } if (VecOp == RHS) { Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS); // Everything but the extracted element is replaced with the RHS. for (unsigned i = 0; i != NumElts; ++i) { if (i != InsertedIdx) Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i); } return V; } // If this insertelement is a chain that comes from exactly these two // vectors, return the vector and the effective shuffle. if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask)) return EI->getOperand(0); } } } // TODO: Handle shufflevector here! // Otherwise, can't do anything fancy. Return an identity vector. for (unsigned i = 0; i != NumElts; ++i) Mask.push_back(ConstantInt::get(Type::Int32Ty, i)); return V; } Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) { Value *VecOp = IE.getOperand(0); Value *ScalarOp = IE.getOperand(1); Value *IdxOp = IE.getOperand(2); // Inserting an undef or into an undefined place, remove this. if (isa(ScalarOp) || isa(IdxOp)) ReplaceInstUsesWith(IE, VecOp); // If the inserted element was extracted from some other vector, and if the // indexes are constant, try to turn this into a shufflevector operation. if (ExtractElementInst *EI = dyn_cast(ScalarOp)) { if (isa(EI->getOperand(1)) && isa(IdxOp) && EI->getOperand(0)->getType() == IE.getType()) { unsigned NumVectorElts = IE.getType()->getNumElements(); unsigned ExtractedIdx = cast(EI->getOperand(1))->getZExtValue(); unsigned InsertedIdx = cast(IdxOp)->getZExtValue(); if (ExtractedIdx >= NumVectorElts) // Out of range extract. return ReplaceInstUsesWith(IE, VecOp); if (InsertedIdx >= NumVectorElts) // Out of range insert. return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType())); // If we are extracting a value from a vector, then inserting it right // back into the same place, just use the input vector. if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx) return ReplaceInstUsesWith(IE, VecOp); // We could theoretically do this for ANY input. However, doing so could // turn chains of insertelement instructions into a chain of shufflevector // instructions, and right now we do not merge shufflevectors. As such, // only do this in a situation where it is clear that there is benefit. if (isa(VecOp) || isa(VecOp)) { // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of // the values of VecOp, except then one read from EIOp0. // Build a new shuffle mask. std::vector Mask; if (isa(VecOp)) Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty)); else { assert(isa(VecOp) && "Unknown thing"); Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty, NumVectorElts)); } Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx); return new ShuffleVectorInst(EI->getOperand(0), VecOp, ConstantVector::get(Mask)); } // If this insertelement isn't used by some other insertelement, turn it // (and any insertelements it points to), into one big shuffle. if (!IE.hasOneUse() || !isa(IE.use_back())) { std::vector Mask; Value *RHS = 0; Value *LHS = CollectShuffleElements(&IE, Mask, RHS); if (RHS == 0) RHS = UndefValue::get(LHS->getType()); // We now have a shuffle of LHS, RHS, Mask. return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask)); } } } return 0; } Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) { Value *LHS = SVI.getOperand(0); Value *RHS = SVI.getOperand(1); std::vector Mask = getShuffleMask(&SVI); bool MadeChange = false; // Undefined shuffle mask -> undefined value. if (isa(SVI.getOperand(2))) return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType())); // If we have shuffle(x, undef, mask) and any elements of mask refer to // the undef, change them to undefs. if (isa(SVI.getOperand(1))) { // Scan to see if there are any references to the RHS. If so, replace them // with undef element refs and set MadeChange to true. for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] >= e && Mask[i] != 2*e) { Mask[i] = 2*e; MadeChange = true; } } if (MadeChange) { // Remap any references to RHS to use LHS. std::vector Elts; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] == 2*e) Elts.push_back(UndefValue::get(Type::Int32Ty)); else Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); } SVI.setOperand(2, ConstantVector::get(Elts)); } } // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask') // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask'). if (LHS == RHS || isa(LHS)) { if (isa(LHS) && LHS == RHS) { // shuffle(undef,undef,mask) -> undef. return ReplaceInstUsesWith(SVI, LHS); } // Remap any references to RHS to use LHS. std::vector Elts; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] >= 2*e) Elts.push_back(UndefValue::get(Type::Int32Ty)); else { if ((Mask[i] >= e && isa(RHS)) || (Mask[i] < e && isa(LHS))) Mask[i] = 2*e; // Turn into undef. else Mask[i] &= (e-1); // Force to LHS. Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i])); } } SVI.setOperand(0, SVI.getOperand(1)); SVI.setOperand(1, UndefValue::get(RHS->getType())); SVI.setOperand(2, ConstantVector::get(Elts)); LHS = SVI.getOperand(0); RHS = SVI.getOperand(1); MadeChange = true; } // Analyze the shuffle, are the LHS or RHS and identity shuffles? bool isLHSID = true, isRHSID = true; for (unsigned i = 0, e = Mask.size(); i != e; ++i) { if (Mask[i] >= e*2) continue; // Ignore undef values. // Is this an identity shuffle of the LHS value? isLHSID &= (Mask[i] == i); // Is this an identity shuffle of the RHS value? isRHSID &= (Mask[i]-e == i); } // Eliminate identity shuffles. if (isLHSID) return ReplaceInstUsesWith(SVI, LHS); if (isRHSID) return ReplaceInstUsesWith(SVI, RHS); // If the LHS is a shufflevector itself, see if we can combine it with this // one without producing an unusual shuffle. Here we are really conservative: // we are absolutely afraid of producing a shuffle mask not in the input // program, because the code gen may not be smart enough to turn a merged // shuffle into two specific shuffles: it may produce worse code. As such, // we only merge two shuffles if the result is one of the two input shuffle // masks. In this case, merging the shuffles just removes one instruction, // which we know is safe. This is good for things like turning: // (splat(splat)) -> splat. if (ShuffleVectorInst *LHSSVI = dyn_cast(LHS)) { if (isa(RHS)) { std::vector LHSMask = getShuffleMask(LHSSVI); std::vector NewMask; for (unsigned i = 0, e = Mask.size(); i != e; ++i) if (Mask[i] >= 2*e) NewMask.push_back(2*e); else NewMask.push_back(LHSMask[Mask[i]]); // If the result mask is equal to the src shuffle or this shuffle mask, do // the replacement. if (NewMask == LHSMask || NewMask == Mask) { std::vector Elts; for (unsigned i = 0, e = NewMask.size(); i != e; ++i) { if (NewMask[i] >= e*2) { Elts.push_back(UndefValue::get(Type::Int32Ty)); } else { Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i])); } } return new ShuffleVectorInst(LHSSVI->getOperand(0), LHSSVI->getOperand(1), ConstantVector::get(Elts)); } } } return MadeChange ? &SVI : 0; } /// TryToSinkInstruction - Try to move the specified instruction from its /// current block into the beginning of DestBlock, which can only happen if it's /// safe to move the instruction past all of the instructions between it and the /// end of its block. static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { assert(I->hasOneUse() && "Invariants didn't hold!"); // Cannot move control-flow-involving, volatile loads, vaarg, etc. if (isa(I) || I->mayWriteToMemory()) return false; // Do not sink alloca instructions out of the entry block. if (isa(I) && I->getParent() == &DestBlock->getParent()->getEntryBlock()) return false; // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (LoadInst *LI = dyn_cast(I)) { for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } BasicBlock::iterator InsertPos = DestBlock->begin(); while (isa(InsertPos)) ++InsertPos; I->moveBefore(InsertPos); ++NumSunkInst; return true; } /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding /// all reachable code to the worklist. /// /// This has a couple of tricks to make the code faster and more powerful. In /// particular, we constant fold and DCE instructions as we go, to avoid adding /// them to the worklist (this significantly speeds up instcombine on code where /// many instructions are dead or constant). Additionally, if we find a branch /// whose condition is a known constant, we only visit the reachable successors. /// static void AddReachableCodeToWorklist(BasicBlock *BB, SmallPtrSet &Visited, InstCombiner &IC, const TargetData *TD) { std::vector Worklist; Worklist.push_back(BB); while (!Worklist.empty()) { BB = Worklist.back(); Worklist.pop_back(); // We have now visited this block! If we've already been here, ignore it. if (!Visited.insert(BB)) continue; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *Inst = BBI++; // DCE instruction if trivially dead. if (isInstructionTriviallyDead(Inst)) { ++NumDeadInst; DOUT << "IC: DCE: " << *Inst; Inst->eraseFromParent(); continue; } // ConstantProp instruction if trivially constant. if (Constant *C = ConstantFoldInstruction(Inst, TD)) { DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst; Inst->replaceAllUsesWith(C); ++NumConstProp; Inst->eraseFromParent(); continue; } IC.AddToWorkList(Inst); } // Recursively visit successors. If this is a branch or switch on a // constant, only visit the reachable successor. TerminatorInst *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isConditional() && isa(BI->getCondition())) { bool CondVal = cast(BI->getCondition())->getZExtValue(); Worklist.push_back(BI->getSuccessor(!CondVal)); continue; } } else if (SwitchInst *SI = dyn_cast(TI)) { if (ConstantInt *Cond = dyn_cast(SI->getCondition())) { // See if this is an explicit destination. for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) if (SI->getCaseValue(i) == Cond) { Worklist.push_back(SI->getSuccessor(i)); continue; } // Otherwise it is the default destination. Worklist.push_back(SI->getSuccessor(0)); continue; } } for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) Worklist.push_back(TI->getSuccessor(i)); } } bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { bool Changed = false; TD = &getAnalysis(); DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " << F.getNameStr() << "\n"); { // Do a depth-first traversal of the function, populate the worklist with // the reachable instructions. Ignore blocks that are not reachable. Keep // track of which blocks we visit. SmallPtrSet Visited; AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); // Do a quick scan over the function. If we find any blocks that are // unreachable, remove any instructions inside of them. This prevents // the instcombine code from having to deal with some bad special cases. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (!Visited.count(BB)) { Instruction *Term = BB->getTerminator(); while (Term != BB->begin()) { // Remove instrs bottom-up BasicBlock::iterator I = Term; --I; DOUT << "IC: DCE: " << *I; ++NumDeadInst; if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } } } while (!Worklist.empty()) { Instruction *I = RemoveOneFromWorkList(); if (I == 0) continue; // skip null values. // Check to see if we can DCE the instruction. if (isInstructionTriviallyDead(I)) { // Add operands to the worklist. if (I->getNumOperands() < 4) AddUsesToWorkList(*I); ++NumDeadInst; DOUT << "IC: DCE: " << *I; I->eraseFromParent(); RemoveFromWorkList(I); continue; } // Instruction isn't dead, see if we can constant propagate it. if (Constant *C = ConstantFoldInstruction(I, TD)) { DOUT << "IC: ConstFold to: " << *C << " from: " << *I; // Add operands to the worklist. AddUsesToWorkList(*I); ReplaceInstUsesWith(*I, C); ++NumConstProp; I->eraseFromParent(); RemoveFromWorkList(I); continue; } // See if we can trivially sink this instruction to a successor basic block. if (I->hasOneUse()) { BasicBlock *BB = I->getParent(); BasicBlock *UserParent = cast(I->use_back())->getParent(); if (UserParent != BB) { bool UserIsSuccessor = false; // See if the user is one of our successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) if (*SI == UserParent) { UserIsSuccessor = true; break; } // If the user is one of our immediate successors, and if that successor // only has us as a predecessors (we'd have to split the critical edge // otherwise), we can keep going. if (UserIsSuccessor && !isa(I->use_back()) && next(pred_begin(UserParent)) == pred_end(UserParent)) // Okay, the CFG is simple enough, try to sink this instruction. Changed |= TryToSinkInstruction(I, UserParent); } } // Now that we have an instruction, try combining it to simplify it... #ifndef NDEBUG std::string OrigI; #endif DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str();); if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { DOUT << "IC: Old = " << *I << " New = " << *Result; // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Push the new instruction and any users onto the worklist. AddToWorkList(Result); AddUsersToWorkList(*Result); // Move the name to the new instruction first. Result->takeName(I); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I; if (!isa(Result)) // If combining a PHI, don't insert while (isa(InsertPos)) // middle of a block of PHIs. ++InsertPos; InstParent->getInstList().insert(InsertPos, Result); // Make sure that we reprocess all operands now that we reduced their // use counts. AddUsesToWorkList(*I); // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. RemoveFromWorkList(I); // Erase the old instruction. InstParent->getInstList().erase(I); } else { #ifndef NDEBUG DOUT << "IC: Mod = " << OrigI << " New = " << *I; #endif // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I)) { // Make sure we process all operands now that we are reducing their // use counts. AddUsesToWorkList(*I); // Instructions may end up in the worklist more than once. Erase all // occurrences of this instruction. RemoveFromWorkList(I); I->eraseFromParent(); } else { AddToWorkList(I); AddUsersToWorkList(*I); } } Changed = true; } } assert(WorklistMap.empty() && "Worklist empty, but map not?"); // Do an explicit clear, this shrinks the map if needed. WorklistMap.clear(); return Changed; } bool InstCombiner::runOnFunction(Function &F) { MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); bool EverMadeChange = false; // Iterate while there is work to do. unsigned Iteration = 0; while (DoOneIteration(F, Iteration++)) EverMadeChange = true; return EverMadeChange; } FunctionPass *llvm::createInstructionCombiningPass() { return new InstCombiner(); }