//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass implements a simple loop unroller. It works best when loops have // been canonicalized by the -indvars pass, allowing it to determine the trip // counts of loops easily. // // This pass is currently extremely limited. It only currently only unrolls // single basic block loops that execute a constant number of times. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; namespace { Statistic<> NumUnrolled("loop-unroll", "Number of loops completely unrolled"); cl::opt UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden, cl::desc("The cut-off point for loop unrolling")); class LoopUnroll : public FunctionPass { LoopInfo *LI; // The current loop information public: virtual bool runOnFunction(Function &F); bool visitLoop(Loop *L); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG... /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequiredID(LoopSimplifyID); AU.addRequired(); AU.addPreserved(); } }; RegisterOpt X("loop-unroll", "Unroll loops"); } FunctionPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); } bool LoopUnroll::runOnFunction(Function &F) { bool Changed = false; LI = &getAnalysis(); // Transform all the top-level loops. Copy the loop list so that the child // can update the loop tree if it needs to delete the loop. std::vector SubLoops(LI->begin(), LI->end()); for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) Changed |= visitLoop(SubLoops[i]); return Changed; } /// ApproximateLoopSize - Approximate the size of the loop after it has been /// unrolled. static unsigned ApproximateLoopSize(const Loop *L) { unsigned Size = 0; for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { BasicBlock *BB = L->getBlocks()[i]; Instruction *Term = BB->getTerminator(); for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (isa(I) && BB == L->getHeader()) { // Ignore PHI nodes in the header. } else if (I->hasOneUse() && I->use_back() == Term) { // Ignore instructions only used by the loop terminator. } else { ++Size; } // TODO: Ignore expressions derived from PHI and constants if inval of phi // is a constant, or if operation is associative. This will get induction // variables. } } return Size; } // RemapInstruction - Convert the instruction operands from referencing the // current values into those specified by ValueMap. // static inline void RemapInstruction(Instruction *I, std::map &ValueMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); std::map::iterator It = ValueMap.find(Op); if (It != ValueMap.end()) Op = It->second; I->setOperand(op, Op); } } bool LoopUnroll::visitLoop(Loop *L) { bool Changed = false; // Recurse through all subloops before we process this loop. Copy the loop // list so that the child can update the loop tree if it needs to delete the // loop. std::vector SubLoops(L->begin(), L->end()); for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) Changed |= visitLoop(SubLoops[i]); // We only handle single basic block loops right now. if (L->getBlocks().size() != 1) return Changed; BasicBlock *BB = L->getHeader(); BranchInst *BI = dyn_cast(BB->getTerminator()); if (BI == 0) return Changed; // Must end in a conditional branch ConstantInt *TripCountC = dyn_cast_or_null(L->getTripCount()); if (!TripCountC) return Changed; // Must have constant trip count! unsigned TripCount = TripCountC->getRawValue(); if (TripCount != TripCountC->getRawValue() || TripCount == 0) return Changed; // More than 2^32 iterations??? unsigned LoopSize = ApproximateLoopSize(L); DEBUG(std::cerr << "Loop Unroll: F[" << BB->getParent()->getName() << "] Loop %" << BB->getName() << " Loop Size = " << LoopSize << " Trip Count = " << TripCount << " - "); uint64_t Size = (uint64_t)LoopSize*(uint64_t)TripCount; if (Size > UnrollThreshold) { DEBUG(std::cerr << "TOO LARGE: " << Size << ">" << UnrollThreshold << "\n"); return Changed; } DEBUG(std::cerr << "UNROLLING!\n"); BasicBlock *LoopExit = BI->getSuccessor(L->contains(BI->getSuccessor(0))); // Create a new basic block to temporarily hold all of the cloned code. BasicBlock *NewBlock = new BasicBlock(); // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. std::map LastValueMap; std::vector OrigPHINode; for (BasicBlock::iterator I = BB->begin(); PHINode *PN = dyn_cast(I); ++I) { OrigPHINode.push_back(PN); if (Instruction *I =dyn_cast(PN->getIncomingValueForBlock(BB))) if (I->getParent() == BB) LastValueMap[I] = I; } // Remove the exit branch from the loop BB->getInstList().erase(BI); assert(TripCount != 0 && "Trip count of 0 is impossible!"); for (unsigned It = 1; It != TripCount; ++It) { char SuffixBuffer[100]; sprintf(SuffixBuffer, ".%d", It); std::map ValueMap; BasicBlock *New = CloneBasicBlock(BB, ValueMap, SuffixBuffer); // Loop over all of the PHI nodes in the block, changing them to use the // incoming values from the previous block. for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *NewPHI = cast(ValueMap[OrigPHINode[i]]); Value *InVal = NewPHI->getIncomingValueForBlock(BB); if (Instruction *InValI = dyn_cast(InVal)) if (InValI->getParent() == BB) InVal = LastValueMap[InValI]; ValueMap[OrigPHINode[i]] = InVal; New->getInstList().erase(NewPHI); } for (BasicBlock::iterator I = New->begin(), E = New->end(); I != E; ++I) RemapInstruction(I, ValueMap); // Now that all of the instructions are remapped, splice them into the end // of the NewBlock. NewBlock->getInstList().splice(NewBlock->end(), New->getInstList()); delete New; // LastValue map now contains values from this iteration. std::swap(LastValueMap, ValueMap); } // If there was more than one iteration, replace any uses of values computed // in the loop with values computed during the last iteration of the loop. if (TripCount != 1) { std::set Users; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) Users.insert(I->use_begin(), I->use_end()); // We don't want to reprocess entries with PHI nodes in them. For this // reason, we look at each operand of each user exactly once, performing the // stubstitution exactly once. for (std::set::iterator UI = Users.begin(), E = Users.end(); UI != E; ++UI) { Instruction *I = cast(*UI); if (I->getParent() != BB && I->getParent() != NewBlock) RemapInstruction(I, LastValueMap); } } // Now that we cloned the block as many times as we needed, stitch the new // code into the original block and delete the temporary block. BB->getInstList().splice(BB->end(), NewBlock->getInstList()); delete NewBlock; // Now loop over the PHI nodes in the original block, setting them to their // incoming values. BasicBlock *Preheader = L->getLoopPreheader(); for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *PN = OrigPHINode[i]; PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); BB->getInstList().erase(PN); } // Finally, add an unconditional branch to the block to continue into the exit // block. new BranchInst(LoopExit, BB); // At this point, the code is well formed. We now do a quick sweep over the // inserted code, doing constant propagation and dead code elimination as we // go. for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { Instruction *Inst = I++; if (isInstructionTriviallyDead(Inst)) BB->getInstList().erase(Inst); else if (Constant *C = ConstantFoldInstruction(Inst)) { Inst->replaceAllUsesWith(C); BB->getInstList().erase(Inst); } } // Update the loop information for this loop. Loop *Parent = L->getParentLoop(); // Move all of the basic blocks in the loop into the parent loop. LI->changeLoopFor(BB, Parent); // Remove the loop from the parent. if (Parent) delete Parent->removeChildLoop(std::find(Parent->begin(), Parent->end(),L)); else delete LI->removeLoop(std::find(LI->begin(), LI->end(), L)); // FIXME: Should update dominator analyses // Now that everything is up-to-date that will be, we fold the loop block into // the preheader and exit block, updating our analyses as we go. LoopExit->getInstList().splice(LoopExit->begin(), BB->getInstList(), BB->getInstList().begin(), prior(BB->getInstList().end())); LoopExit->getInstList().splice(LoopExit->begin(), Preheader->getInstList(), Preheader->getInstList().begin(), prior(Preheader->getInstList().end())); // Make all other blocks in the program branch to LoopExit now instead of // Preheader. Preheader->replaceAllUsesWith(LoopExit); // Remove BB and LoopExit from our analyses. LI->removeBlock(Preheader); LI->removeBlock(BB); // If the preheader was the entry block of this function, move the exit block // to be the new entry of the loop. Function *F = LoopExit->getParent(); if (Preheader == &F->front()) F->getBasicBlockList().splice(F->begin(), F->getBasicBlockList(), LoopExit); // Actually delete the blocks now. F->getBasicBlockList().erase(Preheader); F->getBasicBlockList().erase(BB); ++NumUnrolled; return true; }