//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Rewrite an existing set of gc.statepoints such that they make potential // relocations performed by the garbage collector explicit in the IR. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/Analysis/CFG.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #define DEBUG_TYPE "rewrite-statepoints-for-gc" using namespace llvm; // Print tracing output static cl::opt TraceLSP("trace-rewrite-statepoints", cl::Hidden, cl::init(false)); // Print the liveset found at the insert location static cl::opt PrintLiveSet("spp-print-liveset", cl::Hidden, cl::init(false)); static cl::opt PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, cl::init(false)); // Print out the base pointers for debugging static cl::opt PrintBasePointers("spp-print-base-pointers", cl::Hidden, cl::init(false)); #ifdef XDEBUG static bool ClobberNonLive = true; #else static bool ClobberNonLive = false; #endif static cl::opt ClobberNonLiveOverride("rs4gc-clobber-non-live", cl::location(ClobberNonLive), cl::Hidden); namespace { struct RewriteStatepointsForGC : public FunctionPass { static char ID; // Pass identification, replacement for typeid RewriteStatepointsForGC() : FunctionPass(ID) { initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { // We add and rewrite a bunch of instructions, but don't really do much // else. We could in theory preserve a lot more analyses here. AU.addRequired(); } }; } // namespace char RewriteStatepointsForGC::ID = 0; FunctionPass *llvm::createRewriteStatepointsForGCPass() { return new RewriteStatepointsForGC(); } INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", "Make relocations explicit at statepoints", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", "Make relocations explicit at statepoints", false, false) namespace { struct GCPtrLivenessData { /// Values defined in this block. DenseMap> KillSet; /// Values used in this block (and thus live); does not included values /// killed within this block. DenseMap> LiveSet; /// Values live into this basic block (i.e. used by any /// instruction in this basic block or ones reachable from here) DenseMap> LiveIn; /// Values live out of this basic block (i.e. live into /// any successor block) DenseMap> LiveOut; }; // The type of the internal cache used inside the findBasePointers family // of functions. From the callers perspective, this is an opaque type and // should not be inspected. // // In the actual implementation this caches two relations: // - The base relation itself (i.e. this pointer is based on that one) // - The base defining value relation (i.e. before base_phi insertion) // Generally, after the execution of a full findBasePointer call, only the // base relation will remain. Internally, we add a mixture of the two // types, then update all the second type to the first type typedef DenseMap DefiningValueMapTy; typedef DenseSet StatepointLiveSetTy; struct PartiallyConstructedSafepointRecord { /// The set of values known to be live accross this safepoint StatepointLiveSetTy liveset; /// Mapping from live pointers to a base-defining-value DenseMap PointerToBase; /// The *new* gc.statepoint instruction itself. This produces the token /// that normal path gc.relocates and the gc.result are tied to. Instruction *StatepointToken; /// Instruction to which exceptional gc relocates are attached /// Makes it easier to iterate through them during relocationViaAlloca. Instruction *UnwindToken; }; } /// Compute the live-in set for every basic block in the function static void computeLiveInValues(DominatorTree &DT, Function &F, GCPtrLivenessData &Data); /// Given results from the dataflow liveness computation, find the set of live /// Values at a particular instruction. static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, StatepointLiveSetTy &out); // TODO: Once we can get to the GCStrategy, this becomes // Optional isGCManagedPointer(const Value *V) const override { static bool isGCPointerType(const Type *T) { if (const PointerType *PT = dyn_cast(T)) // For the sake of this example GC, we arbitrarily pick addrspace(1) as our // GC managed heap. We know that a pointer into this heap needs to be // updated and that no other pointer does. return (1 == PT->getAddressSpace()); return false; } // Return true if this type is one which a) is a gc pointer or contains a GC // pointer and b) is of a type this code expects to encounter as a live value. // (The insertion code will assert that a type which matches (a) and not (b) // is not encountered.) static bool isHandledGCPointerType(Type *T) { // We fully support gc pointers if (isGCPointerType(T)) return true; // We partially support vectors of gc pointers. The code will assert if it // can't handle something. if (auto VT = dyn_cast(T)) if (isGCPointerType(VT->getElementType())) return true; return false; } #ifndef NDEBUG /// Returns true if this type contains a gc pointer whether we know how to /// handle that type or not. static bool containsGCPtrType(Type *Ty) { if (isGCPointerType(Ty)) return true; if (VectorType *VT = dyn_cast(Ty)) return isGCPointerType(VT->getScalarType()); if (ArrayType *AT = dyn_cast(Ty)) return containsGCPtrType(AT->getElementType()); if (StructType *ST = dyn_cast(Ty)) return std::any_of( ST->subtypes().begin(), ST->subtypes().end(), [](Type *SubType) { return containsGCPtrType(SubType); }); return false; } // Returns true if this is a type which a) is a gc pointer or contains a GC // pointer and b) is of a type which the code doesn't expect (i.e. first class // aggregates). Used to trip assertions. static bool isUnhandledGCPointerType(Type *Ty) { return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); } #endif static bool order_by_name(llvm::Value *a, llvm::Value *b) { if (a->hasName() && b->hasName()) { return -1 == a->getName().compare(b->getName()); } else if (a->hasName() && !b->hasName()) { return true; } else if (!a->hasName() && b->hasName()) { return false; } else { // Better than nothing, but not stable return a < b; } } // Conservatively identifies any definitions which might be live at the // given instruction. The analysis is performed immediately before the // given instruction. Values defined by that instruction are not considered // live. Values used by that instruction are considered live. static void analyzeParsePointLiveness( DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, const CallSite &CS, PartiallyConstructedSafepointRecord &result) { Instruction *inst = CS.getInstruction(); StatepointLiveSetTy liveset; findLiveSetAtInst(inst, OriginalLivenessData, liveset); if (PrintLiveSet) { // Note: This output is used by several of the test cases // The order of elemtns in a set is not stable, put them in a vec and sort // by name SmallVector temp; temp.insert(temp.end(), liveset.begin(), liveset.end()); std::sort(temp.begin(), temp.end(), order_by_name); errs() << "Live Variables:\n"; for (Value *V : temp) { errs() << " " << V->getName(); // no newline V->dump(); } } if (PrintLiveSetSize) { errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; errs() << "Number live values: " << liveset.size() << "\n"; } result.liveset = liveset; } /// If we can trivially determine that this vector contains only base pointers, /// return the base instruction. static Value *findBaseOfVector(Value *I) { assert(I->getType()->isVectorTy() && cast(I->getType())->getElementType()->isPointerTy() && "Illegal to ask for the base pointer of a non-pointer type"); // Each case parallels findBaseDefiningValue below, see that code for // detailed motivation. if (isa(I)) // An incoming argument to the function is a base pointer return I; // We shouldn't see the address of a global as a vector value? assert(!isa(I) && "unexpected global variable found in base of vector"); // inlining could possibly introduce phi node that contains // undef if callee has multiple returns if (isa(I)) // utterly meaningless, but useful for dealing with partially optimized // code. return I; // Due to inheritance, this must be _after_ the global variable and undef // checks if (Constant *Con = dyn_cast(I)) { assert(!isa(I) && !isa(I) && "order of checks wrong!"); assert(Con->isNullValue() && "null is the only case which makes sense"); return Con; } if (isa(I)) return I; // Note: This code is currently rather incomplete. We are essentially only // handling cases where the vector element is trivially a base pointer. We // need to update the entire base pointer construction algorithm to know how // to track vector elements and potentially scalarize, but the case which // would motivate the work hasn't shown up in real workloads yet. llvm_unreachable("no base found for vector element"); } /// Helper function for findBasePointer - Will return a value which either a) /// defines the base pointer for the input or b) blocks the simple search /// (i.e. a PHI or Select of two derived pointers) static Value *findBaseDefiningValue(Value *I) { assert(I->getType()->isPointerTy() && "Illegal to ask for the base pointer of a non-pointer type"); // This case is a bit of a hack - it only handles extracts from vectors which // trivially contain only base pointers. See note inside the function for // how to improve this. if (auto *EEI = dyn_cast(I)) { Value *VectorOperand = EEI->getVectorOperand(); Value *VectorBase = findBaseOfVector(VectorOperand); (void)VectorBase; assert(VectorBase && "extract element not known to be a trivial base"); return EEI; } if (isa(I)) // An incoming argument to the function is a base pointer // We should have never reached here if this argument isn't an gc value return I; if (isa(I)) // base case return I; // inlining could possibly introduce phi node that contains // undef if callee has multiple returns if (isa(I)) // utterly meaningless, but useful for dealing with // partially optimized code. return I; // Due to inheritance, this must be _after_ the global variable and undef // checks if (Constant *Con = dyn_cast(I)) { assert(!isa(I) && !isa(I) && "order of checks wrong!"); // Note: Finding a constant base for something marked for relocation // doesn't really make sense. The most likely case is either a) some // screwed up the address space usage or b) your validating against // compiled C++ code w/o the proper separation. The only real exception // is a null pointer. You could have generic code written to index of // off a potentially null value and have proven it null. We also use // null pointers in dead paths of relocation phis (which we might later // want to find a base pointer for). assert(isa(Con) && "null is the only case which makes sense"); return Con; } if (CastInst *CI = dyn_cast(I)) { Value *Def = CI->stripPointerCasts(); // If we find a cast instruction here, it means we've found a cast which is // not simply a pointer cast (i.e. an inttoptr). We don't know how to // handle int->ptr conversion. assert(!isa(Def) && "shouldn't find another cast here"); return findBaseDefiningValue(Def); } if (isa(I)) return I; // The value loaded is an gc base itself if (GetElementPtrInst *GEP = dyn_cast(I)) // The base of this GEP is the base return findBaseDefiningValue(GEP->getPointerOperand()); if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { case Intrinsic::experimental_gc_result_ptr: default: // fall through to general call handling break; case Intrinsic::experimental_gc_statepoint: case Intrinsic::experimental_gc_result_float: case Intrinsic::experimental_gc_result_int: llvm_unreachable("these don't produce pointers"); case Intrinsic::experimental_gc_relocate: { // Rerunning safepoint insertion after safepoints are already // inserted is not supported. It could probably be made to work, // but why are you doing this? There's no good reason. llvm_unreachable("repeat safepoint insertion is not supported"); } case Intrinsic::gcroot: // Currently, this mechanism hasn't been extended to work with gcroot. // There's no reason it couldn't be, but I haven't thought about the // implications much. llvm_unreachable( "interaction with the gcroot mechanism is not supported"); } } // We assume that functions in the source language only return base // pointers. This should probably be generalized via attributes to support // both source language and internal functions. if (isa(I) || isa(I)) return I; // I have absolutely no idea how to implement this part yet. It's not // neccessarily hard, I just haven't really looked at it yet. assert(!isa(I) && "Landing Pad is unimplemented"); if (isa(I)) // A CAS is effectively a atomic store and load combined under a // predicate. From the perspective of base pointers, we just treat it // like a load. return I; assert(!isa(I) && "Xchg handled above, all others are " "binary ops which don't apply to pointers"); // The aggregate ops. Aggregates can either be in the heap or on the // stack, but in either case, this is simply a field load. As a result, // this is a defining definition of the base just like a load is. if (isa(I)) return I; // We should never see an insert vector since that would require we be // tracing back a struct value not a pointer value. assert(!isa(I) && "Base pointer for a struct is meaningless"); // The last two cases here don't return a base pointer. Instead, they // return a value which dynamically selects from amoung several base // derived pointers (each with it's own base potentially). It's the job of // the caller to resolve these. assert((isa(I) || isa(I)) && "missing instruction case in findBaseDefiningValing"); return I; } /// Returns the base defining value for this value. static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { Value *&Cached = Cache[I]; if (!Cached) { Cached = findBaseDefiningValue(I); } assert(Cache[I] != nullptr); if (TraceLSP) { dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() << "\n"; } return Cached; } /// Return a base pointer for this value if known. Otherwise, return it's /// base defining value. static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { Value *Def = findBaseDefiningValueCached(I, Cache); auto Found = Cache.find(Def); if (Found != Cache.end()) { // Either a base-of relation, or a self reference. Caller must check. return Found->second; } // Only a BDV available return Def; } /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, /// is it known to be a base pointer? Or do we need to continue searching. static bool isKnownBaseResult(Value *V) { if (!isa(V) && !isa(V)) { // no recursion possible return true; } if (isa(V) && cast(V)->getMetadata("is_base_value")) { // This is a previously inserted base phi or select. We know // that this is a base value. return true; } // We need to keep searching return false; } // TODO: find a better name for this namespace { class PhiState { public: enum Status { Unknown, Base, Conflict }; PhiState(Status s, Value *b = nullptr) : status(s), base(b) { assert(status != Base || b); } PhiState(Value *b) : status(Base), base(b) {} PhiState() : status(Unknown), base(nullptr) {} Status getStatus() const { return status; } Value *getBase() const { return base; } bool isBase() const { return getStatus() == Base; } bool isUnknown() const { return getStatus() == Unknown; } bool isConflict() const { return getStatus() == Conflict; } bool operator==(const PhiState &other) const { return base == other.base && status == other.status; } bool operator!=(const PhiState &other) const { return !(*this == other); } void dump() { errs() << status << " (" << base << " - " << (base ? base->getName() : "nullptr") << "): "; } private: Status status; Value *base; // non null only if status == base }; typedef DenseMap ConflictStateMapTy; // Values of type PhiState form a lattice, and this is a helper // class that implementes the meet operation. The meat of the meet // operation is implemented in MeetPhiStates::pureMeet class MeetPhiStates { public: // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. explicit MeetPhiStates(const ConflictStateMapTy &phiStates) : phiStates(phiStates) {} // Destructively meet the current result with the base V. V can // either be a merge instruction (SelectInst / PHINode), in which // case its status is looked up in the phiStates map; or a regular // SSA value, in which case it is assumed to be a base. void meetWith(Value *V) { PhiState otherState = getStateForBDV(V); assert((MeetPhiStates::pureMeet(otherState, currentResult) == MeetPhiStates::pureMeet(currentResult, otherState)) && "math is wrong: meet does not commute!"); currentResult = MeetPhiStates::pureMeet(otherState, currentResult); } PhiState getResult() const { return currentResult; } private: const ConflictStateMapTy &phiStates; PhiState currentResult; /// Return a phi state for a base defining value. We'll generate a new /// base state for known bases and expect to find a cached state otherwise PhiState getStateForBDV(Value *baseValue) { if (isKnownBaseResult(baseValue)) { return PhiState(baseValue); } else { return lookupFromMap(baseValue); } } PhiState lookupFromMap(Value *V) { auto I = phiStates.find(V); assert(I != phiStates.end() && "lookup failed!"); return I->second; } static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { switch (stateA.getStatus()) { case PhiState::Unknown: return stateB; case PhiState::Base: assert(stateA.getBase() && "can't be null"); if (stateB.isUnknown()) return stateA; if (stateB.isBase()) { if (stateA.getBase() == stateB.getBase()) { assert(stateA == stateB && "equality broken!"); return stateA; } return PhiState(PhiState::Conflict); } assert(stateB.isConflict() && "only three states!"); return PhiState(PhiState::Conflict); case PhiState::Conflict: return stateA; } llvm_unreachable("only three states!"); } }; } /// For a given value or instruction, figure out what base ptr it's derived /// from. For gc objects, this is simply itself. On success, returns a value /// which is the base pointer. (This is reliable and can be used for /// relocation.) On failure, returns nullptr. static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) { Value *def = findBaseOrBDV(I, cache); if (isKnownBaseResult(def)) { return def; } // Here's the rough algorithm: // - For every SSA value, construct a mapping to either an actual base // pointer or a PHI which obscures the base pointer. // - Construct a mapping from PHI to unknown TOP state. Use an // optimistic algorithm to propagate base pointer information. Lattice // looks like: // UNKNOWN // b1 b2 b3 b4 // CONFLICT // When algorithm terminates, all PHIs will either have a single concrete // base or be in a conflict state. // - For every conflict, insert a dummy PHI node without arguments. Add // these to the base[Instruction] = BasePtr mapping. For every // non-conflict, add the actual base. // - For every conflict, add arguments for the base[a] of each input // arguments. // // Note: A simpler form of this would be to add the conflict form of all // PHIs without running the optimistic algorithm. This would be // analougous to pessimistic data flow and would likely lead to an // overall worse solution. ConflictStateMapTy states; states[def] = PhiState(); // Recursively fill in all phis & selects reachable from the initial one // for which we don't already know a definite base value for // TODO: This should be rewritten with a worklist bool done = false; while (!done) { done = true; // Since we're adding elements to 'states' as we run, we can't keep // iterators into the set. SmallVector Keys; Keys.reserve(states.size()); for (auto Pair : states) { Value *V = Pair.first; Keys.push_back(V); } for (Value *v : Keys) { assert(!isKnownBaseResult(v) && "why did it get added?"); if (PHINode *phi = dyn_cast(v)) { assert(phi->getNumIncomingValues() > 0 && "zero input phis are illegal"); for (Value *InVal : phi->incoming_values()) { Value *local = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } } } else if (SelectInst *sel = dyn_cast(v)) { Value *local = findBaseOrBDV(sel->getTrueValue(), cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } local = findBaseOrBDV(sel->getFalseValue(), cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } } } } if (TraceLSP) { errs() << "States after initialization:\n"; for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; state.dump(); v->dump(); } } // TODO: come back and revisit the state transitions around inputs which // have reached conflict state. The current version seems too conservative. bool progress = true; while (progress) { #ifndef NDEBUG size_t oldSize = states.size(); #endif progress = false; // We're only changing keys in this loop, thus safe to keep iterators for (auto Pair : states) { MeetPhiStates calculateMeet(states); Value *v = Pair.first; assert(!isKnownBaseResult(v) && "why did it get added?"); if (SelectInst *select = dyn_cast(v)) { calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); } else for (Value *Val : cast(v)->incoming_values()) calculateMeet.meetWith(findBaseOrBDV(Val, cache)); PhiState oldState = states[v]; PhiState newState = calculateMeet.getResult(); if (oldState != newState) { progress = true; states[v] = newState; } } assert(oldSize <= states.size()); assert(oldSize == states.size() || progress); } if (TraceLSP) { errs() << "States after meet iteration:\n"; for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; state.dump(); v->dump(); } } // Insert Phis for all conflicts // We want to keep naming deterministic in the loop that follows, so // sort the keys before iteration. This is useful in allowing us to // write stable tests. Note that there is no invalidation issue here. SmallVector Keys; Keys.reserve(states.size()); for (auto Pair : states) { Value *V = Pair.first; Keys.push_back(V); } std::sort(Keys.begin(), Keys.end(), order_by_name); // TODO: adjust naming patterns to avoid this order of iteration dependency for (Value *V : Keys) { Instruction *v = cast(V); PhiState state = states[V]; assert(!isKnownBaseResult(v) && "why did it get added?"); assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); if (!state.isConflict()) continue; if (isa(v)) { int num_preds = std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); assert(num_preds > 0 && "how did we reach here"); PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); // Add metadata marking this as a base value auto *const_1 = ConstantInt::get( Type::getInt32Ty( v->getParent()->getParent()->getParent()->getContext()), 1); auto MDConst = ConstantAsMetadata::get(const_1); MDNode *md = MDNode::get( v->getParent()->getParent()->getParent()->getContext(), MDConst); phi->setMetadata("is_base_value", md); states[v] = PhiState(PhiState::Conflict, phi); } else { SelectInst *sel = cast(v); // The undef will be replaced later UndefValue *undef = UndefValue::get(sel->getType()); SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, undef, "base_select", sel); // Add metadata marking this as a base value auto *const_1 = ConstantInt::get( Type::getInt32Ty( v->getParent()->getParent()->getParent()->getContext()), 1); auto MDConst = ConstantAsMetadata::get(const_1); MDNode *md = MDNode::get( v->getParent()->getParent()->getParent()->getContext(), MDConst); basesel->setMetadata("is_base_value", md); states[v] = PhiState(PhiState::Conflict, basesel); } } // Fixup all the inputs of the new PHIs for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; assert(!isKnownBaseResult(v) && "why did it get added?"); assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); if (!state.isConflict()) continue; if (PHINode *basephi = dyn_cast(state.getBase())) { PHINode *phi = cast(v); unsigned NumPHIValues = phi->getNumIncomingValues(); for (unsigned i = 0; i < NumPHIValues; i++) { Value *InVal = phi->getIncomingValue(i); BasicBlock *InBB = phi->getIncomingBlock(i); // If we've already seen InBB, add the same incoming value // we added for it earlier. The IR verifier requires phi // nodes with multiple entries from the same basic block // to have the same incoming value for each of those // entries. If we don't do this check here and basephi // has a different type than base, we'll end up adding two // bitcasts (and hence two distinct values) as incoming // values for the same basic block. int blockIndex = basephi->getBasicBlockIndex(InBB); if (blockIndex != -1) { Value *oldBase = basephi->getIncomingValue(blockIndex); basephi->addIncoming(oldBase, InBB); #ifndef NDEBUG Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); } // In essense this assert states: the only way two // values incoming from the same basic block may be // different is by being different bitcasts of the same // value. A cleanup that remains TODO is changing // findBaseOrBDV to return an llvm::Value of the correct // type (and still remain pure). This will remove the // need to add bitcasts. assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && "sanity -- findBaseOrBDV should be pure!"); #endif continue; } // Find either the defining value for the PHI or the normal base for // a non-phi node Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); } assert(base && "can't be null"); // Must use original input BB since base may not be Instruction // The cast is needed since base traversal may strip away bitcasts if (base->getType() != basephi->getType()) { base = new BitCastInst(base, basephi->getType(), "cast", InBB->getTerminator()); } basephi->addIncoming(base, InBB); } assert(basephi->getNumIncomingValues() == NumPHIValues); } else { SelectInst *basesel = cast(state.getBase()); SelectInst *sel = cast(v); // Operand 1 & 2 are true, false path respectively. TODO: refactor to // something more safe and less hacky. for (int i = 1; i <= 2; i++) { Value *InVal = sel->getOperand(i); // Find either the defining value for the PHI or the normal base for // a non-phi node Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); } assert(base && "can't be null"); // Must use original input BB since base may not be Instruction // The cast is needed since base traversal may strip away bitcasts if (base->getType() != basesel->getType()) { base = new BitCastInst(base, basesel->getType(), "cast", basesel); } basesel->setOperand(i, base); } } } // Cache all of our results so we can cheaply reuse them // NOTE: This is actually two caches: one of the base defining value // relation and one of the base pointer relation! FIXME for (auto item : states) { Value *v = item.first; Value *base = item.second.getBase(); assert(v && base); assert(!isKnownBaseResult(v) && "why did it get added?"); if (TraceLSP) { std::string fromstr = cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") : "none"; errs() << "Updating base value cache" << " for: " << (v->hasName() ? v->getName() : "") << " from: " << fromstr << " to: " << (base->hasName() ? base->getName() : "") << "\n"; } assert(isKnownBaseResult(base) && "must be something we 'know' is a base pointer"); if (cache.count(v)) { // Once we transition from the BDV relation being store in the cache to // the base relation being stored, it must be stable assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && "base relation should be stable"); } cache[v] = base; } assert(cache.find(def) != cache.end()); return cache[def]; } // For a set of live pointers (base and/or derived), identify the base // pointer of the object which they are derived from. This routine will // mutate the IR graph as needed to make the 'base' pointer live at the // definition site of 'derived'. This ensures that any use of 'derived' can // also use 'base'. This may involve the insertion of a number of // additional PHI nodes. // // preconditions: live is a set of pointer type Values // // side effects: may insert PHI nodes into the existing CFG, will preserve // CFG, will not remove or mutate any existing nodes // // post condition: PointerToBase contains one (derived, base) pair for every // pointer in live. Note that derived can be equal to base if the original // pointer was a base pointer. static void findBasePointers(const StatepointLiveSetTy &live, DenseMap &PointerToBase, DominatorTree *DT, DefiningValueMapTy &DVCache) { // For the naming of values inserted to be deterministic - which makes for // much cleaner and more stable tests - we need to assign an order to the // live values. DenseSets do not provide a deterministic order across runs. SmallVector Temp; Temp.insert(Temp.end(), live.begin(), live.end()); std::sort(Temp.begin(), Temp.end(), order_by_name); for (Value *ptr : Temp) { Value *base = findBasePointer(ptr, DVCache); assert(base && "failed to find base pointer"); PointerToBase[ptr] = base; assert((!isa(base) || !isa(ptr) || DT->dominates(cast(base)->getParent(), cast(ptr)->getParent())) && "The base we found better dominate the derived pointer"); // If you see this trip and like to live really dangerously, the code should // be correct, just with idioms the verifier can't handle. You can try // disabling the verifier at your own substaintial risk. assert(!isa(base) && "the relocation code needs adjustment to handle the relocation of " "a null pointer constant without causing false positives in the " "safepoint ir verifier."); } } /// Find the required based pointers (and adjust the live set) for the given /// parse point. static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, const CallSite &CS, PartiallyConstructedSafepointRecord &result) { DenseMap PointerToBase; findBasePointers(result.liveset, PointerToBase, &DT, DVCache); if (PrintBasePointers) { // Note: Need to print these in a stable order since this is checked in // some tests. errs() << "Base Pairs (w/o Relocation):\n"; SmallVector Temp; Temp.reserve(PointerToBase.size()); for (auto Pair : PointerToBase) { Temp.push_back(Pair.first); } std::sort(Temp.begin(), Temp.end(), order_by_name); for (Value *Ptr : Temp) { Value *Base = PointerToBase[Ptr]; errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() << "\n"; } } result.PointerToBase = PointerToBase; } /// Given an updated version of the dataflow liveness results, update the /// liveset and base pointer maps for the call site CS. static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, const CallSite &CS, PartiallyConstructedSafepointRecord &result); static void recomputeLiveInValues( Function &F, DominatorTree &DT, Pass *P, ArrayRef toUpdate, MutableArrayRef records) { // TODO-PERF: reuse the original liveness, then simply run the dataflow // again. The old values are still live and will help it stablize quickly. GCPtrLivenessData RevisedLivenessData; computeLiveInValues(DT, F, RevisedLivenessData); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; const CallSite &CS = toUpdate[i]; recomputeLiveInValues(RevisedLivenessData, CS, info); } } // When inserting gc.relocate calls, we need to ensure there are no uses // of the original value between the gc.statepoint and the gc.relocate call. // One case which can arise is a phi node starting one of the successor blocks. // We also need to be able to insert the gc.relocates only on the path which // goes through the statepoint. We might need to split an edge to make this // possible. static BasicBlock * normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) { DominatorTree *DT = nullptr; if (auto *DTP = P->getAnalysisIfAvailable()) DT = &DTP->getDomTree(); BasicBlock *Ret = BB; if (!BB->getUniquePredecessor()) { Ret = SplitBlockPredecessors(BB, InvokeParent, "", nullptr, DT); } // Now that 'ret' has unique predecessor we can safely remove all phi nodes // from it FoldSingleEntryPHINodes(Ret); assert(!isa(Ret->begin())); // At this point, we can safely insert a gc.relocate as the first instruction // in Ret if needed. return Ret; } static int find_index(ArrayRef livevec, Value *val) { auto itr = std::find(livevec.begin(), livevec.end(), val); assert(livevec.end() != itr); size_t index = std::distance(livevec.begin(), itr); assert(index < livevec.size()); return index; } // Create new attribute set containing only attributes which can be transfered // from original call to the safepoint. static AttributeSet legalizeCallAttributes(AttributeSet AS) { AttributeSet ret; for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { unsigned index = AS.getSlotIndex(Slot); if (index == AttributeSet::ReturnIndex || index == AttributeSet::FunctionIndex) { for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; ++it) { Attribute attr = *it; // Do not allow certain attributes - just skip them // Safepoint can not be read only or read none. if (attr.hasAttribute(Attribute::ReadNone) || attr.hasAttribute(Attribute::ReadOnly)) continue; ret = ret.addAttributes( AS.getContext(), index, AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); } } // Just skip parameter attributes for now } return ret; } /// Helper function to place all gc relocates necessary for the given /// statepoint. /// Inputs: /// liveVariables - list of variables to be relocated. /// liveStart - index of the first live variable. /// basePtrs - base pointers. /// statepointToken - statepoint instruction to which relocates should be /// bound. /// Builder - Llvm IR builder to be used to construct new calls. static void CreateGCRelocates(ArrayRef liveVariables, const int liveStart, ArrayRef basePtrs, Instruction *statepointToken, IRBuilder<> Builder) { SmallVector NewDefs; NewDefs.reserve(liveVariables.size()); Module *M = statepointToken->getParent()->getParent()->getParent(); for (unsigned i = 0; i < liveVariables.size(); i++) { // We generate a (potentially) unique declaration for every pointer type // combination. This results is some blow up the function declarations in // the IR, but removes the need for argument bitcasts which shrinks the IR // greatly and makes it much more readable. SmallVector types; // one per 'any' type types.push_back(liveVariables[i]->getType()); // result type Value *gc_relocate_decl = Intrinsic::getDeclaration( M, Intrinsic::experimental_gc_relocate, types); // Generate the gc.relocate call and save the result Value *baseIdx = ConstantInt::get(Type::getInt32Ty(M->getContext()), liveStart + find_index(liveVariables, basePtrs[i])); Value *liveIdx = ConstantInt::get( Type::getInt32Ty(M->getContext()), liveStart + find_index(liveVariables, liveVariables[i])); // only specify a debug name if we can give a useful one Value *reloc = Builder.CreateCall3( gc_relocate_decl, statepointToken, baseIdx, liveIdx, liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" : ""); // Trick CodeGen into thinking there are lots of free registers at this // fake call. cast(reloc)->setCallingConv(CallingConv::Cold); NewDefs.push_back(cast(reloc)); } assert(NewDefs.size() == liveVariables.size() && "missing or extra redefinition at safepoint"); } static void makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ const SmallVectorImpl &basePtrs, const SmallVectorImpl &liveVariables, Pass *P, PartiallyConstructedSafepointRecord &result) { assert(basePtrs.size() == liveVariables.size()); assert(isStatepoint(CS) && "This method expects to be rewriting a statepoint"); BasicBlock *BB = CS.getInstruction()->getParent(); assert(BB); Function *F = BB->getParent(); assert(F && "must be set"); Module *M = F->getParent(); (void)M; assert(M && "must be set"); // We're not changing the function signature of the statepoint since the gc // arguments go into the var args section. Function *gc_statepoint_decl = CS.getCalledFunction(); // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. Instruction *insertBefore = CS.getInstruction(); IRBuilder<> Builder(insertBefore); // Copy all of the arguments from the original statepoint - this includes the // target, call args, and deopt args SmallVector args; args.insert(args.end(), CS.arg_begin(), CS.arg_end()); // TODO: Clear the 'needs rewrite' flag // add all the pointers to be relocated (gc arguments) // Capture the start of the live variable list for use in the gc_relocates const int live_start = args.size(); args.insert(args.end(), liveVariables.begin(), liveVariables.end()); // Create the statepoint given all the arguments Instruction *token = nullptr; AttributeSet return_attributes; if (CS.isCall()) { CallInst *toReplace = cast(CS.getInstruction()); CallInst *call = Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); call->setTailCall(toReplace->isTailCall()); call->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. call->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = call; // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete) BasicBlock::iterator next(toReplace); assert(BB->end() != next && "not a terminator, must have next"); next++; Instruction *IP = &*(next); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(IP->getDebugLoc()); } else { InvokeInst *toReplace = cast(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. InvokeInst *invoke = InvokeInst::Create( gc_statepoint_decl, toReplace->getNormalDest(), toReplace->getUnwindDest(), args, "", toReplace->getParent()); invoke->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. invoke->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = invoke; // Generate gc relocates in exceptional path BasicBlock *unwindBlock = toReplace->getUnwindDest(); assert(!isa(unwindBlock->begin()) && unwindBlock->getUniquePredecessor() && "can't safely insert in this block!"); Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); // Extract second element from landingpad return value. We will attach // exceptional gc relocates to it. const unsigned idx = 1; Instruction *exceptional_token = cast(Builder.CreateExtractValue( unwindBlock->getLandingPadInst(), idx, "relocate_token")); result.UnwindToken = exceptional_token; // Just throw away return value. We will use the one we got for normal // block. (void)CreateGCRelocates(liveVariables, live_start, basePtrs, exceptional_token, Builder); // Generate gc relocates and returns for normal block BasicBlock *normalDest = toReplace->getNormalDest(); assert(!isa(normalDest->begin()) && normalDest->getUniquePredecessor() && "can't safely insert in this block!"); IP = &*(normalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); // gc relocates will be generated later as if it were regular call // statepoint } assert(token); // Take the name of the original value call if it had one. token->takeName(CS.getInstruction()); // The GCResult is already inserted, we just need to find it #ifndef NDEBUG Instruction *toReplace = CS.getInstruction(); assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && "only valid use before rewrite is gc.result"); assert(!toReplace->hasOneUse() || isGCResult(cast(*toReplace->user_begin()))); #endif // Update the gc.result of the original statepoint (if any) to use the newly // inserted statepoint. This is safe to do here since the token can't be // considered a live reference. CS.getInstruction()->replaceAllUsesWith(token); result.StatepointToken = token; // Second, create a gc.relocate for every live variable CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); } namespace { struct name_ordering { Value *base; Value *derived; bool operator()(name_ordering const &a, name_ordering const &b) { return -1 == a.derived->getName().compare(b.derived->getName()); } }; } static void stablize_order(SmallVectorImpl &basevec, SmallVectorImpl &livevec) { assert(basevec.size() == livevec.size()); SmallVector temp; for (size_t i = 0; i < basevec.size(); i++) { name_ordering v; v.base = basevec[i]; v.derived = livevec[i]; temp.push_back(v); } std::sort(temp.begin(), temp.end(), name_ordering()); for (size_t i = 0; i < basevec.size(); i++) { basevec[i] = temp[i].base; livevec[i] = temp[i].derived; } } // Replace an existing gc.statepoint with a new one and a set of gc.relocates // which make the relocations happening at this safepoint explicit. // // WARNING: Does not do any fixup to adjust users of the original live // values. That's the callers responsibility. static void makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, PartiallyConstructedSafepointRecord &result) { auto liveset = result.liveset; auto PointerToBase = result.PointerToBase; // Convert to vector for efficient cross referencing. SmallVector basevec, livevec; livevec.reserve(liveset.size()); basevec.reserve(liveset.size()); for (Value *L : liveset) { livevec.push_back(L); assert(PointerToBase.find(L) != PointerToBase.end()); Value *base = PointerToBase[L]; basevec.push_back(base); } assert(livevec.size() == basevec.size()); // To make the output IR slightly more stable (for use in diffs), ensure a // fixed order of the values in the safepoint (by sorting the value name). // The order is otherwise meaningless. stablize_order(basevec, livevec); // Do the actual rewriting and delete the old statepoint makeStatepointExplicitImpl(CS, basevec, livevec, P, result); CS.getInstruction()->eraseFromParent(); } // Helper function for the relocationViaAlloca. // It receives iterator to the statepoint gc relocates and emits store to the // assigned // location (via allocaMap) for the each one of them. // Add visited values into the visitedLiveValues set we will later use them // for sanity check. static void insertRelocationStores(iterator_range gcRelocs, DenseMap &allocaMap, DenseSet &visitedLiveValues) { for (User *U : gcRelocs) { if (!isa(U)) continue; IntrinsicInst *relocatedValue = cast(U); // We only care about relocates if (relocatedValue->getIntrinsicID() != Intrinsic::experimental_gc_relocate) { continue; } GCRelocateOperands relocateOperands(relocatedValue); Value *originalValue = const_cast(relocateOperands.derivedPtr()); assert(allocaMap.count(originalValue)); Value *alloca = allocaMap[originalValue]; // Emit store into the related alloca StoreInst *store = new StoreInst(relocatedValue, alloca); store->insertAfter(relocatedValue); #ifndef NDEBUG visitedLiveValues.insert(originalValue); #endif } } /// do all the relocation update via allocas and mem2reg static void relocationViaAlloca( Function &F, DominatorTree &DT, ArrayRef live, ArrayRef records) { #ifndef NDEBUG // record initial number of (static) allocas; we'll check we have the same // number when we get done. int InitialAllocaNum = 0; for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; I++) if (isa(*I)) InitialAllocaNum++; #endif // TODO-PERF: change data structures, reserve DenseMap allocaMap; SmallVector PromotableAllocas; PromotableAllocas.reserve(live.size()); // emit alloca for each live gc pointer for (unsigned i = 0; i < live.size(); i++) { Value *liveValue = live[i]; AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", F.getEntryBlock().getFirstNonPHI()); allocaMap[liveValue] = alloca; PromotableAllocas.push_back(alloca); } // The next two loops are part of the same conceptual operation. We need to // insert a store to the alloca after the original def and at each // redefinition. We need to insert a load before each use. These are split // into distinct loops for performance reasons. // update gc pointer after each statepoint // either store a relocated value or null (if no relocated value found for // this gc pointer and it is not a gc_result) // this must happen before we update the statepoint with load of alloca // otherwise we lose the link between statepoint and old def for (size_t i = 0; i < records.size(); i++) { const struct PartiallyConstructedSafepointRecord &info = records[i]; Value *Statepoint = info.StatepointToken; // This will be used for consistency check DenseSet visitedLiveValues; // Insert stores for normal statepoint gc relocates insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); // In case if it was invoke statepoint // we will insert stores for exceptional path gc relocates. if (isa(Statepoint)) { insertRelocationStores(info.UnwindToken->users(), allocaMap, visitedLiveValues); } if (ClobberNonLive) { // As a debuging aid, pretend that an unrelocated pointer becomes null at // the gc.statepoint. This will turn some subtle GC problems into // slightly easier to debug SEGVs. Note that on large IR files with // lots of gc.statepoints this is extremely costly both memory and time // wise. SmallVector ToClobber; for (auto Pair : allocaMap) { Value *Def = Pair.first; AllocaInst *Alloca = cast(Pair.second); // This value was relocated if (visitedLiveValues.count(Def)) { continue; } ToClobber.push_back(Alloca); } auto InsertClobbersAt = [&](Instruction *IP) { for (auto *AI : ToClobber) { auto AIType = cast(AI->getType()); auto PT = cast(AIType->getElementType()); Constant *CPN = ConstantPointerNull::get(PT); StoreInst *store = new StoreInst(CPN, AI); store->insertBefore(IP); } }; // Insert the clobbering stores. These may get intermixed with the // gc.results and gc.relocates, but that's fine. if (auto II = dyn_cast(Statepoint)) { InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); } else { BasicBlock::iterator Next(cast(Statepoint)); Next++; InsertClobbersAt(Next); } } } // update use with load allocas and add store for gc_relocated for (auto Pair : allocaMap) { Value *def = Pair.first; Value *alloca = Pair.second; // we pre-record the uses of allocas so that we dont have to worry about // later update // that change the user information. SmallVector uses; // PERF: trade a linear scan for repeated reallocation uses.reserve(std::distance(def->user_begin(), def->user_end())); for (User *U : def->users()) { if (!isa(U)) { // If the def has a ConstantExpr use, then the def is either a // ConstantExpr use itself or null. In either case // (recursively in the first, directly in the second), the oop // it is ultimately dependent on is null and this particular // use does not need to be fixed up. uses.push_back(cast(U)); } } std::sort(uses.begin(), uses.end()); auto last = std::unique(uses.begin(), uses.end()); uses.erase(last, uses.end()); for (Instruction *use : uses) { if (isa(use)) { PHINode *phi = cast(use); for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { if (def == phi->getIncomingValue(i)) { LoadInst *load = new LoadInst( alloca, "", phi->getIncomingBlock(i)->getTerminator()); phi->setIncomingValue(i, load); } } } else { LoadInst *load = new LoadInst(alloca, "", use); use->replaceUsesOfWith(def, load); } } // emit store for the initial gc value // store must be inserted after load, otherwise store will be in alloca's // use list and an extra load will be inserted before it StoreInst *store = new StoreInst(def, alloca); if (Instruction *inst = dyn_cast(def)) { if (InvokeInst *invoke = dyn_cast(inst)) { // InvokeInst is a TerminatorInst so the store need to be inserted // into its normal destination block. BasicBlock *normalDest = invoke->getNormalDest(); store->insertBefore(normalDest->getFirstNonPHI()); } else { assert(!inst->isTerminator() && "The only TerminatorInst that can produce a value is " "InvokeInst which is handled above."); store->insertAfter(inst); } } else { assert((isa(def) || isa(def) || isa(def)) && "Must be argument or global"); store->insertAfter(cast(alloca)); } } assert(PromotableAllocas.size() == live.size() && "we must have the same allocas with lives"); if (!PromotableAllocas.empty()) { // apply mem2reg to promote alloca to SSA PromoteMemToReg(PromotableAllocas, DT); } #ifndef NDEBUG for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E; I++) if (isa(*I)) InitialAllocaNum--; assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); #endif } /// Implement a unique function which doesn't require we sort the input /// vector. Doing so has the effect of changing the output of a couple of /// tests in ways which make them less useful in testing fused safepoints. template static void unique_unsorted(SmallVectorImpl &Vec) { DenseSet Seen; SmallVector TempVec; TempVec.reserve(Vec.size()); for (auto Element : Vec) TempVec.push_back(Element); Vec.clear(); for (auto V : TempVec) { if (Seen.insert(V).second) { Vec.push_back(V); } } } /// Insert holders so that each Value is obviously live through the entire /// lifetime of the call. static void insertUseHolderAfter(CallSite &CS, const ArrayRef Values, SmallVectorImpl &Holders) { if (Values.empty()) // No values to hold live, might as well not insert the empty holder return; Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); // Use a dummy vararg function to actually hold the values live Function *Func = cast(M->getOrInsertFunction( "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true))); if (CS.isCall()) { // For call safepoints insert dummy calls right after safepoint BasicBlock::iterator Next(CS.getInstruction()); Next++; Holders.push_back(CallInst::Create(Func, Values, "", Next)); return; } // For invoke safepooints insert dummy calls both in normal and // exceptional destination blocks auto *II = cast(CS.getInstruction()); Holders.push_back(CallInst::Create( Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); Holders.push_back(CallInst::Create( Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); } static void findLiveReferences( Function &F, DominatorTree &DT, Pass *P, ArrayRef toUpdate, MutableArrayRef records) { GCPtrLivenessData OriginalLivenessData; computeLiveInValues(DT, F, OriginalLivenessData); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; const CallSite &CS = toUpdate[i]; analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info); } } /// Remove any vector of pointers from the liveset by scalarizing them over the /// statepoint instruction. Adds the scalarized pieces to the liveset. It /// would be preferrable to include the vector in the statepoint itself, but /// the lowering code currently does not handle that. Extending it would be /// slightly non-trivial since it requires a format change. Given how rare /// such cases are (for the moment?) scalarizing is an acceptable comprimise. static void splitVectorValues(Instruction *StatepointInst, StatepointLiveSetTy &LiveSet, DominatorTree &DT) { SmallVector ToSplit; for (Value *V : LiveSet) if (isa(V->getType())) ToSplit.push_back(V); if (ToSplit.empty()) return; Function &F = *(StatepointInst->getParent()->getParent()); DenseMap AllocaMap; // First is normal return, second is exceptional return (invoke only) DenseMap> Replacements; for (Value *V : ToSplit) { LiveSet.erase(V); AllocaInst *Alloca = new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI()); AllocaMap[V] = Alloca; VectorType *VT = cast(V->getType()); IRBuilder<> Builder(StatepointInst); SmallVector Elements; for (unsigned i = 0; i < VT->getNumElements(); i++) Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i))); LiveSet.insert(Elements.begin(), Elements.end()); auto InsertVectorReform = [&](Instruction *IP) { Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(IP->getDebugLoc()); Value *ResultVec = UndefValue::get(VT); for (unsigned i = 0; i < VT->getNumElements(); i++) ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i], Builder.getInt32(i)); return ResultVec; }; if (isa(StatepointInst)) { BasicBlock::iterator Next(StatepointInst); Next++; Instruction *IP = &*(Next); Replacements[V].first = InsertVectorReform(IP); Replacements[V].second = nullptr; } else { InvokeInst *Invoke = cast(StatepointInst); // We've already normalized - check that we don't have shared destination // blocks BasicBlock *NormalDest = Invoke->getNormalDest(); assert(!isa(NormalDest->begin())); BasicBlock *UnwindDest = Invoke->getUnwindDest(); assert(!isa(UnwindDest->begin())); // Insert insert element sequences in both successors Instruction *IP = &*(NormalDest->getFirstInsertionPt()); Replacements[V].first = InsertVectorReform(IP); IP = &*(UnwindDest->getFirstInsertionPt()); Replacements[V].second = InsertVectorReform(IP); } } for (Value *V : ToSplit) { AllocaInst *Alloca = AllocaMap[V]; // Capture all users before we start mutating use lists SmallVector Users; for (User *U : V->users()) Users.push_back(cast(U)); for (Instruction *I : Users) { if (auto Phi = dyn_cast(I)) { for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) if (V == Phi->getIncomingValue(i)) { LoadInst *Load = new LoadInst( Alloca, "", Phi->getIncomingBlock(i)->getTerminator()); Phi->setIncomingValue(i, Load); } } else { LoadInst *Load = new LoadInst(Alloca, "", I); I->replaceUsesOfWith(V, Load); } } // Store the original value and the replacement value into the alloca StoreInst *Store = new StoreInst(V, Alloca); if (auto I = dyn_cast(V)) Store->insertAfter(I); else Store->insertAfter(Alloca); // Normal return for invoke, or call return Instruction *Replacement = cast(Replacements[V].first); (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); // Unwind return for invoke only Replacement = cast_or_null(Replacements[V].second); if (Replacement) (new StoreInst(Replacement, Alloca))->insertAfter(Replacement); } // apply mem2reg to promote alloca to SSA SmallVector Allocas; for (Value *V : ToSplit) Allocas.push_back(AllocaMap[V]); PromoteMemToReg(Allocas, DT); } static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, SmallVectorImpl &toUpdate) { #ifndef NDEBUG // sanity check the input std::set uniqued; uniqued.insert(toUpdate.begin(), toUpdate.end()); assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); for (size_t i = 0; i < toUpdate.size(); i++) { CallSite &CS = toUpdate[i]; assert(CS.getInstruction()->getParent()->getParent() == &F); assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); } #endif // When inserting gc.relocates for invokes, we need to be able to insert at // the top of the successor blocks. See the comment on // normalForInvokeSafepoint on exactly what is needed. Note that this step // may restructure the CFG. for (CallSite CS : toUpdate) { if (!CS.isInvoke()) continue; InvokeInst *invoke = cast(CS.getInstruction()); normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(), P); normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(), P); } // A list of dummy calls added to the IR to keep various values obviously // live in the IR. We'll remove all of these when done. SmallVector holders; // Insert a dummy call with all of the arguments to the vm_state we'll need // for the actual safepoint insertion. This ensures reference arguments in // the deopt argument list are considered live through the safepoint (and // thus makes sure they get relocated.) for (size_t i = 0; i < toUpdate.size(); i++) { CallSite &CS = toUpdate[i]; Statepoint StatepointCS(CS); SmallVector DeoptValues; for (Use &U : StatepointCS.vm_state_args()) { Value *Arg = cast(&U); assert(!isUnhandledGCPointerType(Arg->getType()) && "support for FCA unimplemented"); if (isHandledGCPointerType(Arg->getType())) DeoptValues.push_back(Arg); } insertUseHolderAfter(CS, DeoptValues, holders); } SmallVector records; records.reserve(toUpdate.size()); for (size_t i = 0; i < toUpdate.size(); i++) { struct PartiallyConstructedSafepointRecord info; records.push_back(info); } assert(records.size() == toUpdate.size()); // A) Identify all gc pointers which are staticly live at the given call // site. findLiveReferences(F, DT, P, toUpdate, records); // Do a limited scalarization of any live at safepoint vector values which // contain pointers. This enables this pass to run after vectorization at // the cost of some possible performance loss. TODO: it would be nice to // natively support vectors all the way through the backend so we don't need // to scalarize here. for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; Instruction *statepoint = toUpdate[i].getInstruction(); splitVectorValues(cast(statepoint), info.liveset, DT); } // B) Find the base pointers for each live pointer /* scope for caching */ { // Cache the 'defining value' relation used in the computation and // insertion of base phis and selects. This ensures that we don't insert // large numbers of duplicate base_phis. DefiningValueMapTy DVCache; for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; findBasePointers(DT, DVCache, CS, info); } } // end of cache scope // The base phi insertion logic (for any safepoint) may have inserted new // instructions which are now live at some safepoint. The simplest such // example is: // loop: // phi a <-- will be a new base_phi here // safepoint 1 <-- that needs to be live here // gep a + 1 // safepoint 2 // br loop // We insert some dummy calls after each safepoint to definitely hold live // the base pointers which were identified for that safepoint. We'll then // ask liveness for _every_ base inserted to see what is now live. Then we // remove the dummy calls. holders.reserve(holders.size() + records.size()); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; SmallVector Bases; for (auto Pair : info.PointerToBase) { Bases.push_back(Pair.second); } insertUseHolderAfter(CS, Bases, holders); } // By selecting base pointers, we've effectively inserted new uses. Thus, we // need to rerun liveness. We may *also* have inserted new defs, but that's // not the key issue. recomputeLiveInValues(F, DT, P, toUpdate, records); if (PrintBasePointers) { for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; errs() << "Base Pairs: (w/Relocation)\n"; for (auto Pair : info.PointerToBase) { errs() << " derived %" << Pair.first->getName() << " base %" << Pair.second->getName() << "\n"; } } } for (size_t i = 0; i < holders.size(); i++) { holders[i]->eraseFromParent(); holders[i] = nullptr; } holders.clear(); // Now run through and replace the existing statepoints with new ones with // the live variables listed. We do not yet update uses of the values being // relocated. We have references to live variables that need to // survive to the last iteration of this loop. (By construction, the // previous statepoint can not be a live variable, thus we can and remove // the old statepoint calls as we go.) for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; makeStatepointExplicit(DT, CS, P, info); } toUpdate.clear(); // prevent accident use of invalid CallSites // Do all the fixups of the original live variables to their relocated selves SmallVector live; for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; // We can't simply save the live set from the original insertion. One of // the live values might be the result of a call which needs a safepoint. // That Value* no longer exists and we need to use the new gc_result. // Thankfully, the liveset is embedded in the statepoint (and updated), so // we just grab that. Statepoint statepoint(info.StatepointToken); live.insert(live.end(), statepoint.gc_args_begin(), statepoint.gc_args_end()); #ifndef NDEBUG // Do some basic sanity checks on our liveness results before performing // relocation. Relocation can and will turn mistakes in liveness results // into non-sensical code which is must harder to debug. // TODO: It would be nice to test consistency as well assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) && "statepoint must be reachable or liveness is meaningless"); for (Value *V : statepoint.gc_args()) { if (!isa(V)) // Non-instruction values trivial dominate all possible uses continue; auto LiveInst = cast(V); assert(DT.isReachableFromEntry(LiveInst->getParent()) && "unreachable values should never be live"); assert(DT.dominates(LiveInst, info.StatepointToken) && "basic SSA liveness expectation violated by liveness analysis"); } #endif } unique_unsorted(live); #ifndef NDEBUG // sanity check for (auto ptr : live) { assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); } #endif relocationViaAlloca(F, DT, live, records); return !records.empty(); } /// Returns true if this function should be rewritten by this pass. The main /// point of this function is as an extension point for custom logic. static bool shouldRewriteStatepointsIn(Function &F) { // TODO: This should check the GCStrategy if (F.hasGC()) { const std::string StatepointExampleName("statepoint-example"); return StatepointExampleName == F.getGC(); } else return false; } bool RewriteStatepointsForGC::runOnFunction(Function &F) { // Nothing to do for declarations. if (F.isDeclaration() || F.empty()) return false; // Policy choice says not to rewrite - the most common reason is that we're // compiling code without a GCStrategy. if (!shouldRewriteStatepointsIn(F)) return false; DominatorTree &DT = getAnalysis().getDomTree(); // Gather all the statepoints which need rewritten. Be careful to only // consider those in reachable code since we need to ask dominance queries // when rewriting. We'll delete the unreachable ones in a moment. SmallVector ParsePointNeeded; bool HasUnreachableStatepoint = false; for (Instruction &I : inst_range(F)) { // TODO: only the ones with the flag set! if (isStatepoint(I)) { if (DT.isReachableFromEntry(I.getParent())) ParsePointNeeded.push_back(CallSite(&I)); else HasUnreachableStatepoint = true; } } bool MadeChange = false; // Delete any unreachable statepoints so that we don't have unrewritten // statepoints surviving this pass. This makes testing easier and the // resulting IR less confusing to human readers. Rather than be fancy, we // just reuse a utility function which removes the unreachable blocks. if (HasUnreachableStatepoint) MadeChange |= removeUnreachableBlocks(F); // Return early if no work to do. if (ParsePointNeeded.empty()) return MadeChange; // As a prepass, go ahead and aggressively destroy single entry phi nodes. // These are created by LCSSA. They have the effect of increasing the size // of liveness sets for no good reason. It may be harder to do this post // insertion since relocations and base phis can confuse things. for (BasicBlock &BB : F) if (BB.getUniquePredecessor()) { MadeChange = true; FoldSingleEntryPHINodes(&BB); } MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded); return MadeChange; } // liveness computation via standard dataflow // ------------------------------------------------------------------- // TODO: Consider using bitvectors for liveness, the set of potentially // interesting values should be small and easy to pre-compute. /// Is this value a constant consisting of entirely null values? static bool isConstantNull(Value *V) { return isa(V) && cast(V)->isNullValue(); } /// Compute the live-in set for the location rbegin starting from /// the live-out set of the basic block static void computeLiveInValues(BasicBlock::reverse_iterator rbegin, BasicBlock::reverse_iterator rend, DenseSet &LiveTmp) { for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) { Instruction *I = &*ritr; // KILL/Def - Remove this definition from LiveIn LiveTmp.erase(I); // Don't consider *uses* in PHI nodes, we handle their contribution to // predecessor blocks when we seed the LiveOut sets if (isa(I)) continue; // USE - Add to the LiveIn set for this instruction for (Value *V : I->operands()) { assert(!isUnhandledGCPointerType(V->getType()) && "support for FCA unimplemented"); if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) && !isa(V)) { // The choice to exclude null and undef is arbitrary here. Reconsider? LiveTmp.insert(V); } } } } static void computeLiveOutSeed(BasicBlock *BB, DenseSet &LiveTmp) { for (BasicBlock *Succ : successors(BB)) { const BasicBlock::iterator E(Succ->getFirstNonPHI()); for (BasicBlock::iterator I = Succ->begin(); I != E; I++) { PHINode *Phi = cast(&*I); Value *V = Phi->getIncomingValueForBlock(BB); assert(!isUnhandledGCPointerType(V->getType()) && "support for FCA unimplemented"); if (isHandledGCPointerType(V->getType()) && !isConstantNull(V) && !isa(V)) { // The choice to exclude null and undef is arbitrary here. Reconsider? LiveTmp.insert(V); } } } } static DenseSet computeKillSet(BasicBlock *BB) { DenseSet KillSet; for (Instruction &I : *BB) if (isHandledGCPointerType(I.getType())) KillSet.insert(&I); return KillSet; } #ifndef NDEBUG /// Check that the items in 'Live' dominate 'TI'. This is used as a basic /// sanity check for the liveness computation. static void checkBasicSSA(DominatorTree &DT, DenseSet &Live, TerminatorInst *TI, bool TermOkay = false) { for (Value *V : Live) { if (auto *I = dyn_cast(V)) { // The terminator can be a member of the LiveOut set. LLVM's definition // of instruction dominance states that V does not dominate itself. As // such, we need to special case this to allow it. if (TermOkay && TI == I) continue; assert(DT.dominates(I, TI) && "basic SSA liveness expectation violated by liveness analysis"); } } } /// Check that all the liveness sets used during the computation of liveness /// obey basic SSA properties. This is useful for finding cases where we miss /// a def. static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, BasicBlock &BB) { checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); } #endif static void computeLiveInValues(DominatorTree &DT, Function &F, GCPtrLivenessData &Data) { SmallSetVector Worklist; auto AddPredsToWorklist = [&](BasicBlock *BB) { // We use a SetVector so that we don't have duplicates in the worklist. Worklist.insert(pred_begin(BB), pred_end(BB)); }; auto NextItem = [&]() { BasicBlock *BB = Worklist.back(); Worklist.pop_back(); return BB; }; // Seed the liveness for each individual block for (BasicBlock &BB : F) { Data.KillSet[&BB] = computeKillSet(&BB); Data.LiveSet[&BB].clear(); computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); #ifndef NDEBUG for (Value *Kill : Data.KillSet[&BB]) assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); #endif Data.LiveOut[&BB] = DenseSet(); computeLiveOutSeed(&BB, Data.LiveOut[&BB]); Data.LiveIn[&BB] = Data.LiveSet[&BB]; set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]); set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]); if (!Data.LiveIn[&BB].empty()) AddPredsToWorklist(&BB); } // Propagate that liveness until stable while (!Worklist.empty()) { BasicBlock *BB = NextItem(); // Compute our new liveout set, then exit early if it hasn't changed // despite the contribution of our successor. DenseSet LiveOut = Data.LiveOut[BB]; const auto OldLiveOutSize = LiveOut.size(); for (BasicBlock *Succ : successors(BB)) { assert(Data.LiveIn.count(Succ)); set_union(LiveOut, Data.LiveIn[Succ]); } // assert OutLiveOut is a subset of LiveOut if (OldLiveOutSize == LiveOut.size()) { // If the sets are the same size, then we didn't actually add anything // when unioning our successors LiveIn Thus, the LiveIn of this block // hasn't changed. continue; } Data.LiveOut[BB] = LiveOut; // Apply the effects of this basic block DenseSet LiveTmp = LiveOut; set_union(LiveTmp, Data.LiveSet[BB]); set_subtract(LiveTmp, Data.KillSet[BB]); assert(Data.LiveIn.count(BB)); const DenseSet &OldLiveIn = Data.LiveIn[BB]; // assert: OldLiveIn is a subset of LiveTmp if (OldLiveIn.size() != LiveTmp.size()) { Data.LiveIn[BB] = LiveTmp; AddPredsToWorklist(BB); } } // while( !worklist.empty() ) #ifndef NDEBUG // Sanity check our ouput against SSA properties. This helps catch any // missing kills during the above iteration. for (BasicBlock &BB : F) { checkBasicSSA(DT, Data, BB); } #endif } static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, StatepointLiveSetTy &Out) { BasicBlock *BB = Inst->getParent(); // Note: The copy is intentional and required assert(Data.LiveOut.count(BB)); DenseSet LiveOut = Data.LiveOut[BB]; // We want to handle the statepoint itself oddly. It's // call result is not live (normal), nor are it's arguments // (unless they're used again later). This adjustment is // specifically what we need to relocate BasicBlock::reverse_iterator rend(Inst); computeLiveInValues(BB->rbegin(), rend, LiveOut); LiveOut.erase(Inst); Out.insert(LiveOut.begin(), LiveOut.end()); } static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, const CallSite &CS, PartiallyConstructedSafepointRecord &Info) { Instruction *Inst = CS.getInstruction(); StatepointLiveSetTy Updated; findLiveSetAtInst(Inst, RevisedLivenessData, Updated); #ifndef NDEBUG DenseSet Bases; for (auto KVPair : Info.PointerToBase) { Bases.insert(KVPair.second); } #endif // We may have base pointers which are now live that weren't before. We need // to update the PointerToBase structure to reflect this. for (auto V : Updated) if (!Info.PointerToBase.count(V)) { assert(Bases.count(V) && "can't find base for unexpected live value"); Info.PointerToBase[V] = V; continue; } #ifndef NDEBUG for (auto V : Updated) { assert(Info.PointerToBase.count(V) && "must be able to find base for live value"); } #endif // Remove any stale base mappings - this can happen since our liveness is // more precise then the one inherent in the base pointer analysis DenseSet ToErase; for (auto KVPair : Info.PointerToBase) if (!Updated.count(KVPair.first)) ToErase.insert(KVPair.first); for (auto V : ToErase) Info.PointerToBase.erase(V); #ifndef NDEBUG for (auto KVPair : Info.PointerToBase) assert(Updated.count(KVPair.first) && "record for non-live value"); #endif Info.liveset = Updated; }