//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Rewrite an existing set of gc.statepoints such that they make potential // relocations performed by the garbage collector explicit in the IR. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/Analysis/CFG.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/DenseSet.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #define DEBUG_TYPE "rewrite-statepoints-for-gc" using namespace llvm; // Print tracing output static cl::opt TraceLSP("trace-rewrite-statepoints", cl::Hidden, cl::init(false)); // Print the liveset found at the insert location static cl::opt PrintLiveSet("spp-print-liveset", cl::Hidden, cl::init(false)); static cl::opt PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, cl::init(false)); // Print out the base pointers for debugging static cl::opt PrintBasePointers("spp-print-base-pointers", cl::Hidden, cl::init(false)); namespace { struct RewriteStatepointsForGC : public FunctionPass { static char ID; // Pass identification, replacement for typeid RewriteStatepointsForGC() : FunctionPass(ID) { initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { // We add and rewrite a bunch of instructions, but don't really do much // else. We could in theory preserve a lot more analyses here. AU.addRequired(); } }; } // namespace char RewriteStatepointsForGC::ID = 0; FunctionPass *llvm::createRewriteStatepointsForGCPass() { return new RewriteStatepointsForGC(); } INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", "Make relocations explicit at statepoints", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", "Make relocations explicit at statepoints", false, false) namespace { // The type of the internal cache used inside the findBasePointers family // of functions. From the callers perspective, this is an opaque type and // should not be inspected. // // In the actual implementation this caches two relations: // - The base relation itself (i.e. this pointer is based on that one) // - The base defining value relation (i.e. before base_phi insertion) // Generally, after the execution of a full findBasePointer call, only the // base relation will remain. Internally, we add a mixture of the two // types, then update all the second type to the first type typedef DenseMap DefiningValueMapTy; typedef DenseSet StatepointLiveSetTy; struct PartiallyConstructedSafepointRecord { /// The set of values known to be live accross this safepoint StatepointLiveSetTy liveset; /// Mapping from live pointers to a base-defining-value DenseMap PointerToBase; /// Any new values which were added to the IR during base pointer analysis /// for this safepoint DenseSet NewInsertedDefs; /// The *new* gc.statepoint instruction itself. This produces the token /// that normal path gc.relocates and the gc.result are tied to. Instruction *StatepointToken; /// Instruction to which exceptional gc relocates are attached /// Makes it easier to iterate through them during relocationViaAlloca. Instruction *UnwindToken; }; } // TODO: Once we can get to the GCStrategy, this becomes // Optional isGCManagedPointer(const Value *V) const override { static bool isGCPointerType(const Type *T) { if (const PointerType *PT = dyn_cast(T)) // For the sake of this example GC, we arbitrarily pick addrspace(1) as our // GC managed heap. We know that a pointer into this heap needs to be // updated and that no other pointer does. return (1 == PT->getAddressSpace()); return false; } /// Return true if the Value is a gc reference type which is potentially used /// after the instruction 'loc'. This is only used with the edge reachability /// liveness code. Note: It is assumed the V dominates loc. static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, LoopInfo *LI) { if (!isGCPointerType(V.getType())) return false; if (V.use_empty()) return false; // Given assumption that V dominates loc, this may be live return true; } #ifndef NDEBUG static bool isAggWhichContainsGCPtrType(Type *Ty) { if (VectorType *VT = dyn_cast(Ty)) return isGCPointerType(VT->getScalarType()); if (ArrayType *AT = dyn_cast(Ty)) return isGCPointerType(AT->getElementType()) || isAggWhichContainsGCPtrType(AT->getElementType()); if (StructType *ST = dyn_cast(Ty)) return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), [](Type *SubType) { return isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); }); return false; } #endif // Conservatively identifies any definitions which might be live at the // given instruction. The analysis is performed immediately before the // given instruction. Values defined by that instruction are not considered // live. Values used by that instruction are considered live. // // preconditions: valid IR graph, term is either a terminator instruction or // a call instruction, pred is the basic block of term, DT, LI are valid // // side effects: none, does not mutate IR // // postconditions: populates liveValues as discussed above static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, DominatorTree &DT, LoopInfo *LI, StatepointLiveSetTy &liveValues) { liveValues.clear(); assert(isa(term) || isa(term) || term->isTerminator()); Function *F = pred->getParent(); auto is_live_gc_reference = [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; // Are there any gc pointer arguments live over this point? This needs to be // special cased since arguments aren't defined in basic blocks. for (Argument &arg : F->args()) { assert(!isAggWhichContainsGCPtrType(arg.getType()) && "support for FCA unimplemented"); if (is_live_gc_reference(arg)) { liveValues.insert(&arg); } } // Walk through all dominating blocks - the ones which can contain // definitions used in this block - and check to see if any of the values // they define are used in locations potentially reachable from the // interesting instruction. BasicBlock *BBI = pred; while (true) { if (TraceLSP) { errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; } assert(DT.dominates(BBI, pred)); assert(isPotentiallyReachable(BBI, pred, &DT) && "dominated block must be reachable"); // Walk through the instructions in dominating blocks and keep any // that have a use potentially reachable from the block we're // considering putting the safepoint in for (Instruction &inst : *BBI) { if (TraceLSP) { errs() << "[LSP] Looking at instruction "; inst.dump(); } if (pred == BBI && (&inst) == term) { if (TraceLSP) { errs() << "[LSP] stopped because we encountered the safepoint " "instruction.\n"; } // If we're in the block which defines the interesting instruction, // we don't want to include any values as live which are defined // _after_ the interesting line or as part of the line itself // i.e. "term" is the call instruction for a call safepoint, the // results of the call should not be considered live in that stackmap break; } assert(!isAggWhichContainsGCPtrType(inst.getType()) && "support for FCA unimplemented"); if (is_live_gc_reference(inst)) { if (TraceLSP) { errs() << "[LSP] found live value for this safepoint "; inst.dump(); term->dump(); } liveValues.insert(&inst); } } if (!DT.getNode(BBI)->getIDom()) { assert(BBI == &F->getEntryBlock() && "failed to find a dominator for something other than " "the entry block"); break; } BBI = DT.getNode(BBI)->getIDom()->getBlock(); } } static bool order_by_name(llvm::Value *a, llvm::Value *b) { if (a->hasName() && b->hasName()) { return -1 == a->getName().compare(b->getName()); } else if (a->hasName() && !b->hasName()) { return true; } else if (!a->hasName() && b->hasName()) { return false; } else { // Better than nothing, but not stable return a < b; } } /// Find the initial live set. Note that due to base pointer /// insertion, the live set may be incomplete. static void analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, PartiallyConstructedSafepointRecord &result) { Instruction *inst = CS.getInstruction(); BasicBlock *BB = inst->getParent(); StatepointLiveSetTy liveset; findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); if (PrintLiveSet) { // Note: This output is used by several of the test cases // The order of elemtns in a set is not stable, put them in a vec and sort // by name SmallVector temp; temp.insert(temp.end(), liveset.begin(), liveset.end()); std::sort(temp.begin(), temp.end(), order_by_name); errs() << "Live Variables:\n"; for (Value *V : temp) { errs() << " " << V->getName(); // no newline V->dump(); } } if (PrintLiveSetSize) { errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; errs() << "Number live values: " << liveset.size() << "\n"; } result.liveset = liveset; } /// True iff this value is the null pointer constant (of any pointer type) static bool LLVM_ATTRIBUTE_UNUSED isNullConstant(Value *V) { return isa(V) && isa(V->getType()) && cast(V)->isNullValue(); } /// Helper function for findBasePointer - Will return a value which either a) /// defines the base pointer for the input or b) blocks the simple search /// (i.e. a PHI or Select of two derived pointers) static Value *findBaseDefiningValue(Value *I) { assert(I->getType()->isPointerTy() && "Illegal to ask for the base pointer of a non-pointer type"); // There are instructions which can never return gc pointer values. Sanity // check // that this is actually true. assert(!isa(I) && !isa(I) && !isa(I) && "Vector types are not gc pointers"); assert((!isa(I) || isa(I) || !cast(I)->isTerminator()) && "With the exception of invoke terminators don't define values"); assert(!isa(I) && !isa(I) && "Can't be definitions to start with"); assert(!isa(I) && !isa(I) && "Comparisons don't give ops"); // There's a bunch of instructions which just don't make sense to apply to // a pointer. The only valid reason for this would be pointer bit // twiddling which we're just not going to support. assert((!isa(I) || !cast(I)->isBinaryOp()) && "Binary ops on pointer values are meaningless. Unless your " "bit-twiddling which we don't support"); if (Argument *Arg = dyn_cast(I)) { // An incoming argument to the function is a base pointer // We should have never reached here if this argument isn't an gc value assert(Arg->getType()->isPointerTy() && "Base for pointer must be another pointer"); return Arg; } if (GlobalVariable *global = dyn_cast(I)) { // base case assert(global->getType()->isPointerTy() && "Base for pointer must be another pointer"); return global; } // inlining could possibly introduce phi node that contains // undef if callee has multiple returns if (UndefValue *undef = dyn_cast(I)) { assert(undef->getType()->isPointerTy() && "Base for pointer must be another pointer"); return undef; // utterly meaningless, but useful for dealing with // partially optimized code. } // Due to inheritance, this must be _after_ the global variable and undef // checks if (Constant *con = dyn_cast(I)) { assert(!isa(I) && !isa(I) && "order of checks wrong!"); // Note: Finding a constant base for something marked for relocation // doesn't really make sense. The most likely case is either a) some // screwed up the address space usage or b) your validating against // compiled C++ code w/o the proper separation. The only real exception // is a null pointer. You could have generic code written to index of // off a potentially null value and have proven it null. We also use // null pointers in dead paths of relocation phis (which we might later // want to find a base pointer for). assert(con->getType()->isPointerTy() && "Base for pointer must be another pointer"); assert(con->isNullValue() && "null is the only case which makes sense"); return con; } if (CastInst *CI = dyn_cast(I)) { Value *def = CI->stripPointerCasts(); assert(def->getType()->isPointerTy() && "Base for pointer must be another pointer"); // If we find a cast instruction here, it means we've found a cast which is // not simply a pointer cast (i.e. an inttoptr). We don't know how to // handle int->ptr conversion. assert(!isa(def) && "shouldn't find another cast here"); return findBaseDefiningValue(def); } if (LoadInst *LI = dyn_cast(I)) { if (LI->getType()->isPointerTy()) { Value *Op = LI->getOperand(0); (void)Op; // Has to be a pointer to an gc object, or possibly an array of such? assert(Op->getType()->isPointerTy()); return LI; // The value loaded is an gc base itself } } if (GetElementPtrInst *GEP = dyn_cast(I)) { Value *Op = GEP->getOperand(0); if (Op->getType()->isPointerTy()) { return findBaseDefiningValue(Op); // The base of this GEP is the base } } if (AllocaInst *alloc = dyn_cast(I)) { // An alloca represents a conceptual stack slot. It's the slot itself // that the GC needs to know about, not the value in the slot. assert(alloc->getType()->isPointerTy() && "Base for pointer must be another pointer"); return alloc; } if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: // fall through to general call handling break; case Intrinsic::experimental_gc_statepoint: case Intrinsic::experimental_gc_result_float: case Intrinsic::experimental_gc_result_int: llvm_unreachable("these don't produce pointers"); case Intrinsic::experimental_gc_result_ptr: // This is just a special case of the CallInst check below to handle a // statepoint with deopt args which hasn't been rewritten for GC yet. // TODO: Assert that the statepoint isn't rewritten yet. return II; case Intrinsic::experimental_gc_relocate: { // Rerunning safepoint insertion after safepoints are already // inserted is not supported. It could probably be made to work, // but why are you doing this? There's no good reason. llvm_unreachable("repeat safepoint insertion is not supported"); } case Intrinsic::gcroot: // Currently, this mechanism hasn't been extended to work with gcroot. // There's no reason it couldn't be, but I haven't thought about the // implications much. llvm_unreachable( "interaction with the gcroot mechanism is not supported"); } } // We assume that functions in the source language only return base // pointers. This should probably be generalized via attributes to support // both source language and internal functions. if (CallInst *call = dyn_cast(I)) { assert(call->getType()->isPointerTy() && "Base for pointer must be another pointer"); return call; } if (InvokeInst *invoke = dyn_cast(I)) { assert(invoke->getType()->isPointerTy() && "Base for pointer must be another pointer"); return invoke; } // I have absolutely no idea how to implement this part yet. It's not // neccessarily hard, I just haven't really looked at it yet. assert(!isa(I) && "Landing Pad is unimplemented"); if (AtomicCmpXchgInst *cas = dyn_cast(I)) { // A CAS is effectively a atomic store and load combined under a // predicate. From the perspective of base pointers, we just treat it // like a load. We loaded a pointer from a address in memory, that value // had better be a valid base pointer. return cas->getPointerOperand(); } if (AtomicRMWInst *atomic = dyn_cast(I)) { assert(AtomicRMWInst::Xchg == atomic->getOperation() && "All others are binary ops which don't apply to base pointers"); // semantically, a load, store pair. Treat it the same as a standard load return atomic->getPointerOperand(); } // The aggregate ops. Aggregates can either be in the heap or on the // stack, but in either case, this is simply a field load. As a result, // this is a defining definition of the base just like a load is. if (ExtractValueInst *ev = dyn_cast(I)) { return ev; } // We should never see an insert vector since that would require we be // tracing back a struct value not a pointer value. assert(!isa(I) && "Base pointer for a struct is meaningless"); // The last two cases here don't return a base pointer. Instead, they // return a value which dynamically selects from amoung several base // derived pointers (each with it's own base potentially). It's the job of // the caller to resolve these. if (SelectInst *select = dyn_cast(I)) { return select; } return cast(I); } /// Returns the base defining value for this value. static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { Value *&Cached = cache[I]; if (!Cached) { Cached = findBaseDefiningValue(I); } assert(cache[I] != nullptr); if (TraceLSP) { errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() << "\n"; } return Cached; } /// Return a base pointer for this value if known. Otherwise, return it's /// base defining value. static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { Value *def = findBaseDefiningValueCached(I, cache); auto Found = cache.find(def); if (Found != cache.end()) { // Either a base-of relation, or a self reference. Caller must check. return Found->second; } // Only a BDV available return def; } /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, /// is it known to be a base pointer? Or do we need to continue searching. static bool isKnownBaseResult(Value *v) { if (!isa(v) && !isa(v)) { // no recursion possible return true; } if (cast(v)->getMetadata("is_base_value")) { // This is a previously inserted base phi or select. We know // that this is a base value. return true; } // We need to keep searching return false; } // TODO: find a better name for this namespace { class PhiState { public: enum Status { Unknown, Base, Conflict }; PhiState(Status s, Value *b = nullptr) : status(s), base(b) { assert(status != Base || b); } PhiState(Value *b) : status(Base), base(b) {} PhiState() : status(Unknown), base(nullptr) {} Status getStatus() const { return status; } Value *getBase() const { return base; } bool isBase() const { return getStatus() == Base; } bool isUnknown() const { return getStatus() == Unknown; } bool isConflict() const { return getStatus() == Conflict; } bool operator==(const PhiState &other) const { return base == other.base && status == other.status; } bool operator!=(const PhiState &other) const { return !(*this == other); } void dump() { errs() << status << " (" << base << " - " << (base ? base->getName() : "nullptr") << "): "; } private: Status status; Value *base; // non null only if status == base }; typedef DenseMap ConflictStateMapTy; // Values of type PhiState form a lattice, and this is a helper // class that implementes the meet operation. The meat of the meet // operation is implemented in MeetPhiStates::pureMeet class MeetPhiStates { public: // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. explicit MeetPhiStates(const ConflictStateMapTy &phiStates) : phiStates(phiStates) {} // Destructively meet the current result with the base V. V can // either be a merge instruction (SelectInst / PHINode), in which // case its status is looked up in the phiStates map; or a regular // SSA value, in which case it is assumed to be a base. void meetWith(Value *V) { PhiState otherState = getStateForBDV(V); assert((MeetPhiStates::pureMeet(otherState, currentResult) == MeetPhiStates::pureMeet(currentResult, otherState)) && "math is wrong: meet does not commute!"); currentResult = MeetPhiStates::pureMeet(otherState, currentResult); } PhiState getResult() const { return currentResult; } private: const ConflictStateMapTy &phiStates; PhiState currentResult; /// Return a phi state for a base defining value. We'll generate a new /// base state for known bases and expect to find a cached state otherwise PhiState getStateForBDV(Value *baseValue) { if (isKnownBaseResult(baseValue)) { return PhiState(baseValue); } else { return lookupFromMap(baseValue); } } PhiState lookupFromMap(Value *V) { auto I = phiStates.find(V); assert(I != phiStates.end() && "lookup failed!"); return I->second; } static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { switch (stateA.getStatus()) { case PhiState::Unknown: return stateB; case PhiState::Base: assert(stateA.getBase() && "can't be null"); if (stateB.isUnknown()) return stateA; if (stateB.isBase()) { if (stateA.getBase() == stateB.getBase()) { assert(stateA == stateB && "equality broken!"); return stateA; } return PhiState(PhiState::Conflict); } assert(stateB.isConflict() && "only three states!"); return PhiState(PhiState::Conflict); case PhiState::Conflict: return stateA; } llvm_unreachable("only three states!"); } }; } /// For a given value or instruction, figure out what base ptr it's derived /// from. For gc objects, this is simply itself. On success, returns a value /// which is the base pointer. (This is reliable and can be used for /// relocation.) On failure, returns nullptr. static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, DenseSet &NewInsertedDefs) { Value *def = findBaseOrBDV(I, cache); if (isKnownBaseResult(def)) { return def; } // Here's the rough algorithm: // - For every SSA value, construct a mapping to either an actual base // pointer or a PHI which obscures the base pointer. // - Construct a mapping from PHI to unknown TOP state. Use an // optimistic algorithm to propagate base pointer information. Lattice // looks like: // UNKNOWN // b1 b2 b3 b4 // CONFLICT // When algorithm terminates, all PHIs will either have a single concrete // base or be in a conflict state. // - For every conflict, insert a dummy PHI node without arguments. Add // these to the base[Instruction] = BasePtr mapping. For every // non-conflict, add the actual base. // - For every conflict, add arguments for the base[a] of each input // arguments. // // Note: A simpler form of this would be to add the conflict form of all // PHIs without running the optimistic algorithm. This would be // analougous to pessimistic data flow and would likely lead to an // overall worse solution. ConflictStateMapTy states; states[def] = PhiState(); // Recursively fill in all phis & selects reachable from the initial one // for which we don't already know a definite base value for // TODO: This should be rewritten with a worklist bool done = false; while (!done) { done = true; // Since we're adding elements to 'states' as we run, we can't keep // iterators into the set. SmallVector Keys; Keys.reserve(states.size()); for (auto Pair : states) { Value *V = Pair.first; Keys.push_back(V); } for (Value *v : Keys) { assert(!isKnownBaseResult(v) && "why did it get added?"); if (PHINode *phi = dyn_cast(v)) { assert(phi->getNumIncomingValues() > 0 && "zero input phis are illegal"); for (Value *InVal : phi->incoming_values()) { Value *local = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } } } else if (SelectInst *sel = dyn_cast(v)) { Value *local = findBaseOrBDV(sel->getTrueValue(), cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } local = findBaseOrBDV(sel->getFalseValue(), cache); if (!isKnownBaseResult(local) && states.find(local) == states.end()) { states[local] = PhiState(); done = false; } } } } if (TraceLSP) { errs() << "States after initialization:\n"; for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; state.dump(); v->dump(); } } // TODO: come back and revisit the state transitions around inputs which // have reached conflict state. The current version seems too conservative. bool progress = true; while (progress) { #ifndef NDEBUG size_t oldSize = states.size(); #endif progress = false; // We're only changing keys in this loop, thus safe to keep iterators for (auto Pair : states) { MeetPhiStates calculateMeet(states); Value *v = Pair.first; assert(!isKnownBaseResult(v) && "why did it get added?"); if (SelectInst *select = dyn_cast(v)) { calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); } else for (Value *Val : cast(v)->incoming_values()) calculateMeet.meetWith(findBaseOrBDV(Val, cache)); PhiState oldState = states[v]; PhiState newState = calculateMeet.getResult(); if (oldState != newState) { progress = true; states[v] = newState; } } assert(oldSize <= states.size()); assert(oldSize == states.size() || progress); } if (TraceLSP) { errs() << "States after meet iteration:\n"; for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; state.dump(); v->dump(); } } // Insert Phis for all conflicts // We want to keep naming deterministic in the loop that follows, so // sort the keys before iteration. This is useful in allowing us to // write stable tests. Note that there is no invalidation issue here. SmallVector Keys; Keys.reserve(states.size()); for (auto Pair : states) { Value *V = Pair.first; Keys.push_back(V); } std::sort(Keys.begin(), Keys.end(), order_by_name); // TODO: adjust naming patterns to avoid this order of iteration dependency for (Value *V : Keys) { Instruction *v = cast(V); PhiState state = states[V]; assert(!isKnownBaseResult(v) && "why did it get added?"); assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); if (!state.isConflict()) continue; if (isa(v)) { int num_preds = std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); assert(num_preds > 0 && "how did we reach here"); PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); NewInsertedDefs.insert(phi); // Add metadata marking this as a base value auto *const_1 = ConstantInt::get( Type::getInt32Ty( v->getParent()->getParent()->getParent()->getContext()), 1); auto MDConst = ConstantAsMetadata::get(const_1); MDNode *md = MDNode::get( v->getParent()->getParent()->getParent()->getContext(), MDConst); phi->setMetadata("is_base_value", md); states[v] = PhiState(PhiState::Conflict, phi); } else { SelectInst *sel = cast(v); // The undef will be replaced later UndefValue *undef = UndefValue::get(sel->getType()); SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, undef, "base_select", sel); NewInsertedDefs.insert(basesel); // Add metadata marking this as a base value auto *const_1 = ConstantInt::get( Type::getInt32Ty( v->getParent()->getParent()->getParent()->getContext()), 1); auto MDConst = ConstantAsMetadata::get(const_1); MDNode *md = MDNode::get( v->getParent()->getParent()->getParent()->getContext(), MDConst); basesel->setMetadata("is_base_value", md); states[v] = PhiState(PhiState::Conflict, basesel); } } // Fixup all the inputs of the new PHIs for (auto Pair : states) { Instruction *v = cast(Pair.first); PhiState state = Pair.second; assert(!isKnownBaseResult(v) && "why did it get added?"); assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); if (!state.isConflict()) continue; if (PHINode *basephi = dyn_cast(state.getBase())) { PHINode *phi = cast(v); unsigned NumPHIValues = phi->getNumIncomingValues(); for (unsigned i = 0; i < NumPHIValues; i++) { Value *InVal = phi->getIncomingValue(i); BasicBlock *InBB = phi->getIncomingBlock(i); // If we've already seen InBB, add the same incoming value // we added for it earlier. The IR verifier requires phi // nodes with multiple entries from the same basic block // to have the same incoming value for each of those // entries. If we don't do this check here and basephi // has a different type than base, we'll end up adding two // bitcasts (and hence two distinct values) as incoming // values for the same basic block. int blockIndex = basephi->getBasicBlockIndex(InBB); if (blockIndex != -1) { Value *oldBase = basephi->getIncomingValue(blockIndex); basephi->addIncoming(oldBase, InBB); #ifndef NDEBUG Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); assert(NewInsertedDefs.count(base) && "should have already added this in a prev. iteration!"); } // In essense this assert states: the only way two // values incoming from the same basic block may be // different is by being different bitcasts of the same // value. A cleanup that remains TODO is changing // findBaseOrBDV to return an llvm::Value of the correct // type (and still remain pure). This will remove the // need to add bitcasts. assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && "sanity -- findBaseOrBDV should be pure!"); #endif continue; } // Find either the defining value for the PHI or the normal base for // a non-phi node Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); } assert(base && "can't be null"); // Must use original input BB since base may not be Instruction // The cast is needed since base traversal may strip away bitcasts if (base->getType() != basephi->getType()) { base = new BitCastInst(base, basephi->getType(), "cast", InBB->getTerminator()); NewInsertedDefs.insert(base); } basephi->addIncoming(base, InBB); } assert(basephi->getNumIncomingValues() == NumPHIValues); } else { SelectInst *basesel = cast(state.getBase()); SelectInst *sel = cast(v); // Operand 1 & 2 are true, false path respectively. TODO: refactor to // something more safe and less hacky. for (int i = 1; i <= 2; i++) { Value *InVal = sel->getOperand(i); // Find either the defining value for the PHI or the normal base for // a non-phi node Value *base = findBaseOrBDV(InVal, cache); if (!isKnownBaseResult(base)) { // Either conflict or base. assert(states.count(base)); base = states[base].getBase(); assert(base != nullptr && "unknown PhiState!"); } assert(base && "can't be null"); // Must use original input BB since base may not be Instruction // The cast is needed since base traversal may strip away bitcasts if (base->getType() != basesel->getType()) { base = new BitCastInst(base, basesel->getType(), "cast", basesel); NewInsertedDefs.insert(base); } basesel->setOperand(i, base); } } } // Cache all of our results so we can cheaply reuse them // NOTE: This is actually two caches: one of the base defining value // relation and one of the base pointer relation! FIXME for (auto item : states) { Value *v = item.first; Value *base = item.second.getBase(); assert(v && base); assert(!isKnownBaseResult(v) && "why did it get added?"); if (TraceLSP) { std::string fromstr = cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") : "none"; errs() << "Updating base value cache" << " for: " << (v->hasName() ? v->getName() : "") << " from: " << fromstr << " to: " << (base->hasName() ? base->getName() : "") << "\n"; } assert(isKnownBaseResult(base) && "must be something we 'know' is a base pointer"); if (cache.count(v)) { // Once we transition from the BDV relation being store in the cache to // the base relation being stored, it must be stable assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && "base relation should be stable"); } cache[v] = base; } assert(cache.find(def) != cache.end()); return cache[def]; } // For a set of live pointers (base and/or derived), identify the base // pointer of the object which they are derived from. This routine will // mutate the IR graph as needed to make the 'base' pointer live at the // definition site of 'derived'. This ensures that any use of 'derived' can // also use 'base'. This may involve the insertion of a number of // additional PHI nodes. // // preconditions: live is a set of pointer type Values // // side effects: may insert PHI nodes into the existing CFG, will preserve // CFG, will not remove or mutate any existing nodes // // post condition: PointerToBase contains one (derived, base) pair for every // pointer in live. Note that derived can be equal to base if the original // pointer was a base pointer. static void findBasePointers(const StatepointLiveSetTy &live, DenseMap &PointerToBase, DominatorTree *DT, DefiningValueMapTy &DVCache, DenseSet &NewInsertedDefs) { // For the naming of values inserted to be deterministic - which makes for // much cleaner and more stable tests - we need to assign an order to the // live values. DenseSets do not provide a deterministic order across runs. SmallVector Temp; Temp.insert(Temp.end(), live.begin(), live.end()); std::sort(Temp.begin(), Temp.end(), order_by_name); for (Value *ptr : Temp) { Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); assert(base && "failed to find base pointer"); PointerToBase[ptr] = base; assert((!isa(base) || !isa(ptr) || DT->dominates(cast(base)->getParent(), cast(ptr)->getParent())) && "The base we found better dominate the derived pointer"); // If you see this trip and like to live really dangerously, the code should // be correct, just with idioms the verifier can't handle. You can try // disabling the verifier at your own substaintial risk. assert(!isNullConstant(base) && "the relocation code needs adjustment to " "handle the relocation of a null pointer " "constant without causing false positives " "in the safepoint ir verifier."); } } /// Find the required based pointers (and adjust the live set) for the given /// parse point. static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, const CallSite &CS, PartiallyConstructedSafepointRecord &result) { DenseMap PointerToBase; DenseSet NewInsertedDefs; findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); if (PrintBasePointers) { // Note: Need to print these in a stable order since this is checked in // some tests. errs() << "Base Pairs (w/o Relocation):\n"; SmallVector Temp; Temp.reserve(PointerToBase.size()); for (auto Pair : PointerToBase) { Temp.push_back(Pair.first); } std::sort(Temp.begin(), Temp.end(), order_by_name); for (Value *Ptr : Temp) { Value *Base = PointerToBase[Ptr]; errs() << " derived %" << Ptr->getName() << " base %" << Base->getName() << "\n"; } } result.PointerToBase = PointerToBase; result.NewInsertedDefs = NewInsertedDefs; } /// Check for liveness of items in the insert defs and add them to the live /// and base pointer sets static void fixupLiveness(DominatorTree &DT, const CallSite &CS, const DenseSet &allInsertedDefs, PartiallyConstructedSafepointRecord &result) { Instruction *inst = CS.getInstruction(); auto liveset = result.liveset; auto PointerToBase = result.PointerToBase; auto is_live_gc_reference = [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; // For each new definition, check to see if a) the definition dominates the // instruction we're interested in, and b) one of the uses of that definition // is edge-reachable from the instruction we're interested in. This is the // same definition of liveness we used in the intial liveness analysis for (Value *newDef : allInsertedDefs) { if (liveset.count(newDef)) { // already live, no action needed continue; } // PERF: Use DT to check instruction domination might not be good for // compilation time, and we could change to optimal solution if this // turn to be a issue if (!DT.dominates(cast(newDef), inst)) { // can't possibly be live at inst continue; } if (is_live_gc_reference(*newDef)) { // Add the live new defs into liveset and PointerToBase liveset.insert(newDef); PointerToBase[newDef] = newDef; } } result.liveset = liveset; result.PointerToBase = PointerToBase; } static void fixupLiveReferences( Function &F, DominatorTree &DT, Pass *P, const DenseSet &allInsertedDefs, ArrayRef toUpdate, MutableArrayRef records) { for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; const CallSite &CS = toUpdate[i]; fixupLiveness(DT, CS, allInsertedDefs, info); } } // Normalize basic block to make it ready to be target of invoke statepoint. // It means spliting it to have single predecessor. Return newly created BB // ready to be successor of invoke statepoint. static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, Pass *P) { BasicBlock *ret = BB; if (!BB->getUniquePredecessor()) { ret = SplitBlockPredecessors(BB, InvokeParent, ""); } // Another requirement for such basic blocks is to not have any phi nodes. // Since we just ensured that new BB will have single predecessor, // all phi nodes in it will have one value. Here it would be naturall place // to // remove them all. But we can not do this because we are risking to remove // one of the values stored in liveset of another statepoint. We will do it // later after placing all safepoints. return ret; } static int find_index(ArrayRef livevec, Value *val) { auto itr = std::find(livevec.begin(), livevec.end(), val); assert(livevec.end() != itr); size_t index = std::distance(livevec.begin(), itr); assert(index < livevec.size()); return index; } // Create new attribute set containing only attributes which can be transfered // from original call to the safepoint. static AttributeSet legalizeCallAttributes(AttributeSet AS) { AttributeSet ret; for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { unsigned index = AS.getSlotIndex(Slot); if (index == AttributeSet::ReturnIndex || index == AttributeSet::FunctionIndex) { for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; ++it) { Attribute attr = *it; // Do not allow certain attributes - just skip them // Safepoint can not be read only or read none. if (attr.hasAttribute(Attribute::ReadNone) || attr.hasAttribute(Attribute::ReadOnly)) continue; ret = ret.addAttributes( AS.getContext(), index, AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); } } // Just skip parameter attributes for now } return ret; } /// Helper function to place all gc relocates necessary for the given /// statepoint. /// Inputs: /// liveVariables - list of variables to be relocated. /// liveStart - index of the first live variable. /// basePtrs - base pointers. /// statepointToken - statepoint instruction to which relocates should be /// bound. /// Builder - Llvm IR builder to be used to construct new calls. static void CreateGCRelocates(ArrayRef liveVariables, const int liveStart, ArrayRef basePtrs, Instruction *statepointToken, IRBuilder<> Builder) { SmallVector NewDefs; NewDefs.reserve(liveVariables.size()); Module *M = statepointToken->getParent()->getParent()->getParent(); for (unsigned i = 0; i < liveVariables.size(); i++) { // We generate a (potentially) unique declaration for every pointer type // combination. This results is some blow up the function declarations in // the IR, but removes the need for argument bitcasts which shrinks the IR // greatly and makes it much more readable. SmallVector types; // one per 'any' type types.push_back(liveVariables[i]->getType()); // result type Value *gc_relocate_decl = Intrinsic::getDeclaration( M, Intrinsic::experimental_gc_relocate, types); // Generate the gc.relocate call and save the result Value *baseIdx = ConstantInt::get(Type::getInt32Ty(M->getContext()), liveStart + find_index(liveVariables, basePtrs[i])); Value *liveIdx = ConstantInt::get( Type::getInt32Ty(M->getContext()), liveStart + find_index(liveVariables, liveVariables[i])); // only specify a debug name if we can give a useful one Value *reloc = Builder.CreateCall3( gc_relocate_decl, statepointToken, baseIdx, liveIdx, liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" : ""); // Trick CodeGen into thinking there are lots of free registers at this // fake call. cast(reloc)->setCallingConv(CallingConv::Cold); NewDefs.push_back(cast(reloc)); } assert(NewDefs.size() == liveVariables.size() && "missing or extra redefinition at safepoint"); } static void makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ const SmallVectorImpl &basePtrs, const SmallVectorImpl &liveVariables, Pass *P, PartiallyConstructedSafepointRecord &result) { assert(basePtrs.size() == liveVariables.size()); assert(isStatepoint(CS) && "This method expects to be rewriting a statepoint"); BasicBlock *BB = CS.getInstruction()->getParent(); assert(BB); Function *F = BB->getParent(); assert(F && "must be set"); Module *M = F->getParent(); (void)M; assert(M && "must be set"); // We're not changing the function signature of the statepoint since the gc // arguments go into the var args section. Function *gc_statepoint_decl = CS.getCalledFunction(); // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. Instruction *insertBefore = CS.getInstruction(); IRBuilder<> Builder(insertBefore); // Copy all of the arguments from the original statepoint - this includes the // target, call args, and deopt args SmallVector args; args.insert(args.end(), CS.arg_begin(), CS.arg_end()); // TODO: Clear the 'needs rewrite' flag // add all the pointers to be relocated (gc arguments) // Capture the start of the live variable list for use in the gc_relocates const int live_start = args.size(); args.insert(args.end(), liveVariables.begin(), liveVariables.end()); // Create the statepoint given all the arguments Instruction *token = nullptr; AttributeSet return_attributes; if (CS.isCall()) { CallInst *toReplace = cast(CS.getInstruction()); CallInst *call = Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); call->setTailCall(toReplace->isTailCall()); call->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. call->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = call; // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete) BasicBlock::iterator next(toReplace); assert(BB->end() != next && "not a terminator, must have next"); next++; Instruction *IP = &*(next); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(IP->getDebugLoc()); } else { InvokeInst *toReplace = cast(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. InvokeInst *invoke = InvokeInst::Create( gc_statepoint_decl, toReplace->getNormalDest(), toReplace->getUnwindDest(), args, "", toReplace->getParent()); invoke->setCallingConv(toReplace->getCallingConv()); // Currently we will fail on parameter attributes and on certain // function attributes. AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); // In case if we can handle this set of sttributes - set up function attrs // directly on statepoint and return attrs later for gc_result intrinsic. invoke->setAttributes(new_attrs.getFnAttributes()); return_attributes = new_attrs.getRetAttributes(); token = invoke; // Generate gc relocates in exceptional path BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( toReplace->getUnwindDest(), invoke->getParent(), P); Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); Builder.SetInsertPoint(IP); Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); // Extract second element from landingpad return value. We will attach // exceptional gc relocates to it. const unsigned idx = 1; Instruction *exceptional_token = cast(Builder.CreateExtractValue( unwindBlock->getLandingPadInst(), idx, "relocate_token")); result.UnwindToken = exceptional_token; // Just throw away return value. We will use the one we got for normal // block. (void)CreateGCRelocates(liveVariables, live_start, basePtrs, exceptional_token, Builder); // Generate gc relocates and returns for normal block BasicBlock *normalDest = normalizeBBForInvokeSafepoint( toReplace->getNormalDest(), invoke->getParent(), P); IP = &*(normalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); // gc relocates will be generated later as if it were regular call // statepoint } assert(token); // Take the name of the original value call if it had one. token->takeName(CS.getInstruction()); // The GCResult is already inserted, we just need to find it #ifndef NDEBUG Instruction *toReplace = CS.getInstruction(); assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && "only valid use before rewrite is gc.result"); assert(!toReplace->hasOneUse() || isGCResult(cast(*toReplace->user_begin()))); #endif // Update the gc.result of the original statepoint (if any) to use the newly // inserted statepoint. This is safe to do here since the token can't be // considered a live reference. CS.getInstruction()->replaceAllUsesWith(token); result.StatepointToken = token; // Second, create a gc.relocate for every live variable CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); } namespace { struct name_ordering { Value *base; Value *derived; bool operator()(name_ordering const &a, name_ordering const &b) { return -1 == a.derived->getName().compare(b.derived->getName()); } }; } static void stablize_order(SmallVectorImpl &basevec, SmallVectorImpl &livevec) { assert(basevec.size() == livevec.size()); SmallVector temp; for (size_t i = 0; i < basevec.size(); i++) { name_ordering v; v.base = basevec[i]; v.derived = livevec[i]; temp.push_back(v); } std::sort(temp.begin(), temp.end(), name_ordering()); for (size_t i = 0; i < basevec.size(); i++) { basevec[i] = temp[i].base; livevec[i] = temp[i].derived; } } // Replace an existing gc.statepoint with a new one and a set of gc.relocates // which make the relocations happening at this safepoint explicit. // // WARNING: Does not do any fixup to adjust users of the original live // values. That's the callers responsibility. static void makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, PartiallyConstructedSafepointRecord &result) { auto liveset = result.liveset; auto PointerToBase = result.PointerToBase; // Convert to vector for efficient cross referencing. SmallVector basevec, livevec; livevec.reserve(liveset.size()); basevec.reserve(liveset.size()); for (Value *L : liveset) { livevec.push_back(L); assert(PointerToBase.find(L) != PointerToBase.end()); Value *base = PointerToBase[L]; basevec.push_back(base); } assert(livevec.size() == basevec.size()); // To make the output IR slightly more stable (for use in diffs), ensure a // fixed order of the values in the safepoint (by sorting the value name). // The order is otherwise meaningless. stablize_order(basevec, livevec); // Do the actual rewriting and delete the old statepoint makeStatepointExplicitImpl(CS, basevec, livevec, P, result); CS.getInstruction()->eraseFromParent(); } // Helper function for the relocationViaAlloca. // It receives iterator to the statepoint gc relocates and emits store to the // assigned // location (via allocaMap) for the each one of them. // Add visited values into the visitedLiveValues set we will later use them // for sanity check. static void insertRelocationStores(iterator_range gcRelocs, DenseMap &allocaMap, DenseSet &visitedLiveValues) { for (User *U : gcRelocs) { if (!isa(U)) continue; IntrinsicInst *relocatedValue = cast(U); // We only care about relocates if (relocatedValue->getIntrinsicID() != Intrinsic::experimental_gc_relocate) { continue; } GCRelocateOperands relocateOperands(relocatedValue); Value *originalValue = const_cast(relocateOperands.derivedPtr()); assert(allocaMap.count(originalValue)); Value *alloca = allocaMap[originalValue]; // Emit store into the related alloca StoreInst *store = new StoreInst(relocatedValue, alloca); store->insertAfter(relocatedValue); #ifndef NDEBUG visitedLiveValues.insert(originalValue); #endif } } /// do all the relocation update via allocas and mem2reg static void relocationViaAlloca( Function &F, DominatorTree &DT, ArrayRef live, ArrayRef records) { #ifndef NDEBUG int initialAllocaNum = 0; // record initial number of allocas for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; itr++) { if (isa(*itr)) initialAllocaNum++; } #endif // TODO-PERF: change data structures, reserve DenseMap allocaMap; SmallVector PromotableAllocas; PromotableAllocas.reserve(live.size()); // emit alloca for each live gc pointer for (unsigned i = 0; i < live.size(); i++) { Value *liveValue = live[i]; AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", F.getEntryBlock().getFirstNonPHI()); allocaMap[liveValue] = alloca; PromotableAllocas.push_back(alloca); } // The next two loops are part of the same conceptual operation. We need to // insert a store to the alloca after the original def and at each // redefinition. We need to insert a load before each use. These are split // into distinct loops for performance reasons. // update gc pointer after each statepoint // either store a relocated value or null (if no relocated value found for // this gc pointer and it is not a gc_result) // this must happen before we update the statepoint with load of alloca // otherwise we lose the link between statepoint and old def for (size_t i = 0; i < records.size(); i++) { const struct PartiallyConstructedSafepointRecord &info = records[i]; Value *Statepoint = info.StatepointToken; // This will be used for consistency check DenseSet visitedLiveValues; // Insert stores for normal statepoint gc relocates insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); // In case if it was invoke statepoint // we will insert stores for exceptional path gc relocates. if (isa(Statepoint)) { insertRelocationStores(info.UnwindToken->users(), allocaMap, visitedLiveValues); } #ifndef NDEBUG // As a debuging aid, pretend that an unrelocated pointer becomes null at // the gc.statepoint. This will turn some subtle GC problems into slightly // easier to debug SEGVs SmallVector ToClobber; for (auto Pair : allocaMap) { Value *Def = Pair.first; AllocaInst *Alloca = cast(Pair.second); // This value was relocated if (visitedLiveValues.count(Def)) { continue; } ToClobber.push_back(Alloca); } auto InsertClobbersAt = [&](Instruction *IP) { for (auto *AI : ToClobber) { auto AIType = cast(AI->getType()); auto PT = cast(AIType->getElementType()); Constant *CPN = ConstantPointerNull::get(PT); StoreInst *store = new StoreInst(CPN, AI); store->insertBefore(IP); } }; // Insert the clobbering stores. These may get intermixed with the // gc.results and gc.relocates, but that's fine. if (auto II = dyn_cast(Statepoint)) { InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); } else { BasicBlock::iterator Next(cast(Statepoint)); Next++; InsertClobbersAt(Next); } #endif } // update use with load allocas and add store for gc_relocated for (auto Pair : allocaMap) { Value *def = Pair.first; Value *alloca = Pair.second; // we pre-record the uses of allocas so that we dont have to worry about // later update // that change the user information. SmallVector uses; // PERF: trade a linear scan for repeated reallocation uses.reserve(std::distance(def->user_begin(), def->user_end())); for (User *U : def->users()) { if (!isa(U)) { // If the def has a ConstantExpr use, then the def is either a // ConstantExpr use itself or null. In either case // (recursively in the first, directly in the second), the oop // it is ultimately dependent on is null and this particular // use does not need to be fixed up. uses.push_back(cast(U)); } } std::sort(uses.begin(), uses.end()); auto last = std::unique(uses.begin(), uses.end()); uses.erase(last, uses.end()); for (Instruction *use : uses) { if (isa(use)) { PHINode *phi = cast(use); for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { if (def == phi->getIncomingValue(i)) { LoadInst *load = new LoadInst( alloca, "", phi->getIncomingBlock(i)->getTerminator()); phi->setIncomingValue(i, load); } } } else { LoadInst *load = new LoadInst(alloca, "", use); use->replaceUsesOfWith(def, load); } } // emit store for the initial gc value // store must be inserted after load, otherwise store will be in alloca's // use list and an extra load will be inserted before it StoreInst *store = new StoreInst(def, alloca); if (Instruction *inst = dyn_cast(def)) { if (InvokeInst *invoke = dyn_cast(inst)) { // InvokeInst is a TerminatorInst so the store need to be inserted // into its normal destination block. BasicBlock *normalDest = invoke->getNormalDest(); store->insertBefore(normalDest->getFirstNonPHI()); } else { assert(!inst->isTerminator() && "The only TerminatorInst that can produce a value is " "InvokeInst which is handled above."); store->insertAfter(inst); } } else { assert((isa(def) || isa(def) || (isa(def) && cast(def)->isNullValue())) && "Must be argument or global"); store->insertAfter(cast(alloca)); } } assert(PromotableAllocas.size() == live.size() && "we must have the same allocas with lives"); if (!PromotableAllocas.empty()) { // apply mem2reg to promote alloca to SSA PromoteMemToReg(PromotableAllocas, DT); } #ifndef NDEBUG for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; itr++) { if (isa(*itr)) initialAllocaNum--; } assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); #endif } /// Implement a unique function which doesn't require we sort the input /// vector. Doing so has the effect of changing the output of a couple of /// tests in ways which make them less useful in testing fused safepoints. template static void unique_unsorted(SmallVectorImpl &Vec) { DenseSet Seen; SmallVector TempVec; TempVec.reserve(Vec.size()); for (auto Element : Vec) TempVec.push_back(Element); Vec.clear(); for (auto V : TempVec) { if (Seen.insert(V).second) { Vec.push_back(V); } } } static Function *getUseHolder(Module &M) { FunctionType *ftype = FunctionType::get(Type::getVoidTy(M.getContext()), true); Function *Func = cast(M.getOrInsertFunction("__tmp_use", ftype)); return Func; } /// Insert holders so that each Value is obviously live through the entire /// liftetime of the call. static void insertUseHolderAfter(CallSite &CS, const ArrayRef Values, SmallVectorImpl &holders) { Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); Function *Func = getUseHolder(*M); if (CS.isCall()) { // For call safepoints insert dummy calls right after safepoint BasicBlock::iterator next(CS.getInstruction()); next++; CallInst *base_holder = CallInst::Create(Func, Values, "", next); holders.push_back(base_holder); } else if (CS.isInvoke()) { // For invoke safepooints insert dummy calls both in normal and // exceptional destination blocks InvokeInst *invoke = cast(CS.getInstruction()); CallInst *normal_holder = CallInst::Create( Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); CallInst *unwind_holder = CallInst::Create( Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); holders.push_back(normal_holder); holders.push_back(unwind_holder); } else llvm_unreachable("unsupported call type"); } static void findLiveReferences( Function &F, DominatorTree &DT, Pass *P, ArrayRef toUpdate, MutableArrayRef records) { for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; const CallSite &CS = toUpdate[i]; analyzeParsePointLiveness(DT, CS, info); } } static void addBasesAsLiveValues(StatepointLiveSetTy &liveset, DenseMap &PointerToBase) { // Identify any base pointers which are used in this safepoint, but not // themselves relocated. We need to relocate them so that later inserted // safepoints can get the properly relocated base register. DenseSet missing; for (Value *L : liveset) { assert(PointerToBase.find(L) != PointerToBase.end()); Value *base = PointerToBase[L]; assert(base); if (liveset.find(base) == liveset.end()) { assert(PointerToBase.find(base) == PointerToBase.end()); // uniqued by set insert missing.insert(base); } } // Note that we want these at the end of the list, otherwise // register placement gets screwed up once we lower to STATEPOINT // instructions. This is an utter hack, but there doesn't seem to be a // better one. for (Value *base : missing) { assert(base); liveset.insert(base); PointerToBase[base] = base; } assert(liveset.size() == PointerToBase.size()); } static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, SmallVectorImpl &toUpdate) { #ifndef NDEBUG // sanity check the input std::set uniqued; uniqued.insert(toUpdate.begin(), toUpdate.end()); assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); for (size_t i = 0; i < toUpdate.size(); i++) { CallSite &CS = toUpdate[i]; assert(CS.getInstruction()->getParent()->getParent() == &F); assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); } #endif // A list of dummy calls added to the IR to keep various values obviously // live in the IR. We'll remove all of these when done. SmallVector holders; // Insert a dummy call with all of the arguments to the vm_state we'll need // for the actual safepoint insertion. This ensures reference arguments in // the deopt argument list are considered live through the safepoint (and // thus makes sure they get relocated.) for (size_t i = 0; i < toUpdate.size(); i++) { CallSite &CS = toUpdate[i]; Statepoint StatepointCS(CS); SmallVector DeoptValues; for (Use &U : StatepointCS.vm_state_args()) { Value *Arg = cast(&U); if (isGCPointerType(Arg->getType())) DeoptValues.push_back(Arg); } insertUseHolderAfter(CS, DeoptValues, holders); } SmallVector records; records.reserve(toUpdate.size()); for (size_t i = 0; i < toUpdate.size(); i++) { struct PartiallyConstructedSafepointRecord info; records.push_back(info); } assert(records.size() == toUpdate.size()); // A) Identify all gc pointers which are staticly live at the given call // site. findLiveReferences(F, DT, P, toUpdate, records); // B) Find the base pointers for each live pointer /* scope for caching */ { // Cache the 'defining value' relation used in the computation and // insertion of base phis and selects. This ensures that we don't insert // large numbers of duplicate base_phis. DefiningValueMapTy DVCache; for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; findBasePointers(DT, DVCache, CS, info); } } // end of cache scope // The base phi insertion logic (for any safepoint) may have inserted new // instructions which are now live at some safepoint. The simplest such // example is: // loop: // phi a <-- will be a new base_phi here // safepoint 1 <-- that needs to be live here // gep a + 1 // safepoint 2 // br loop DenseSet allInsertedDefs; for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; allInsertedDefs.insert(info.NewInsertedDefs.begin(), info.NewInsertedDefs.end()); } // We insert some dummy calls after each safepoint to definitely hold live // the base pointers which were identified for that safepoint. We'll then // ask liveness for _every_ base inserted to see what is now live. Then we // remove the dummy calls. holders.reserve(holders.size() + records.size()); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; SmallVector Bases; for (auto Pair : info.PointerToBase) { Bases.push_back(Pair.second); } insertUseHolderAfter(CS, Bases, holders); } // Add the bases explicitly to the live vector set. This may result in a few // extra relocations, but the base has to be available whenever a pointer // derived from it is used. Thus, we need it to be part of the statepoint's // gc arguments list. TODO: Introduce an explicit notion (in the following // code) of the GC argument list as seperate from the live Values at a // given statepoint. for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; addBasesAsLiveValues(info.liveset, info.PointerToBase); } // If we inserted any new values, we need to adjust our notion of what is // live at a particular safepoint. if (!allInsertedDefs.empty()) { fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); } if (PrintBasePointers) { for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; errs() << "Base Pairs: (w/Relocation)\n"; for (auto Pair : info.PointerToBase) { errs() << " derived %" << Pair.first->getName() << " base %" << Pair.second->getName() << "\n"; } } } for (size_t i = 0; i < holders.size(); i++) { holders[i]->eraseFromParent(); holders[i] = nullptr; } holders.clear(); // Now run through and replace the existing statepoints with new ones with // the live variables listed. We do not yet update uses of the values being // relocated. We have references to live variables that need to // survive to the last iteration of this loop. (By construction, the // previous statepoint can not be a live variable, thus we can and remove // the old statepoint calls as we go.) for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; CallSite &CS = toUpdate[i]; makeStatepointExplicit(DT, CS, P, info); } toUpdate.clear(); // prevent accident use of invalid CallSites // In case if we inserted relocates in a different basic block than the // original safepoint (this can happen for invokes). We need to be sure that // original values were not used in any of the phi nodes at the // beginning of basic block containing them. Because we know that all such // blocks will have single predecessor we can safely assume that all phi // nodes have single entry (because of normalizeBBForInvokeSafepoint). // Just remove them all here. for (size_t i = 0; i < records.size(); i++) { Instruction *I = records[i].StatepointToken; if (InvokeInst *invoke = dyn_cast(I)) { FoldSingleEntryPHINodes(invoke->getNormalDest()); assert(!isa(invoke->getNormalDest()->begin())); FoldSingleEntryPHINodes(invoke->getUnwindDest()); assert(!isa(invoke->getUnwindDest()->begin())); } } // Do all the fixups of the original live variables to their relocated selves SmallVector live; for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; // We can't simply save the live set from the original insertion. One of // the live values might be the result of a call which needs a safepoint. // That Value* no longer exists and we need to use the new gc_result. // Thankfully, the liveset is embedded in the statepoint (and updated), so // we just grab that. Statepoint statepoint(info.StatepointToken); live.insert(live.end(), statepoint.gc_args_begin(), statepoint.gc_args_end()); } unique_unsorted(live); #ifndef NDEBUG // sanity check for (auto ptr : live) { assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); } #endif relocationViaAlloca(F, DT, live, records); return !records.empty(); } /// Returns true if this function should be rewritten by this pass. The main /// point of this function is as an extension point for custom logic. static bool shouldRewriteStatepointsIn(Function &F) { // TODO: This should check the GCStrategy if (F.hasGC()) { const std::string StatepointExampleName("statepoint-example"); return StatepointExampleName == F.getGC(); } else return false; } bool RewriteStatepointsForGC::runOnFunction(Function &F) { // Nothing to do for declarations. if (F.isDeclaration() || F.empty()) return false; // Policy choice says not to rewrite - the most common reason is that we're // compiling code without a GCStrategy. if (!shouldRewriteStatepointsIn(F)) return false; // Gather all the statepoints which need rewritten. SmallVector ParsePointNeeded; for (Instruction &I : inst_range(F)) { // TODO: only the ones with the flag set! if (isStatepoint(I)) ParsePointNeeded.push_back(CallSite(&I)); } // Return early if no work to do. if (ParsePointNeeded.empty()) return false; DominatorTree &DT = getAnalysis().getDomTree(); return insertParsePoints(F, DT, this, ParsePointNeeded); }