//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements sparse conditional constant propagation and merging: // // Specifically, this: // * Assumes values are constant unless proven otherwise // * Assumes BasicBlocks are dead unless proven otherwise // * Proves values to be constant, and replaces them with constants // * Proves conditional branches to be unconditional // // Notice that: // * This pass has a habit of making definitions be dead. It is a good idea // to to run a DCE pass sometime after running this pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sccp" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/IPO.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; STATISTIC(NumInstRemoved, "Number of instructions removed"); STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); namespace { /// LatticeVal class - This class represents the different lattice values that /// an LLVM value may occupy. It is a simple class with value semantics. /// class VISIBILITY_HIDDEN LatticeVal { enum { /// undefined - This LLVM Value has no known value yet. undefined, /// constant - This LLVM Value has a specific constant value. constant, /// forcedconstant - This LLVM Value was thought to be undef until /// ResolvedUndefsIn. This is treated just like 'constant', but if merged /// with another (different) constant, it goes to overdefined, instead of /// asserting. forcedconstant, /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined } LatticeValue; // The current lattice position Constant *ConstantVal; // If Constant value, the current value public: inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} // markOverdefined - Return true if this is a new status to be in... inline bool markOverdefined() { if (LatticeValue != overdefined) { LatticeValue = overdefined; return true; } return false; } // markConstant - Return true if this is a new status for us. inline bool markConstant(Constant *V) { if (LatticeValue != constant) { if (LatticeValue == undefined) { LatticeValue = constant; assert(V && "Marking constant with NULL"); ConstantVal = V; } else { assert(LatticeValue == forcedconstant && "Cannot move from overdefined to constant!"); // Stay at forcedconstant if the constant is the same. if (V == ConstantVal) return false; // Otherwise, we go to overdefined. Assumptions made based on the // forced value are possibly wrong. Assuming this is another constant // could expose a contradiction. LatticeValue = overdefined; } return true; } else { assert(ConstantVal == V && "Marking constant with different value"); } return false; } inline void markForcedConstant(Constant *V) { assert(LatticeValue == undefined && "Can't force a defined value!"); LatticeValue = forcedconstant; ConstantVal = V; } inline bool isUndefined() const { return LatticeValue == undefined; } inline bool isConstant() const { return LatticeValue == constant || LatticeValue == forcedconstant; } inline bool isOverdefined() const { return LatticeValue == overdefined; } inline Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return ConstantVal; } }; //===----------------------------------------------------------------------===// // /// SCCPSolver - This class is a general purpose solver for Sparse Conditional /// Constant Propagation. /// class SCCPSolver : public InstVisitor { SmallSet BBExecutable;// The basic blocks that are executable std::map ValueState; // The state each value is in. /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes /// overdefined, it's entry is simply removed from this map. DenseMap TrackedGlobals; /// TrackedFunctionRetVals - If we are tracking arguments into and the return /// value out of a function, it will have an entry in this map, indicating /// what the known return value for the function is. DenseMap TrackedFunctionRetVals; // The reason for two worklists is that overdefined is the lowest state // on the lattice, and moving things to overdefined as fast as possible // makes SCCP converge much faster. // By having a separate worklist, we accomplish this because everything // possibly overdefined will become overdefined at the soonest possible // point. std::vector OverdefinedInstWorkList; std::vector InstWorkList; std::vector BBWorkList; // The BasicBlock work list /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not /// overdefined, despite the fact that the PHI node is overdefined. std::multimap UsersOfOverdefinedPHIs; /// KnownFeasibleEdges - Entries in this set are edges which have already had /// PHI nodes retriggered. typedef std::pair Edge; std::set KnownFeasibleEdges; public: /// MarkBlockExecutable - This method can be used by clients to mark all of /// the blocks that are known to be intrinsically live in the processed unit. void MarkBlockExecutable(BasicBlock *BB) { DOUT << "Marking Block Executable: " << BB->getName() << "\n"; BBExecutable.insert(BB); // Basic block is executable! BBWorkList.push_back(BB); // Add the block to the work list! } /// TrackValueOfGlobalVariable - Clients can use this method to /// inform the SCCPSolver that it should track loads and stores to the /// specified global variable if it can. This is only legal to call if /// performing Interprocedural SCCP. void TrackValueOfGlobalVariable(GlobalVariable *GV) { const Type *ElTy = GV->getType()->getElementType(); if (ElTy->isFirstClassType()) { LatticeVal &IV = TrackedGlobals[GV]; if (!isa(GV->getInitializer())) IV.markConstant(GV->getInitializer()); } } /// AddTrackedFunction - If the SCCP solver is supposed to track calls into /// and out of the specified function (which cannot have its address taken), /// this method must be called. void AddTrackedFunction(Function *F) { assert(F->hasInternalLinkage() && "Can only track internal functions!"); // Add an entry, F -> undef. TrackedFunctionRetVals[F]; } /// Solve - Solve for constants and executable blocks. /// void Solve(); /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. bool ResolvedUndefsIn(Function &F); /// getExecutableBlocks - Once we have solved for constants, return the set of /// blocks that is known to be executable. SmallSet &getExecutableBlocks() { return BBExecutable; } /// getValueMapping - Once we have solved for constants, return the mapping of /// LLVM values to LatticeVals. std::map &getValueMapping() { return ValueState; } /// getTrackedFunctionRetVals - Get the inferred return value map. /// const DenseMap &getTrackedFunctionRetVals() { return TrackedFunctionRetVals; } /// getTrackedGlobals - Get and return the set of inferred initializers for /// global variables. const DenseMap &getTrackedGlobals() { return TrackedGlobals; } inline void markOverdefined(Value *V) { markOverdefined(ValueState[V], V); } private: // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that // the users of the instruction are updated later. // inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { if (IV.markConstant(C)) { DOUT << "markConstant: " << *C << ": " << *V; InstWorkList.push_back(V); } } inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { IV.markForcedConstant(C); DOUT << "markForcedConstant: " << *C << ": " << *V; InstWorkList.push_back(V); } inline void markConstant(Value *V, Constant *C) { markConstant(ValueState[V], V, C); } // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. inline void markOverdefined(LatticeVal &IV, Value *V) { if (IV.markOverdefined()) { DEBUG(DOUT << "markOverdefined: "; if (Function *F = dyn_cast(V)) DOUT << "Function '" << F->getName() << "'\n"; else DOUT << *V); // Only instructions go on the work list OverdefinedInstWorkList.push_back(V); } } inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { if (IV.isOverdefined() || MergeWithV.isUndefined()) return; // Noop. if (MergeWithV.isOverdefined()) markOverdefined(IV, V); else if (IV.isUndefined()) markConstant(IV, V, MergeWithV.getConstant()); else if (IV.getConstant() != MergeWithV.getConstant()) markOverdefined(IV, V); } inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { return mergeInValue(ValueState[V], V, MergeWithV); } // getValueState - Return the LatticeVal object that corresponds to the value. // This function is necessary because not all values should start out in the // underdefined state... Argument's should be overdefined, and // constants should be marked as constants. If a value is not known to be an // Instruction object, then use this accessor to get its value from the map. // inline LatticeVal &getValueState(Value *V) { std::map::iterator I = ValueState.find(V); if (I != ValueState.end()) return I->second; // Common case, in the map if (Constant *C = dyn_cast(V)) { if (isa(V)) { // Nothing to do, remain undefined. } else { LatticeVal &LV = ValueState[C]; LV.markConstant(C); // Constants are constant return LV; } } // All others are underdefined by default... return ValueState[V]; } // markEdgeExecutable - Mark a basic block as executable, adding it to the BB // work list if it is not already executable... // void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) return; // This edge is already known to be executable! if (BBExecutable.count(Dest)) { DOUT << "Marking Edge Executable: " << Source->getName() << " -> " << Dest->getName() << "\n"; // The destination is already executable, but we just made an edge // feasible that wasn't before. Revisit the PHI nodes in the block // because they have potentially new operands. for (BasicBlock::iterator I = Dest->begin(); isa(I); ++I) visitPHINode(*cast(I)); } else { MarkBlockExecutable(Dest); } } // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void getFeasibleSuccessors(TerminatorInst &TI, SmallVector &Succs); // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible... // bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); // OperandChangedState - This method is invoked on all of the users of an // instruction that was just changed state somehow.... Based on this // information, we need to update the specified user of this instruction. // void OperandChangedState(User *U) { // Only instructions use other variable values! Instruction &I = cast(*U); if (BBExecutable.count(I.getParent())) // Inst is executable? visit(I); } private: friend class InstVisitor; // visit implementations - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. // void visitPHINode(PHINode &I); // Terminators void visitReturnInst(ReturnInst &I); void visitTerminatorInst(TerminatorInst &TI); void visitCastInst(CastInst &I); void visitSelectInst(SelectInst &I); void visitBinaryOperator(Instruction &I); void visitCmpInst(CmpInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitInsertElementInst(InsertElementInst &I); void visitShuffleVectorInst(ShuffleVectorInst &I); // Instructions that cannot be folded away... void visitStoreInst (Instruction &I); void visitLoadInst (LoadInst &I); void visitGetElementPtrInst(GetElementPtrInst &I); void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } void visitInvokeInst (InvokeInst &II) { visitCallSite(CallSite::get(&II)); visitTerminatorInst(II); } void visitCallSite (CallSite CS); void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } void visitAllocationInst(Instruction &I) { markOverdefined(&I); } void visitVANextInst (Instruction &I) { markOverdefined(&I); } void visitVAArgInst (Instruction &I) { markOverdefined(&I); } void visitFreeInst (Instruction &I) { /*returns void*/ } void visitInstruction(Instruction &I) { // If a new instruction is added to LLVM that we don't handle... cerr << "SCCP: Don't know how to handle: " << I; markOverdefined(&I); // Just in case } }; } // end anonymous namespace // getFeasibleSuccessors - Return a vector of booleans to indicate which // successors are reachable from a given terminator instruction. // void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, SmallVector &Succs) { Succs.resize(TI.getNumSuccessors()); if (BranchInst *BI = dyn_cast(&TI)) { if (BI->isUnconditional()) { Succs[0] = true; } else { LatticeVal &BCValue = getValueState(BI->getCondition()); if (BCValue.isOverdefined() || (BCValue.isConstant() && !isa(BCValue.getConstant()))) { // Overdefined condition variables, and branches on unfoldable constant // conditions, mean the branch could go either way. Succs[0] = Succs[1] = true; } else if (BCValue.isConstant()) { // Constant condition variables mean the branch can only go a single way Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; } } } else if (isa(&TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; } else if (SwitchInst *SI = dyn_cast(&TI)) { LatticeVal &SCValue = getValueState(SI->getCondition()); if (SCValue.isOverdefined() || // Overdefined condition? (SCValue.isConstant() && !isa(SCValue.getConstant()))) { // All destinations are executable! Succs.assign(TI.getNumSuccessors(), true); } else if (SCValue.isConstant()) { Constant *CPV = SCValue.getConstant(); // Make sure to skip the "default value" which isn't a value for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... Succs[i] = true; return; } } // Constant value not equal to any of the branches... must execute // default branch then... Succs[0] = true; } } else { assert(0 && "SCCP: Don't know how to handle this terminator!"); } } // isEdgeFeasible - Return true if the control flow edge from the 'From' basic // block to the 'To' basic block is currently feasible... // bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { assert(BBExecutable.count(To) && "Dest should always be alive!"); // Make sure the source basic block is executable!! if (!BBExecutable.count(From)) return false; // Check to make sure this edge itself is actually feasible now... TerminatorInst *TI = From->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (BI->isUnconditional()) return true; else { LatticeVal &BCValue = getValueState(BI->getCondition()); if (BCValue.isOverdefined()) { // Overdefined condition variables mean the branch could go either way. return true; } else if (BCValue.isConstant()) { // Not branching on an evaluatable constant? if (!isa(BCValue.getConstant())) return true; // Constant condition variables mean the branch can only go a single way return BI->getSuccessor(BCValue.getConstant() == ConstantInt::getFalse()) == To; } return false; } } else if (isa(TI)) { // Invoke instructions successors are always executable. return true; } else if (SwitchInst *SI = dyn_cast(TI)) { LatticeVal &SCValue = getValueState(SI->getCondition()); if (SCValue.isOverdefined()) { // Overdefined condition? // All destinations are executable! return true; } else if (SCValue.isConstant()) { Constant *CPV = SCValue.getConstant(); if (!isa(CPV)) return true; // not a foldable constant? // Make sure to skip the "default value" which isn't a value for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... return SI->getSuccessor(i) == To; // Constant value not equal to any of the branches... must execute // default branch then... return SI->getDefaultDest() == To; } return false; } else { cerr << "Unknown terminator instruction: " << *TI; abort(); } } // visit Implementations - Something changed in this instruction... Either an // operand made a transition, or the instruction is newly executable. Change // the value type of I to reflect these changes if appropriate. This method // makes sure to do the following actions: // // 1. If a phi node merges two constants in, and has conflicting value coming // from different branches, or if the PHI node merges in an overdefined // value, then the PHI node becomes overdefined. // 2. If a phi node merges only constants in, and they all agree on value, the // PHI node becomes a constant value equal to that. // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined // 6. If a conditional branch has a value that is constant, make the selected // destination executable // 7. If a conditional branch has a value that is overdefined, make all // successors executable. // void SCCPSolver::visitPHINode(PHINode &PN) { LatticeVal &PNIV = getValueState(&PN); if (PNIV.isOverdefined()) { // There may be instructions using this PHI node that are not overdefined // themselves. If so, make sure that they know that the PHI node operand // changed. std::multimap::iterator I, E; tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); if (I != E) { SmallVector Users; for (; I != E; ++I) Users.push_back(I->second); while (!Users.empty()) { visit(Users.back()); Users.pop_back(); } } return; // Quick exit } // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) { markOverdefined(PNIV, &PN); return; } // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical // constant. If they are constant and don't agree, the PHI is overdefined. // If there are no executable operands, the PHI remains undefined. // Constant *OperandVal = 0; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { LatticeVal &IV = getValueState(PN.getIncomingValue(i)); if (IV.isUndefined()) continue; // Doesn't influence PHI node. if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { if (IV.isOverdefined()) { // PHI node becomes overdefined! markOverdefined(PNIV, &PN); return; } if (OperandVal == 0) { // Grab the first value... OperandVal = IV.getConstant(); } else { // Another value is being merged in! // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. // Check to see if there are two different constants merging... if (IV.getConstant() != OperandVal) { // Yes there is. This means the PHI node is not constant. // You must be overdefined poor PHI. // markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined return; // I'm done analyzing you } } } } // If we exited the loop, this means that the PHI node only has constant // arguments that agree with each other(and OperandVal is the constant) or // OperandVal is null because there are no defined incoming arguments. If // this is the case, the PHI remains undefined. // if (OperandVal) markConstant(PNIV, &PN, OperandVal); // Acquire operand value } void SCCPSolver::visitReturnInst(ReturnInst &I) { if (I.getNumOperands() == 0) return; // Ret void // If we are tracking the return value of this function, merge it in. Function *F = I.getParent()->getParent(); if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { DenseMap::iterator TFRVI = TrackedFunctionRetVals.find(F); if (TFRVI != TrackedFunctionRetVals.end() && !TFRVI->second.isOverdefined()) { LatticeVal &IV = getValueState(I.getOperand(0)); mergeInValue(TFRVI->second, F, IV); } } } void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { SmallVector SuccFeasible; getFeasibleSuccessors(TI, SuccFeasible); BasicBlock *BB = TI.getParent(); // Mark all feasible successors executable... for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) if (SuccFeasible[i]) markEdgeExecutable(BB, TI.getSuccessor(i)); } void SCCPSolver::visitCastInst(CastInst &I) { Value *V = I.getOperand(0); LatticeVal &VState = getValueState(V); if (VState.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (VState.isConstant()) // Propagate constant value markConstant(&I, ConstantExpr::getCast(I.getOpcode(), VState.getConstant(), I.getType())); } void SCCPSolver::visitSelectInst(SelectInst &I) { LatticeVal &CondValue = getValueState(I.getCondition()); if (CondValue.isUndefined()) return; if (CondValue.isConstant()) { if (ConstantInt *CondCB = dyn_cast(CondValue.getConstant())){ mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() : I.getFalseValue())); return; } } // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. LatticeVal &TVal = getValueState(I.getTrueValue()); LatticeVal &FVal = getValueState(I.getFalseValue()); // select ?, C, C -> C. if (TVal.isConstant() && FVal.isConstant() && TVal.getConstant() == FVal.getConstant()) { markConstant(&I, FVal.getConstant()); return; } if (TVal.isUndefined()) { // select ?, undef, X -> X. mergeInValue(&I, FVal); } else if (FVal.isUndefined()) { // select ?, X, undef -> X. mergeInValue(&I, TVal); } else { markOverdefined(&I); } } // Handle BinaryOperators and Shift Instructions... void SCCPSolver::visitBinaryOperator(Instruction &I) { LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; LatticeVal &V1State = getValueState(I.getOperand(0)); LatticeVal &V2State = getValueState(I.getOperand(1)); if (V1State.isOverdefined() || V2State.isOverdefined()) { // If this is an AND or OR with 0 or -1, it doesn't matter that the other // operand is overdefined. if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { LatticeVal *NonOverdefVal = 0; if (!V1State.isOverdefined()) { NonOverdefVal = &V1State; } else if (!V2State.isOverdefined()) { NonOverdefVal = &V2State; } if (NonOverdefVal) { if (NonOverdefVal->isUndefined()) { // Could annihilate value. if (I.getOpcode() == Instruction::And) markConstant(IV, &I, Constant::getNullValue(I.getType())); else if (const VectorType *PT = dyn_cast(I.getType())) markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); else markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); return; } else { if (I.getOpcode() == Instruction::And) { if (NonOverdefVal->getConstant()->isNullValue()) { markConstant(IV, &I, NonOverdefVal->getConstant()); return; // X and 0 = 0 } } else { if (ConstantInt *CI = dyn_cast(NonOverdefVal->getConstant())) if (CI->isAllOnesValue()) { markConstant(IV, &I, NonOverdefVal->getConstant()); return; // X or -1 = -1 } } } } } // If both operands are PHI nodes, it is possible that this instruction has // a constant value, despite the fact that the PHI node doesn't. Check for // this condition now. if (PHINode *PN1 = dyn_cast(I.getOperand(0))) if (PHINode *PN2 = dyn_cast(I.getOperand(1))) if (PN1->getParent() == PN2->getParent()) { // Since the two PHI nodes are in the same basic block, they must have // entries for the same predecessors. Walk the predecessor list, and // if all of the incoming values are constants, and the result of // evaluating this expression with all incoming value pairs is the // same, then this expression is a constant even though the PHI node // is not a constant! LatticeVal Result; for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); BasicBlock *InBlock = PN1->getIncomingBlock(i); LatticeVal &In2 = getValueState(PN2->getIncomingValueForBlock(InBlock)); if (In1.isOverdefined() || In2.isOverdefined()) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } else if (In1.isConstant() && In2.isConstant()) { Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) Result.markConstant(V); else if (Result.isConstant() && Result.getConstant() != V) { Result.markOverdefined(); break; } } } // If we found a constant value here, then we know the instruction is // constant despite the fact that the PHI nodes are overdefined. if (Result.isConstant()) { markConstant(IV, &I, Result.getConstant()); // Remember that this instruction is virtually using the PHI node // operands. UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); return; } else if (Result.isUndefined()) { return; } // Okay, this really is overdefined now. Since we might have // speculatively thought that this was not overdefined before, and // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, // make sure to clean out any entries that we put there, for // efficiency. std::multimap::iterator It, E; tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); while (It != E) { if (It->second == &I) { UsersOfOverdefinedPHIs.erase(It++); } else ++It; } tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); while (It != E) { if (It->second == &I) { UsersOfOverdefinedPHIs.erase(It++); } else ++It; } } markOverdefined(IV, &I); } else if (V1State.isConstant() && V2State.isConstant()) { markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), V2State.getConstant())); } } // Handle ICmpInst instruction... void SCCPSolver::visitCmpInst(CmpInst &I) { LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; LatticeVal &V1State = getValueState(I.getOperand(0)); LatticeVal &V2State = getValueState(I.getOperand(1)); if (V1State.isOverdefined() || V2State.isOverdefined()) { // If both operands are PHI nodes, it is possible that this instruction has // a constant value, despite the fact that the PHI node doesn't. Check for // this condition now. if (PHINode *PN1 = dyn_cast(I.getOperand(0))) if (PHINode *PN2 = dyn_cast(I.getOperand(1))) if (PN1->getParent() == PN2->getParent()) { // Since the two PHI nodes are in the same basic block, they must have // entries for the same predecessors. Walk the predecessor list, and // if all of the incoming values are constants, and the result of // evaluating this expression with all incoming value pairs is the // same, then this expression is a constant even though the PHI node // is not a constant! LatticeVal Result; for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); BasicBlock *InBlock = PN1->getIncomingBlock(i); LatticeVal &In2 = getValueState(PN2->getIncomingValueForBlock(InBlock)); if (In1.isOverdefined() || In2.isOverdefined()) { Result.markOverdefined(); break; // Cannot fold this operation over the PHI nodes! } else if (In1.isConstant() && In2.isConstant()) { Constant *V = ConstantExpr::getCompare(I.getPredicate(), In1.getConstant(), In2.getConstant()); if (Result.isUndefined()) Result.markConstant(V); else if (Result.isConstant() && Result.getConstant() != V) { Result.markOverdefined(); break; } } } // If we found a constant value here, then we know the instruction is // constant despite the fact that the PHI nodes are overdefined. if (Result.isConstant()) { markConstant(IV, &I, Result.getConstant()); // Remember that this instruction is virtually using the PHI node // operands. UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); return; } else if (Result.isUndefined()) { return; } // Okay, this really is overdefined now. Since we might have // speculatively thought that this was not overdefined before, and // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, // make sure to clean out any entries that we put there, for // efficiency. std::multimap::iterator It, E; tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); while (It != E) { if (It->second == &I) { UsersOfOverdefinedPHIs.erase(It++); } else ++It; } tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); while (It != E) { if (It->second == &I) { UsersOfOverdefinedPHIs.erase(It++); } else ++It; } } markOverdefined(IV, &I); } else if (V1State.isConstant() && V2State.isConstant()) { markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), V1State.getConstant(), V2State.getConstant())); } } void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { // FIXME : SCCP does not handle vectors properly. markOverdefined(&I); return; #if 0 LatticeVal &ValState = getValueState(I.getOperand(0)); LatticeVal &IdxState = getValueState(I.getOperand(1)); if (ValState.isOverdefined() || IdxState.isOverdefined()) markOverdefined(&I); else if(ValState.isConstant() && IdxState.isConstant()) markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), IdxState.getConstant())); #endif } void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { // FIXME : SCCP does not handle vectors properly. markOverdefined(&I); return; #if 0 LatticeVal &ValState = getValueState(I.getOperand(0)); LatticeVal &EltState = getValueState(I.getOperand(1)); LatticeVal &IdxState = getValueState(I.getOperand(2)); if (ValState.isOverdefined() || EltState.isOverdefined() || IdxState.isOverdefined()) markOverdefined(&I); else if(ValState.isConstant() && EltState.isConstant() && IdxState.isConstant()) markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), EltState.getConstant(), IdxState.getConstant())); else if (ValState.isUndefined() && EltState.isConstant() && IdxState.isConstant()) markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), EltState.getConstant(), IdxState.getConstant())); #endif } void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { // FIXME : SCCP does not handle vectors properly. markOverdefined(&I); return; #if 0 LatticeVal &V1State = getValueState(I.getOperand(0)); LatticeVal &V2State = getValueState(I.getOperand(1)); LatticeVal &MaskState = getValueState(I.getOperand(2)); if (MaskState.isUndefined() || (V1State.isUndefined() && V2State.isUndefined())) return; // Undefined output if mask or both inputs undefined. if (V1State.isOverdefined() || V2State.isOverdefined() || MaskState.isOverdefined()) { markOverdefined(&I); } else { // A mix of constant/undef inputs. Constant *V1 = V1State.isConstant() ? V1State.getConstant() : UndefValue::get(I.getType()); Constant *V2 = V2State.isConstant() ? V2State.getConstant() : UndefValue::get(I.getType()); Constant *Mask = MaskState.isConstant() ? MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); } #endif } // Handle getelementptr instructions... if all operands are constants then we // can turn this into a getelementptr ConstantExpr. // void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; SmallVector Operands; Operands.reserve(I.getNumOperands()); for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { LatticeVal &State = getValueState(I.getOperand(i)); if (State.isUndefined()) return; // Operands are not resolved yet... else if (State.isOverdefined()) { markOverdefined(IV, &I); return; } assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } Constant *Ptr = Operands[0]; Operands.erase(Operands.begin()); // Erase the pointer from idx list... markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], Operands.size())); } void SCCPSolver::visitStoreInst(Instruction &SI) { if (TrackedGlobals.empty() || !isa(SI.getOperand(1))) return; GlobalVariable *GV = cast(SI.getOperand(1)); DenseMap::iterator I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; // Get the value we are storing into the global. LatticeVal &PtrVal = getValueState(SI.getOperand(0)); mergeInValue(I->second, GV, PtrVal); if (I->second.isOverdefined()) TrackedGlobals.erase(I); // No need to keep tracking this! } // Handle load instructions. If the operand is a constant pointer to a constant // global, we can replace the load with the loaded constant value! void SCCPSolver::visitLoadInst(LoadInst &I) { LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; LatticeVal &PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! if (PtrVal.isConstant() && !I.isVolatile()) { Value *Ptr = PtrVal.getConstant(); // TODO: Consider a target hook for valid address spaces for this xform. if (isa(Ptr) && cast(Ptr->getType())->getAddressSpace() == 0) { // load null -> null markConstant(IV, &I, Constant::getNullValue(I.getType())); return; } // Transform load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Ptr)) { if (GV->isConstant()) { if (!GV->isDeclaration()) { markConstant(IV, &I, GV->getInitializer()); return; } } else if (!TrackedGlobals.empty()) { // If we are tracking this global, merge in the known value for it. DenseMap::iterator It = TrackedGlobals.find(GV); if (It != TrackedGlobals.end()) { mergeInValue(IV, &I, It->second); return; } } } // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->getOpcode() == Instruction::GetElementPtr) if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) if (GV->isConstant() && !GV->isDeclaration()) if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { markConstant(IV, &I, V); return; } } // Otherwise we cannot say for certain what value this load will produce. // Bail out. markOverdefined(IV, &I); } void SCCPSolver::visitCallSite(CallSite CS) { Function *F = CS.getCalledFunction(); // If we are tracking this function, we must make sure to bind arguments as // appropriate. DenseMap::iterator TFRVI =TrackedFunctionRetVals.end(); if (F && F->hasInternalLinkage()) TFRVI = TrackedFunctionRetVals.find(F); if (TFRVI != TrackedFunctionRetVals.end()) { // If this is the first call to the function hit, mark its entry block // executable. if (!BBExecutable.count(F->begin())) MarkBlockExecutable(F->begin()); CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI, ++CAI) { LatticeVal &IV = ValueState[AI]; if (!IV.isOverdefined()) mergeInValue(IV, AI, getValueState(*CAI)); } } Instruction *I = CS.getInstruction(); if (I->getType() == Type::VoidTy) return; LatticeVal &IV = ValueState[I]; if (IV.isOverdefined()) return; // Propagate the return value of the function to the value of the instruction. if (TFRVI != TrackedFunctionRetVals.end()) { mergeInValue(IV, I, TFRVI->second); return; } if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { markOverdefined(IV, I); return; } SmallVector Operands; Operands.reserve(I->getNumOperands()-1); for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { LatticeVal &State = getValueState(*AI); if (State.isUndefined()) return; // Operands are not resolved yet... else if (State.isOverdefined()) { markOverdefined(IV, I); return; } assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) markConstant(IV, I, C); else markOverdefined(IV, I); } void SCCPSolver::Solve() { // Process the work lists until they are empty! while (!BBWorkList.empty() || !InstWorkList.empty() || !OverdefinedInstWorkList.empty()) { // Process the instruction work list... while (!OverdefinedInstWorkList.empty()) { Value *I = OverdefinedInstWorkList.back(); OverdefinedInstWorkList.pop_back(); DOUT << "\nPopped off OI-WL: " << *I; // "I" got into the work list because it either made the transition from // bottom to constant // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined // Update all of the users of this instruction's value... // for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) OperandChangedState(*UI); } // Process the instruction work list... while (!InstWorkList.empty()) { Value *I = InstWorkList.back(); InstWorkList.pop_back(); DOUT << "\nPopped off I-WL: " << *I; // "I" got into the work list because it either made the transition from // bottom to constant // // Anything on this worklist that is overdefined need not be visited // since all of its users will have already been marked as overdefined. // Update all of the users of this instruction's value... // if (!getValueState(I).isOverdefined()) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) OperandChangedState(*UI); } // Process the basic block work list... while (!BBWorkList.empty()) { BasicBlock *BB = BBWorkList.back(); BBWorkList.pop_back(); DOUT << "\nPopped off BBWL: " << *BB; // Notify all instructions in this basic block that they are newly // executable. visit(BB); } } } /// ResolvedUndefsIn - While solving the dataflow for a function, we assume /// that branches on undef values cannot reach any of their successors. /// However, this is not a safe assumption. After we solve dataflow, this /// method should be use to handle this. If this returns true, the solver /// should be rerun. /// /// This method handles this by finding an unresolved branch and marking it one /// of the edges from the block as being feasible, even though the condition /// doesn't say it would otherwise be. This allows SCCP to find the rest of the /// CFG and only slightly pessimizes the analysis results (by marking one, /// potentially infeasible, edge feasible). This cannot usefully modify the /// constraints on the condition of the branch, as that would impact other users /// of the value. /// /// This scan also checks for values that use undefs, whose results are actually /// defined. For example, 'zext i8 undef to i32' should produce all zeros /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, /// even if X isn't defined. bool SCCPSolver::ResolvedUndefsIn(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!BBExecutable.count(BB)) continue; for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Look for instructions which produce undef values. if (I->getType() == Type::VoidTy) continue; LatticeVal &LV = getValueState(I); if (!LV.isUndefined()) continue; // Get the lattice values of the first two operands for use below. LatticeVal &Op0LV = getValueState(I->getOperand(0)); LatticeVal Op1LV; if (I->getNumOperands() == 2) { // If this is a two-operand instruction, and if both operands are // undefs, the result stays undef. Op1LV = getValueState(I->getOperand(1)); if (Op0LV.isUndefined() && Op1LV.isUndefined()) continue; } // If this is an instructions whose result is defined even if the input is // not fully defined, propagate the information. const Type *ITy = I->getType(); switch (I->getOpcode()) { default: break; // Leave the instruction as an undef. case Instruction::ZExt: // After a zero extend, we know the top part is zero. SExt doesn't have // to be handled here, because we don't know whether the top part is 1's // or 0's. assert(Op0LV.isUndefined()); markForcedConstant(LV, I, Constant::getNullValue(ITy)); return true; case Instruction::Mul: case Instruction::And: // undef * X -> 0. X could be zero. // undef & X -> 0. X could be zero. markForcedConstant(LV, I, Constant::getNullValue(ITy)); return true; case Instruction::Or: // undef | X -> -1. X could be -1. if (const VectorType *PTy = dyn_cast(ITy)) markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); else markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); return true; case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: // X / undef -> undef. No change. // X % undef -> undef. No change. if (Op1LV.isUndefined()) break; // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. markForcedConstant(LV, I, Constant::getNullValue(ITy)); return true; case Instruction::AShr: // undef >>s X -> undef. No change. if (Op0LV.isUndefined()) break; // X >>s undef -> X. X could be 0, X could have the high-bit known set. if (Op0LV.isConstant()) markForcedConstant(LV, I, Op0LV.getConstant()); else markOverdefined(LV, I); return true; case Instruction::LShr: case Instruction::Shl: // undef >> X -> undef. No change. // undef << X -> undef. No change. if (Op0LV.isUndefined()) break; // X >> undef -> 0. X could be 0. // X << undef -> 0. X could be 0. markForcedConstant(LV, I, Constant::getNullValue(ITy)); return true; case Instruction::Select: // undef ? X : Y -> X or Y. There could be commonality between X/Y. if (Op0LV.isUndefined()) { if (!Op1LV.isConstant()) // Pick the constant one if there is any. Op1LV = getValueState(I->getOperand(2)); } else if (Op1LV.isUndefined()) { // c ? undef : undef -> undef. No change. Op1LV = getValueState(I->getOperand(2)); if (Op1LV.isUndefined()) break; // Otherwise, c ? undef : x -> x. } else { // Leave Op1LV as Operand(1)'s LatticeValue. } if (Op1LV.isConstant()) markForcedConstant(LV, I, Op1LV.getConstant()); else markOverdefined(LV, I); return true; } } TerminatorInst *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast(TI)) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUndefined()) continue; } else if (SwitchInst *SI = dyn_cast(TI)) { if (!getValueState(SI->getCondition()).isUndefined()) continue; } else { continue; } // If the edge to the first successor isn't thought to be feasible yet, mark // it so now. if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) continue; // Otherwise, it isn't already thought to be feasible. Mark it as such now // and return. This will make other blocks reachable, which will allow new // values to be discovered and existing ones to be moved in the lattice. markEdgeExecutable(BB, TI->getSuccessor(0)); return true; } return false; } namespace { //===--------------------------------------------------------------------===// // /// SCCP Class - This class uses the SCCPSolver to implement a per-function /// Sparse Conditional Constant Propagator. /// struct VISIBILITY_HIDDEN SCCP : public FunctionPass { static char ID; // Pass identification, replacement for typeid SCCP() : FunctionPass((intptr_t)&ID) {} // runOnFunction - Run the Sparse Conditional Constant Propagation // algorithm, and return true if the function was modified. // bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); } }; char SCCP::ID = 0; RegisterPass X("sccp", "Sparse Conditional Constant Propagation"); } // end anonymous namespace // createSCCPPass - This is the public interface to this file... FunctionPass *llvm::createSCCPPass() { return new SCCP(); } // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, // and return true if the function was modified. // bool SCCP::runOnFunction(Function &F) { DOUT << "SCCP on function '" << F.getName() << "'\n"; SCCPSolver Solver; // Mark the first block of the function as being executable. Solver.MarkBlockExecutable(F.begin()); // Mark all arguments to the function as being overdefined. for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) Solver.markOverdefined(AI); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DOUT << "RESOLVING UNDEFs\n"; ResolvedUndefs = Solver.ResolvedUndefsIn(F); } bool MadeChanges = false; // If we decided that there are basic blocks that are dead in this function, // delete their contents now. Note that we cannot actually delete the blocks, // as we cannot modify the CFG of the function. // SmallSet &ExecutableBBs = Solver.getExecutableBlocks(); SmallVector Insts; std::map &Values = Solver.getValueMapping(); for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (!ExecutableBBs.count(BB)) { DOUT << " BasicBlock Dead:" << *BB; ++NumDeadBlocks; // Delete the instructions backwards, as it has a reduced likelihood of // having to update as many def-use and use-def chains. for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); I != E; ++I) Insts.push_back(I); while (!Insts.empty()) { Instruction *I = Insts.back(); Insts.pop_back(); if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); BB->getInstList().erase(I); MadeChanges = true; ++NumInstRemoved; } } else { // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. // for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType() != Type::VoidTy) { LatticeVal &IV = Values[Inst]; if ((IV.isConstant() || IV.isUndefined()) && !isa(Inst)) { Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DOUT << " Constant: " << *Const << " = " << *Inst; // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); // Delete the instruction. BB->getInstList().erase(Inst); // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; } } } } return MadeChanges; } namespace { //===--------------------------------------------------------------------===// // /// IPSCCP Class - This class implements interprocedural Sparse Conditional /// Constant Propagation. /// struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { static char ID; IPSCCP() : ModulePass((intptr_t)&ID) {} bool runOnModule(Module &M); }; char IPSCCP::ID = 0; RegisterPass Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); } // end anonymous namespace // createIPSCCPPass - This is the public interface to this file... ModulePass *llvm::createIPSCCPPass() { return new IPSCCP(); } static bool AddressIsTaken(GlobalValue *GV) { // Delete any dead constantexpr klingons. GV->removeDeadConstantUsers(); for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E; ++UI) if (StoreInst *SI = dyn_cast(*UI)) { if (SI->getOperand(0) == GV || SI->isVolatile()) return true; // Storing addr of GV. } else if (isa(*UI) || isa(*UI)) { // Make sure we are calling the function, not passing the address. CallSite CS = CallSite::get(cast(*UI)); for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) if (*AI == GV) return true; } else if (LoadInst *LI = dyn_cast(*UI)) { if (LI->isVolatile()) return true; } else { return true; } return false; } bool IPSCCP::runOnModule(Module &M) { SCCPSolver Solver; // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. // for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) if (!F->hasInternalLinkage() || AddressIsTaken(F)) { if (!F->isDeclaration()) Solver.MarkBlockExecutable(F->begin()); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) Solver.markOverdefined(AI); } else { Solver.AddTrackedFunction(F); } // Loop over global variables. We inform the solver about any internal global // variables that do not have their 'addresses taken'. If they don't have // their addresses taken, we can propagate constants through them. for (Module::global_iterator G = M.global_begin(), E = M.global_end(); G != E; ++G) if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) Solver.TrackValueOfGlobalVariable(G); // Solve for constants. bool ResolvedUndefs = true; while (ResolvedUndefs) { Solver.Solve(); DOUT << "RESOLVING UNDEFS\n"; ResolvedUndefs = false; for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); } bool MadeChanges = false; // Iterate over all of the instructions in the module, replacing them with // constants if we have found them to be of constant values. // SmallSet &ExecutableBBs = Solver.getExecutableBlocks(); SmallVector Insts; SmallVector BlocksToErase; std::map &Values = Solver.getValueMapping(); for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) if (!AI->use_empty()) { LatticeVal &IV = Values[AI]; if (IV.isConstant() || IV.isUndefined()) { Constant *CST = IV.isConstant() ? IV.getConstant() : UndefValue::get(AI->getType()); DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; // Replaces all of the uses of a variable with uses of the // constant. AI->replaceAllUsesWith(CST); ++IPNumArgsElimed; } } for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (!ExecutableBBs.count(BB)) { DOUT << " BasicBlock Dead:" << *BB; ++IPNumDeadBlocks; // Delete the instructions backwards, as it has a reduced likelihood of // having to update as many def-use and use-def chains. TerminatorInst *TI = BB->getTerminator(); for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) Insts.push_back(I); while (!Insts.empty()) { Instruction *I = Insts.back(); Insts.pop_back(); if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); BB->getInstList().erase(I); MadeChanges = true; ++IPNumInstRemoved; } for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = TI->getSuccessor(i); if (!Succ->empty() && isa(Succ->begin())) TI->getSuccessor(i)->removePredecessor(BB); } if (!TI->use_empty()) TI->replaceAllUsesWith(UndefValue::get(TI->getType())); BB->getInstList().erase(TI); if (&*BB != &F->front()) BlocksToErase.push_back(BB); else new UnreachableInst(BB); } else { for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType() != Type::VoidTy) { LatticeVal &IV = Values[Inst]; if (IV.isConstant() || IV.isUndefined() && !isa(Inst)) { Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DOUT << " Constant: " << *Const << " = " << *Inst; // Replaces all of the uses of a variable with uses of the // constant. Inst->replaceAllUsesWith(Const); // Delete the instruction. if (!isa(Inst) && !isa(Inst)) BB->getInstList().erase(Inst); // Hey, we just changed something! MadeChanges = true; ++IPNumInstRemoved; } } } } // Now that all instructions in the function are constant folded, erase dead // blocks, because we can now use ConstantFoldTerminator to get rid of // in-edges. for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { // If there are any PHI nodes in this successor, drop entries for BB now. BasicBlock *DeadBB = BlocksToErase[i]; while (!DeadBB->use_empty()) { Instruction *I = cast(DeadBB->use_back()); bool Folded = ConstantFoldTerminator(I->getParent()); if (!Folded) { // The constant folder may not have been able to fold the terminator // if this is a branch or switch on undef. Fold it manually as a // branch to the first successor. if (BranchInst *BI = dyn_cast(I)) { assert(BI->isConditional() && isa(BI->getCondition()) && "Branch should be foldable!"); } else if (SwitchInst *SI = dyn_cast(I)) { assert(isa(SI->getCondition()) && "Switch should fold"); } else { assert(0 && "Didn't fold away reference to block!"); } // Make this an uncond branch to the first successor. TerminatorInst *TI = I->getParent()->getTerminator(); new BranchInst(TI->getSuccessor(0), TI); // Remove entries in successor phi nodes to remove edges. for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(TI->getParent()); // Remove the old terminator. TI->eraseFromParent(); } } // Finally, delete the basic block. F->getBasicBlockList().erase(DeadBB); } BlocksToErase.clear(); } // If we inferred constant or undef return values for a function, we replaced // all call uses with the inferred value. This means we don't need to bother // actually returning anything from the function. Replace all return // instructions with return undef. const DenseMap &RV =Solver.getTrackedFunctionRetVals(); for (DenseMap::const_iterator I = RV.begin(), E = RV.end(); I != E; ++I) if (!I->second.isOverdefined() && I->first->getReturnType() != Type::VoidTy) { Function *F = I->first; for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) if (!isa(RI->getOperand(0))) RI->setOperand(0, UndefValue::get(F->getReturnType())); } // If we infered constant or undef values for globals variables, we can delete // the global and any stores that remain to it. const DenseMap &TG = Solver.getTrackedGlobals(); for (DenseMap::const_iterator I = TG.begin(), E = TG.end(); I != E; ++I) { GlobalVariable *GV = I->first; assert(!I->second.isOverdefined() && "Overdefined values should have been taken out of the map!"); DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; while (!GV->use_empty()) { StoreInst *SI = cast(GV->use_back()); SI->eraseFromParent(); } M.getGlobalList().erase(GV); ++IPNumGlobalConst; } return MadeChanges; }