//===-- SeparateConstOffsetFromGEP.cpp - ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Loop unrolling may create many similar GEPs for array accesses. // e.g., a 2-level loop // // float a[32][32]; // global variable // // for (int i = 0; i < 2; ++i) { // for (int j = 0; j < 2; ++j) { // ... // ... = a[x + i][y + j]; // ... // } // } // // will probably be unrolled to: // // gep %a, 0, %x, %y; load // gep %a, 0, %x, %y + 1; load // gep %a, 0, %x + 1, %y; load // gep %a, 0, %x + 1, %y + 1; load // // LLVM's GVN does not use partial redundancy elimination yet, and is thus // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs // significant slowdown in targets with limited addressing modes. For instance, // because the PTX target does not support the reg+reg addressing mode, the // NVPTX backend emits PTX code that literally computes the pointer address of // each GEP, wasting tons of registers. It emits the following PTX for the // first load and similar PTX for other loads. // // mov.u32 %r1, %x; // mov.u32 %r2, %y; // mul.wide.u32 %rl2, %r1, 128; // mov.u64 %rl3, a; // add.s64 %rl4, %rl3, %rl2; // mul.wide.u32 %rl5, %r2, 4; // add.s64 %rl6, %rl4, %rl5; // ld.global.f32 %f1, [%rl6]; // // To reduce the register pressure, the optimization implemented in this file // merges the common part of a group of GEPs, so we can compute each pointer // address by adding a simple offset to the common part, saving many registers. // // It works by splitting each GEP into a variadic base and a constant offset. // The variadic base can be computed once and reused by multiple GEPs, and the // constant offsets can be nicely folded into the reg+immediate addressing mode // (supported by most targets) without using any extra register. // // For instance, we transform the four GEPs and four loads in the above example // into: // // base = gep a, 0, x, y // load base // laod base + 1 * sizeof(float) // load base + 32 * sizeof(float) // load base + 33 * sizeof(float) // // Given the transformed IR, a backend that supports the reg+immediate // addressing mode can easily fold the pointer arithmetics into the loads. For // example, the NVPTX backend can easily fold the pointer arithmetics into the // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. // // mov.u32 %r1, %tid.x; // mov.u32 %r2, %tid.y; // mul.wide.u32 %rl2, %r1, 128; // mov.u64 %rl3, a; // add.s64 %rl4, %rl3, %rl2; // mul.wide.u32 %rl5, %r2, 4; // add.s64 %rl6, %rl4, %rl5; // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX // ld.global.f32 %f2, [%rl6+4]; // much better // ld.global.f32 %f3, [%rl6+128]; // much better // ld.global.f32 %f4, [%rl6+132]; // much better // //===----------------------------------------------------------------------===// #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; static cl::opt DisableSeparateConstOffsetFromGEP( "disable-separate-const-offset-from-gep", cl::init(false), cl::desc("Do not separate the constant offset from a GEP instruction"), cl::Hidden); namespace { /// \brief A helper class for separating a constant offset from a GEP index. /// /// In real programs, a GEP index may be more complicated than a simple addition /// of something and a constant integer which can be trivially splitted. For /// example, to split ((a << 3) | 5) + b, we need to search deeper for the /// constant offset, so that we can separate the index to (a << 3) + b and 5. /// /// Therefore, this class looks into the expression that computes a given GEP /// index, and tries to find a constant integer that can be hoisted to the /// outermost level of the expression as an addition. Not every constant in an /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). class ConstantOffsetExtractor { public: /// Extracts a constant offset from the given GEP index. It outputs the /// numeric value of the extracted constant offset (0 if failed), and a /// new index representing the remainder (equal to the original index minus /// the constant offset). /// \p Idx The given GEP index /// \p NewIdx The new index to replace /// \p DL The datalayout of the module /// \p IP Calculating the new index requires new instructions. IP indicates /// where to insert them (typically right before the GEP). static int64_t Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL, Instruction *IP); /// Looks for a constant offset without extracting it. The meaning of the /// arguments and the return value are the same as Extract. static int64_t Find(Value *Idx, const DataLayout *DL); private: ConstantOffsetExtractor(const DataLayout *Layout, Instruction *InsertionPt) : DL(Layout), IP(InsertionPt) {} /// Searches the expression that computes V for a constant offset. If the /// searching is successful, update UserChain as a path from V to the constant /// offset. int64_t find(Value *V); /// A helper function to look into both operands of a binary operator U. /// \p IsSub Whether U is a sub operator. If so, we need to negate the /// constant offset at some point. int64_t findInEitherOperand(User *U, bool IsSub); /// After finding the constant offset and how it is reached from the GEP /// index, we build a new index which is a clone of the old one except the /// constant offset is removed. For example, given (a + (b + 5)) and knowning /// the constant offset is 5, this function returns (a + b). /// /// We cannot simply change the constant to zero because the expression that /// computes the index or its intermediate result may be used by others. Value *rebuildWithoutConstantOffset(); // A helper function for rebuildWithoutConstantOffset that rebuilds the direct // user (U) of the constant offset (C). Value *rebuildLeafWithoutConstantOffset(User *U, Value *C); /// Returns a clone of U except the first occurrence of From with To. Value *cloneAndReplace(User *U, Value *From, Value *To); /// Returns true if LHS and RHS have no bits in common, i.e., LHS | RHS == 0. bool NoCommonBits(Value *LHS, Value *RHS) const; /// Computes which bits are known to be one or zero. /// \p KnownOne Mask of all bits that are known to be one. /// \p KnownZero Mask of all bits that are known to be zero. void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const; /// Finds the first use of Used in U. Returns -1 if not found. static unsigned FindFirstUse(User *U, Value *Used); /// Returns whether OPC (sext or zext) can be distributed to the operands of /// BO. e.g., sext can be distributed to the operands of an "add nsw" because /// sext (add nsw a, b) == add nsw (sext a), (sext b). static bool Distributable(unsigned OPC, BinaryOperator *BO); /// The path from the constant offset to the old GEP index. e.g., if the GEP /// index is "a * b + (c + 5)". After running function find, UserChain[0] will /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and /// UserChain[2] will be the entire expression "a * b + (c + 5)". /// /// This path helps rebuildWithoutConstantOffset rebuild the new GEP index. SmallVector UserChain; /// The data layout of the module. Used in ComputeKnownBits. const DataLayout *DL; Instruction *IP; /// Insertion position of cloned instructions. }; /// \brief A pass that tries to split every GEP in the function into a variadic /// base and a constant offset. It is a FunctionPass because searching for the /// constant offset may inspect other basic blocks. class SeparateConstOffsetFromGEP : public FunctionPass { public: static char ID; SeparateConstOffsetFromGEP() : FunctionPass(ID) { initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); } bool runOnFunction(Function &F) override; private: /// Tries to split the given GEP into a variadic base and a constant offset, /// and returns true if the splitting succeeds. bool splitGEP(GetElementPtrInst *GEP); /// Finds the constant offset within each index, and accumulates them. This /// function only inspects the GEP without changing it. The output /// NeedsExtraction indicates whether we can extract a non-zero constant /// offset from any index. int64_t accumulateByteOffset(GetElementPtrInst *GEP, const DataLayout *DL, bool &NeedsExtraction); }; } // anonymous namespace char SeparateConstOffsetFromGEP::ID = 0; INITIALIZE_PASS_BEGIN( SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", "Split GEPs to a variadic base and a constant offset for better CSE", false, false) INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) INITIALIZE_PASS_DEPENDENCY(DataLayoutPass) INITIALIZE_PASS_END( SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", "Split GEPs to a variadic base and a constant offset for better CSE", false, false) FunctionPass *llvm::createSeparateConstOffsetFromGEPPass() { return new SeparateConstOffsetFromGEP(); } bool ConstantOffsetExtractor::Distributable(unsigned OPC, BinaryOperator *BO) { assert(OPC == Instruction::SExt || OPC == Instruction::ZExt); // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) if (BO->getOpcode() == Instruction::Add || BO->getOpcode() == Instruction::Sub) { return (OPC == Instruction::SExt && BO->hasNoSignedWrap()) || (OPC == Instruction::ZExt && BO->hasNoUnsignedWrap()); } // sext/zext (and/or/xor A, B) == and/or/xor (sext/zext A), (sext/zext B) // -instcombine also leverages this invariant to do the reverse // transformation to reduce integer casts. return BO->getOpcode() == Instruction::And || BO->getOpcode() == Instruction::Or || BO->getOpcode() == Instruction::Xor; } int64_t ConstantOffsetExtractor::findInEitherOperand(User *U, bool IsSub) { assert(U->getNumOperands() == 2); int64_t ConstantOffset = find(U->getOperand(0)); // If we found a constant offset in the left operand, stop and return that. // This shortcut might cause us to miss opportunities of combining the // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. // However, such cases are probably already handled by -instcombine, // given this pass runs after the standard optimizations. if (ConstantOffset != 0) return ConstantOffset; ConstantOffset = find(U->getOperand(1)); // If U is a sub operator, negate the constant offset found in the right // operand. return IsSub ? -ConstantOffset : ConstantOffset; } int64_t ConstantOffsetExtractor::find(Value *V) { // TODO(jingyue): We can even trace into integer/pointer casts, such as // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only // integers because it gives good enough results for our benchmarks. assert(V->getType()->isIntegerTy()); User *U = dyn_cast(V); // We cannot do much with Values that are not a User, such as BasicBlock and // MDNode. if (U == nullptr) return 0; int64_t ConstantOffset = 0; if (ConstantInt *CI = dyn_cast(U)) { // Hooray, we found it! ConstantOffset = CI->getSExtValue(); } else if (Operator *O = dyn_cast(U)) { // The GEP index may be more complicated than a simple addition of a // varaible and a constant. Therefore, we trace into subexpressions for more // hoisting opportunities. switch (O->getOpcode()) { case Instruction::Add: { ConstantOffset = findInEitherOperand(U, false); break; } case Instruction::Sub: { ConstantOffset = findInEitherOperand(U, true); break; } case Instruction::Or: { // If LHS and RHS don't have common bits, (LHS | RHS) is equivalent to // (LHS + RHS). if (NoCommonBits(U->getOperand(0), U->getOperand(1))) ConstantOffset = findInEitherOperand(U, false); break; } case Instruction::SExt: case Instruction::ZExt: { // We trace into sext/zext if the operator can be distributed to its // operand. e.g., we can transform into "sext (add nsw a, 5)" and // extract constant 5, because // sext (add nsw a, 5) == add nsw (sext a), 5 if (BinaryOperator *BO = dyn_cast(U->getOperand(0))) { if (Distributable(O->getOpcode(), BO)) ConstantOffset = find(U->getOperand(0)); } break; } } } // If we found a non-zero constant offset, adds it to the path for future // transformation (rebuildWithoutConstantOffset). Zero is a valid constant // offset, but doesn't help this optimization. if (ConstantOffset != 0) UserChain.push_back(U); return ConstantOffset; } unsigned ConstantOffsetExtractor::FindFirstUse(User *U, Value *Used) { for (unsigned I = 0, E = U->getNumOperands(); I < E; ++I) { if (U->getOperand(I) == Used) return I; } return -1; } Value *ConstantOffsetExtractor::cloneAndReplace(User *U, Value *From, Value *To) { // Finds in U the first use of From. It is safe to ignore future occurrences // of From, because findInEitherOperand similarly stops searching the right // operand when the first operand has a non-zero constant offset. unsigned OpNo = FindFirstUse(U, From); assert(OpNo != (unsigned)-1 && "UserChain wasn't built correctly"); // ConstantOffsetExtractor::find only follows Operators (i.e., Instructions // and ConstantExprs). Therefore, U is either an Instruction or a // ConstantExpr. if (Instruction *I = dyn_cast(U)) { Instruction *Clone = I->clone(); Clone->setOperand(OpNo, To); Clone->insertBefore(IP); return Clone; } // cast(To) is safe because a ConstantExpr only uses Constants. return cast(U) ->getWithOperandReplaced(OpNo, cast(To)); } Value *ConstantOffsetExtractor::rebuildLeafWithoutConstantOffset(User *U, Value *C) { assert(U->getNumOperands() <= 2 && "We didn't trace into any operator with more than 2 operands"); // If U has only one operand which is the constant offset, removing the // constant offset leaves U as a null value. if (U->getNumOperands() == 1) return Constant::getNullValue(U->getType()); // U->getNumOperands() == 2 unsigned OpNo = FindFirstUse(U, C); // U->getOperand(OpNo) == C assert(OpNo < 2 && "UserChain wasn't built correctly"); Value *TheOther = U->getOperand(1 - OpNo); // The other operand of U // If U = C - X, removing C makes U = -X; otherwise U will simply be X. if (!isa(U) || OpNo == 1) return TheOther; if (isa(U)) return ConstantExpr::getNeg(cast(TheOther)); return BinaryOperator::CreateNeg(TheOther, "", IP); } Value *ConstantOffsetExtractor::rebuildWithoutConstantOffset() { assert(UserChain.size() > 0 && "you at least found a constant, right?"); // Start with the constant and go up through UserChain, each time building a // clone of the subexpression but with the constant removed. // e.g., to build a clone of (a + (b + (c + 5)) but with the 5 removed, we // first c, then (b + c), and finally (a + (b + c)). // // Fast path: if the GEP index is a constant, simply returns 0. if (UserChain.size() == 1) return ConstantInt::get(UserChain[0]->getType(), 0); Value *Remainder = rebuildLeafWithoutConstantOffset(UserChain[1], UserChain[0]); for (size_t I = 2; I < UserChain.size(); ++I) Remainder = cloneAndReplace(UserChain[I], UserChain[I - 1], Remainder); return Remainder; } int64_t ConstantOffsetExtractor::Extract(Value *Idx, Value *&NewIdx, const DataLayout *DL, Instruction *IP) { ConstantOffsetExtractor Extractor(DL, IP); // Find a non-zero constant offset first. int64_t ConstantOffset = Extractor.find(Idx); if (ConstantOffset == 0) return 0; // Then rebuild a new index with the constant removed. NewIdx = Extractor.rebuildWithoutConstantOffset(); return ConstantOffset; } int64_t ConstantOffsetExtractor::Find(Value *Idx, const DataLayout *DL) { return ConstantOffsetExtractor(DL, nullptr).find(Idx); } void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const { IntegerType *IT = cast(V->getType()); KnownOne = APInt(IT->getBitWidth(), 0); KnownZero = APInt(IT->getBitWidth(), 0); llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0); } bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const { assert(LHS->getType() == RHS->getType() && "LHS and RHS should have the same type"); APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero; ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero); ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero); return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); } int64_t SeparateConstOffsetFromGEP::accumulateByteOffset( GetElementPtrInst *GEP, const DataLayout *DL, bool &NeedsExtraction) { NeedsExtraction = false; int64_t AccumulativeByteOffset = 0; gep_type_iterator GTI = gep_type_begin(*GEP); for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { if (isa(*GTI)) { // Tries to extract a constant offset from this GEP index. int64_t ConstantOffset = ConstantOffsetExtractor::Find(GEP->getOperand(I), DL); if (ConstantOffset != 0) { NeedsExtraction = true; // A GEP may have multiple indices. We accumulate the extracted // constant offset to a byte offset, and later offset the remainder of // the original GEP with this byte offset. AccumulativeByteOffset += ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); } } } return AccumulativeByteOffset; } bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { // Skip vector GEPs. if (GEP->getType()->isVectorTy()) return false; // The backend can already nicely handle the case where all indices are // constant. if (GEP->hasAllConstantIndices()) return false; bool Changed = false; // Shortcuts integer casts. Eliminating these explicit casts can make // subsequent optimizations more obvious: ConstantOffsetExtractor needn't // trace into these casts. if (GEP->isInBounds()) { // Doing this to inbounds GEPs is safe because their indices are guaranteed // to be non-negative and in bounds. gep_type_iterator GTI = gep_type_begin(*GEP); for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { if (isa(*GTI)) { if (Operator *O = dyn_cast(GEP->getOperand(I))) { if (O->getOpcode() == Instruction::SExt || O->getOpcode() == Instruction::ZExt) { GEP->setOperand(I, O->getOperand(0)); Changed = true; } } } } } const DataLayout *DL = &getAnalysis().getDataLayout(); bool NeedsExtraction; int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, DL, NeedsExtraction); if (!NeedsExtraction) return Changed; // Before really splitting the GEP, check whether the backend supports the // addressing mode we are about to produce. If no, this splitting probably // won't be beneficial. TargetTransformInfo &TTI = getAnalysis(); if (!TTI.isLegalAddressingMode(GEP->getType()->getElementType(), /*BaseGV=*/nullptr, AccumulativeByteOffset, /*HasBaseReg=*/true, /*Scale=*/0)) { return Changed; } // Remove the constant offset in each GEP index. The resultant GEP computes // the variadic base. gep_type_iterator GTI = gep_type_begin(*GEP); for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { if (isa(*GTI)) { Value *NewIdx = nullptr; // Tries to extract a constant offset from this GEP index. int64_t ConstantOffset = ConstantOffsetExtractor::Extract(GEP->getOperand(I), NewIdx, DL, GEP); if (ConstantOffset != 0) { assert(NewIdx != nullptr && "ConstantOffset != 0 implies NewIdx is set"); GEP->setOperand(I, NewIdx); // Clear the inbounds attribute because the new index may be off-bound. // e.g., // // b = add i64 a, 5 // addr = gep inbounds float* p, i64 b // // is transformed to: // // addr2 = gep float* p, i64 a // addr = gep float* addr2, i64 5 // // If a is -4, although the old index b is in bounds, the new index a is // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the // inbounds keyword is not present, the offsets are added to the base // address with silently-wrapping two's complement arithmetic". // Therefore, the final code will be a semantically equivalent. // // TODO(jingyue): do some range analysis to keep as many inbounds as // possible. GEPs with inbounds are more friendly to alias analysis. GEP->setIsInBounds(false); Changed = true; } } } // Offsets the base with the accumulative byte offset. // // %gep ; the base // ... %gep ... // // => add the offset // // %gep2 ; clone of %gep // %new.gep = gep %gep2, // %gep ; will be removed // ... %gep ... // // => replace all uses of %gep with %new.gep and remove %gep // // %gep2 ; clone of %gep // %new.gep = gep %gep2, // ... %new.gep ... // // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the // type of %gep. // // %gep2 ; clone of %gep // %0 = bitcast %gep2 to i8* // %uglygep = gep %0, // %new.gep = bitcast %uglygep to // ... %new.gep ... Instruction *NewGEP = GEP->clone(); NewGEP->insertBefore(GEP); Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); uint64_t ElementTypeSizeOfGEP = DL->getTypeAllocSize(GEP->getType()->getElementType()); if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { // Very likely. As long as %gep is natually aligned, the byte offset we // extracted should be a multiple of sizeof(*%gep). // Per ANSI C standard, signed / unsigned = unsigned. Therefore, we // cast ElementTypeSizeOfGEP to signed. int64_t Index = AccumulativeByteOffset / static_cast(ElementTypeSizeOfGEP); NewGEP = GetElementPtrInst::Create( NewGEP, ConstantInt::get(IntPtrTy, Index, true), GEP->getName(), GEP); } else { // Unlikely but possible. For example, // #pragma pack(1) // struct S { // int a[3]; // int64 b[8]; // }; // #pragma pack() // // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of // sizeof(int64). // // Emit an uglygep in this case. Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), GEP->getPointerAddressSpace()); NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); NewGEP = GetElementPtrInst::Create( NewGEP, ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep", GEP); if (GEP->getType() != I8PtrTy) NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); } GEP->replaceAllUsesWith(NewGEP); GEP->eraseFromParent(); return true; } bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { if (DisableSeparateConstOffsetFromGEP) return false; bool Changed = false; for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) { for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) { if (GetElementPtrInst *GEP = dyn_cast(I++)) { Changed |= splitGEP(GEP); } // No need to split GEP ConstantExprs because all its indices are constant // already. } } return Changed; }