//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // BreakCriticalEdges pass - Break all of the critical edges in the CFG by // inserting a dummy basic block. This pass may be "required" by passes that // cannot deal with critical edges. For this usage, the structure type is // forward declared. This pass obviously invalidates the CFG, but can update // forward dominator (set, immediate dominators, tree, and frontier) // information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "break-crit-edges" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumBroken, "Number of blocks inserted"); namespace { struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass { static char ID; // Pass identification, replacement for typeid BreakCriticalEdges() : FunctionPass((intptr_t)&ID) {} virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // No loop canonicalization guarantees are broken by this pass. AU.addPreservedID(LoopSimplifyID); } }; char BreakCriticalEdges::ID = 0; RegisterPass X("break-crit-edges", "Break critical edges in CFG"); } // Publically exposed interface to pass... const PassInfo *llvm::BreakCriticalEdgesID = X.getPassInfo(); FunctionPass *llvm::createBreakCriticalEdgesPass() { return new BreakCriticalEdges(); } // runOnFunction - Loop over all of the edges in the CFG, breaking critical // edges as they are found. // bool BreakCriticalEdges::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { TerminatorInst *TI = I->getTerminator(); if (TI->getNumSuccessors() > 1) for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) if (SplitCriticalEdge(TI, i, this)) { ++NumBroken; Changed = true; } } return Changed; } //===----------------------------------------------------------------------===// // Implementation of the external critical edge manipulation functions //===----------------------------------------------------------------------===// // isCriticalEdge - Return true if the specified edge is a critical edge. // Critical edges are edges from a block with multiple successors to a block // with multiple predecessors. // bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, bool AllowIdenticalEdges) { assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); if (TI->getNumSuccessors() == 1) return false; const BasicBlock *Dest = TI->getSuccessor(SuccNum); pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest); // If there is more than one predecessor, this is a critical edge... assert(I != E && "No preds, but we have an edge to the block?"); const BasicBlock *FirstPred = *I; ++I; // Skip one edge due to the incoming arc from TI. if (!AllowIdenticalEdges) return I != E; // If AllowIdenticalEdges is true, then we allow this edge to be considered // non-critical iff all preds come from TI's block. for (; I != E; ++I) if (*I != FirstPred) return true; return false; } // SplitCriticalEdge - If this edge is a critical edge, insert a new node to // split the critical edge. This will update DominatorTree, and DominatorFrontier // information if it is available, thus calling this pass will not invalidate // any of them. This returns true if the edge was split, false otherwise. // This ensures that all edges to that dest go to one block instead of each // going to a different block. // bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P, bool MergeIdenticalEdges) { if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false; BasicBlock *TIBB = TI->getParent(); BasicBlock *DestBB = TI->getSuccessor(SuccNum); // Create a new basic block, linking it into the CFG. BasicBlock *NewBB = BasicBlock::Create(TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); // Create our unconditional branch... BranchInst::Create(DestBB, NewBB); // Branch to the new block, breaking the edge. TI->setSuccessor(SuccNum, NewBB); // Insert the block into the function... right after the block TI lives in. Function &F = *TIBB->getParent(); Function::iterator FBBI = TIBB; F.getBasicBlockList().insert(++FBBI, NewBB); // If there are any PHI nodes in DestBB, we need to update them so that they // merge incoming values from NewBB instead of from TIBB. // for (BasicBlock::iterator I = DestBB->begin(); isa(I); ++I) { PHINode *PN = cast(I); // We no longer enter through TIBB, now we come in through NewBB. Revector // exactly one entry in the PHI node that used to come from TIBB to come // from NewBB. int BBIdx = PN->getBasicBlockIndex(TIBB); PN->setIncomingBlock(BBIdx, NewBB); } // If there are any other edges from TIBB to DestBB, update those to go // through the split block, making those edges non-critical as well (and // reducing the number of phi entries in the DestBB if relevant). if (MergeIdenticalEdges) { for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { if (TI->getSuccessor(i) != DestBB) continue; // Remove an entry for TIBB from DestBB phi nodes. DestBB->removePredecessor(TIBB); // We found another edge to DestBB, go to NewBB instead. TI->setSuccessor(i, NewBB); } } // If we don't have a pass object, we can't update anything... if (P == 0) return true; // Now update analysis information. Since the only predecessor of NewBB is // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate // anything, as there are other successors of DestBB. However, if all other // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a // loop header) then NewBB dominates DestBB. SmallVector OtherPreds; for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; ++I) if (*I != NewBB) OtherPreds.push_back(*I); bool NewBBDominatesDestBB = true; // Should we update DominatorTree information? if (DominatorTree *DT = P->getAnalysisToUpdate()) { DomTreeNode *TINode = DT->getNode(TIBB); // The new block is not the immediate dominator for any other nodes, but // TINode is the immediate dominator for the new node. // if (TINode) { // Don't break unreachable code! DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB); DomTreeNode *DestBBNode = 0; // If NewBBDominatesDestBB hasn't been computed yet, do so with DT. if (!OtherPreds.empty()) { DestBBNode = DT->getNode(DestBB); while (!OtherPreds.empty() && NewBBDominatesDestBB) { if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back())) NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode); OtherPreds.pop_back(); } OtherPreds.clear(); } // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it // doesn't dominate anything. if (NewBBDominatesDestBB) { if (!DestBBNode) DestBBNode = DT->getNode(DestBB); DT->changeImmediateDominator(DestBBNode, NewBBNode); } } } // Should we update DominanceFrontier information? if (DominanceFrontier *DF = P->getAnalysisToUpdate()) { // If NewBBDominatesDestBB hasn't been computed yet, do so with DF. if (!OtherPreds.empty()) { // FIXME: IMPLEMENT THIS! assert(0 && "Requiring domfrontiers but not idom/domtree/domset." " not implemented yet!"); } // Since the new block is dominated by its only predecessor TIBB, // it cannot be in any block's dominance frontier. If NewBB dominates // DestBB, its dominance frontier is the same as DestBB's, otherwise it is // just {DestBB}. DominanceFrontier::DomSetType NewDFSet; if (NewBBDominatesDestBB) { DominanceFrontier::iterator I = DF->find(DestBB); if (I != DF->end()) { DF->addBasicBlock(NewBB, I->second); // However NewBB's frontier does not include DestBB. DominanceFrontier::iterator NF = DF->find(NewBB); DF->removeFromFrontier(NF, DestBB); } else DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType()); } else { DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(DestBB); DF->addBasicBlock(NewBB, NewDFSet); } } // Update LoopInfo if it is around. if (LoopInfo *LI = P->getAnalysisToUpdate()) { // If one or the other blocks were not in a loop, the new block is not // either, and thus LI doesn't need to be updated. if (Loop *TIL = LI->getLoopFor(TIBB)) if (Loop *DestLoop = LI->getLoopFor(DestBB)) { if (TIL == DestLoop) { // Both in the same loop, the NewBB joins loop. DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); } else if (TIL->contains(DestLoop->getHeader())) { // Edge from an outer loop to an inner loop. Add to the outer loop. TIL->addBasicBlockToLoop(NewBB, LI->getBase()); } else if (DestLoop->contains(TIL->getHeader())) { // Edge from an inner loop to an outer loop. Add to the outer loop. DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); } else { // Edge from two loops with no containment relation. Because these // are natural loops, we know that the destination block must be the // header of its loop (adding a branch into a loop elsewhere would // create an irreducible loop). assert(DestLoop->getHeader() == DestBB && "Should not create irreducible loops!"); if (Loop *P = DestLoop->getParentLoop()) P->addBasicBlockToLoop(NewBB, LI->getBase()); } } } return true; }