//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MapValue function, which is shared by various parts of // the lib/Transforms/Utils library. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/ValueMapper.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" using namespace llvm; // Out of line method to get vtable etc for class. void ValueMapTypeRemapper::anchor() {} void ValueMaterializer::anchor() {} Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { ValueToValueMapTy::iterator I = VM.find(V); // If the value already exists in the map, use it. if (I != VM.end() && I->second) return I->second; // If we have a materializer and it can materialize a value, use that. if (Materializer) { if (Value *NewV = Materializer->materializeValueFor(const_cast(V))) return VM[V] = NewV; } // Global values do not need to be seeded into the VM if they // are using the identity mapping. if (isa(V)) return VM[V] = const_cast(V); if (const InlineAsm *IA = dyn_cast(V)) { // Inline asm may need *type* remapping. FunctionType *NewTy = IA->getFunctionType(); if (TypeMapper) { NewTy = cast(TypeMapper->remapType(NewTy)); if (NewTy != IA->getFunctionType()) V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), IA->hasSideEffects(), IA->isAlignStack()); } return VM[V] = const_cast(V); } if (const auto *MDV = dyn_cast(V)) { const Metadata *MD = MDV->getMetadata(); // If this is a module-level metadata and we know that nothing at the module // level is changing, then use an identity mapping. if (!isa(MD) && (Flags & RF_NoModuleLevelChanges)) return VM[V] = const_cast(V); auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) return VM[V] = const_cast(V); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert(MappedMD && "Referenced metadata value not in value map"); return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); } // Okay, this either must be a constant (which may or may not be mappable) or // is something that is not in the mapping table. Constant *C = const_cast(dyn_cast(V)); if (!C) return nullptr; if (BlockAddress *BA = dyn_cast(C)) { Function *F = cast(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); BasicBlock *BB = cast_or_null(MapValue(BA->getBasicBlock(), VM, Flags, TypeMapper, Materializer)); return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); } // Otherwise, we have some other constant to remap. Start by checking to see // if all operands have an identity remapping. unsigned OpNo = 0, NumOperands = C->getNumOperands(); Value *Mapped = nullptr; for (; OpNo != NumOperands; ++OpNo) { Value *Op = C->getOperand(OpNo); Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); if (Mapped != C) break; } // See if the type mapper wants to remap the type as well. Type *NewTy = C->getType(); if (TypeMapper) NewTy = TypeMapper->remapType(NewTy); // If the result type and all operands match up, then just insert an identity // mapping. if (OpNo == NumOperands && NewTy == C->getType()) return VM[V] = C; // Okay, we need to create a new constant. We've already processed some or // all of the operands, set them all up now. SmallVector Ops; Ops.reserve(NumOperands); for (unsigned j = 0; j != OpNo; ++j) Ops.push_back(cast(C->getOperand(j))); // If one of the operands mismatch, push it and the other mapped operands. if (OpNo != NumOperands) { Ops.push_back(cast(Mapped)); // Map the rest of the operands that aren't processed yet. for (++OpNo; OpNo != NumOperands; ++OpNo) Ops.push_back(MapValue(cast(C->getOperand(OpNo)), VM, Flags, TypeMapper, Materializer)); } if (ConstantExpr *CE = dyn_cast(C)) return VM[V] = CE->getWithOperands(Ops, NewTy); if (isa(C)) return VM[V] = ConstantArray::get(cast(NewTy), Ops); if (isa(C)) return VM[V] = ConstantStruct::get(cast(NewTy), Ops); if (isa(C)) return VM[V] = ConstantVector::get(Ops); // If this is a no-operand constant, it must be because the type was remapped. if (isa(C)) return VM[V] = UndefValue::get(NewTy); if (isa(C)) return VM[V] = ConstantAggregateZero::get(NewTy); assert(isa(C)); return VM[V] = ConstantPointerNull::get(cast(NewTy)); } static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, Metadata *Val) { VM.MD()[Key].reset(Val); return Val; } static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) { return mapToMetadata(VM, MD, const_cast(MD)); } static Metadata *MapMetadataImpl(const Metadata *MD, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer); static Metadata *mapMetadataOp(Metadata *Op, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { if (!Op) return nullptr; if (Metadata *MappedOp = MapMetadataImpl(Op, Cycles, VM, Flags, TypeMapper, Materializer)) return MappedOp; // Use identity map if MappedOp is null and we can ignore missing entries. if (Flags & RF_IgnoreMissingEntries) return Op; // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // llvm_unreachable("Referenced metadata not in value map!"); return nullptr; } /// \brief Remap nodes. /// /// Insert \c NewNode in the value map, and then remap \c OldNode's operands. /// Assumes that \c NewNode is already a clone of \c OldNode. /// /// \pre \c NewNode is a clone of \c OldNode. static bool remap(const MDNode *OldNode, MDNode *NewNode, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(OldNode->getNumOperands() == NewNode->getNumOperands() && "Expected nodes to match"); assert(OldNode->isResolved() && "Expected resolved node"); assert(!NewNode->isUniqued() && "Expected non-uniqued node"); // Map the node upfront so it's available for cyclic references. mapToMetadata(VM, OldNode, NewNode); bool AnyChanged = false; for (unsigned I = 0, E = OldNode->getNumOperands(); I != E; ++I) { Metadata *Old = OldNode->getOperand(I); assert(NewNode->getOperand(I) == Old && "Expected old operands to already be in place"); Metadata *New = mapMetadataOp(OldNode->getOperand(I), Cycles, VM, Flags, TypeMapper, Materializer); if (Old != New) { AnyChanged = true; NewNode->replaceOperandWith(I, New); } } return AnyChanged; } /// \brief Map a distinct MDNode. /// /// Distinct nodes are not uniqued, so they must always recreated. static Metadata *mapDistinctNode(const MDNode *Node, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(Node->isDistinct() && "Expected distinct node"); MDNode *NewMD = MDNode::replaceWithDistinct(Node->clone()); remap(Node, NewMD, Cycles, VM, Flags, TypeMapper, Materializer); // Track any cycles beneath this node. for (Metadata *Op : NewMD->operands()) if (auto *Node = dyn_cast_or_null(Op)) if (!Node->isResolved()) Cycles.push_back(Node); return NewMD; } /// \brief Map a uniqued MDNode. /// /// Uniqued nodes may not need to be recreated (they may map to themselves). static Metadata *mapUniquedNode(const MDNode *Node, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(Node->isUniqued() && "Expected uniqued node"); // Create a temporary node upfront in case we have a metadata cycle. auto ClonedMD = Node->clone(); if (!remap(Node, ClonedMD.get(), Cycles, VM, Flags, TypeMapper, Materializer)) // No operands changed, so use the identity mapping. return mapToSelf(VM, Node); // At least one operand has changed, so uniquify the cloned node. return mapToMetadata(VM, Node, MDNode::replaceWithUniqued(std::move(ClonedMD))); } static Metadata *MapMetadataImpl(const Metadata *MD, SmallVectorImpl &Cycles, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { // If the value already exists in the map, use it. if (Metadata *NewMD = VM.MD().lookup(MD).get()) return NewMD; if (isa(MD)) return mapToSelf(VM, MD); if (isa(MD)) if ((Flags & RF_NoModuleLevelChanges)) return mapToSelf(VM, MD); if (const auto *VMD = dyn_cast(MD)) { Value *MappedV = MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); if (VMD->getValue() == MappedV || (!MappedV && (Flags & RF_IgnoreMissingEntries))) return mapToSelf(VM, MD); // FIXME: This assert crashes during bootstrap, but I think it should be // correct. For now, just match behaviour from before the metadata/value // split. // // assert(MappedV && "Referenced metadata not in value map!"); if (MappedV) return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV)); return nullptr; } // Note: this cast precedes the Flags check so we always get its associated // assertion. const MDNode *Node = cast(MD); // If this is a module-level metadata and we know that nothing at the // module level is changing, then use an identity mapping. if (Flags & RF_NoModuleLevelChanges) return mapToSelf(VM, MD); // Require resolved nodes whenever metadata might be remapped. assert(Node->isResolved() && "Unexpected unresolved node"); if (Node->isDistinct()) return mapDistinctNode(Node, Cycles, VM, Flags, TypeMapper, Materializer); return mapUniquedNode(Node, Cycles, VM, Flags, TypeMapper, Materializer); } Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { SmallVector Cycles; Metadata *NewMD = MapMetadataImpl(MD, Cycles, VM, Flags, TypeMapper, Materializer); // Resolve cycles underneath MD. if (NewMD && NewMD != MD) { if (auto *N = dyn_cast(NewMD)) if (!N->isResolved()) N->resolveCycles(); for (MDNode *N : Cycles) if (!N->isResolved()) N->resolveCycles(); } else { // Shouldn't get unresolved cycles if nothing was remapped. assert(Cycles.empty() && "Expected no unresolved cycles"); } return NewMD; } MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { return cast(MapMetadata(static_cast(MD), VM, Flags, TypeMapper, Materializer)); } /// RemapInstruction - Convert the instruction operands from referencing the /// current values into those specified by VMap. /// void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer){ // Remap operands. for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); // If we aren't ignoring missing entries, assert that something happened. if (V) *op = V; else assert((Flags & RF_IgnoreMissingEntries) && "Referenced value not in value map!"); } // Remap phi nodes' incoming blocks. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); // If we aren't ignoring missing entries, assert that something happened. if (V) PN->setIncomingBlock(i, cast(V)); else assert((Flags & RF_IgnoreMissingEntries) && "Referenced block not in value map!"); } } // Remap attached metadata. SmallVector, 4> MDs; I->getAllMetadata(MDs); for (SmallVectorImpl>::iterator MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI) { MDNode *Old = MI->second; MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); if (New != Old) I->setMetadata(MI->first, New); } // If the instruction's type is being remapped, do so now. if (TypeMapper) I->mutateType(TypeMapper->remapType(I->getType())); }