//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements all of the non-inline methods for the LLVM instruction // classes. // //===----------------------------------------------------------------------===// #include "llvm/BasicBlock.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ParamAttrsList.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/MathExtras.h" using namespace llvm; //===----------------------------------------------------------------------===// // CallSite Class //===----------------------------------------------------------------------===// CallSite::CallSite(Instruction *C) { assert((isa(C) || isa(C)) && "Not a call!"); I = C; } unsigned CallSite::getCallingConv() const { if (CallInst *CI = dyn_cast(I)) return CI->getCallingConv(); else return cast(I)->getCallingConv(); } void CallSite::setCallingConv(unsigned CC) { if (CallInst *CI = dyn_cast(I)) CI->setCallingConv(CC); else cast(I)->setCallingConv(CC); } const ParamAttrsList* CallSite::getParamAttrs() const { if (CallInst *CI = dyn_cast(I)) return CI->getParamAttrs(); else return cast(I)->getParamAttrs(); } void CallSite::setParamAttrs(const ParamAttrsList *PAL) { if (CallInst *CI = dyn_cast(I)) CI->setParamAttrs(PAL); else cast(I)->setParamAttrs(PAL); } bool CallSite::paramHasAttr(uint16_t i, ParameterAttributes attr) const { if (CallInst *CI = dyn_cast(I)) return CI->paramHasAttr(i, attr); else return cast(I)->paramHasAttr(i, attr); } uint16_t CallSite::getParamAlignment(uint16_t i) const { if (CallInst *CI = dyn_cast(I)) return CI->getParamAlignment(i); else return cast(I)->getParamAlignment(i); } bool CallSite::doesNotAccessMemory() const { if (CallInst *CI = dyn_cast(I)) return CI->doesNotAccessMemory(); else return cast(I)->doesNotAccessMemory(); } bool CallSite::onlyReadsMemory() const { if (CallInst *CI = dyn_cast(I)) return CI->onlyReadsMemory(); else return cast(I)->onlyReadsMemory(); } bool CallSite::doesNotThrow() const { if (CallInst *CI = dyn_cast(I)) return CI->doesNotThrow(); else return cast(I)->doesNotThrow(); } void CallSite::setDoesNotThrow(bool doesNotThrow) { if (CallInst *CI = dyn_cast(I)) CI->setDoesNotThrow(doesNotThrow); else cast(I)->setDoesNotThrow(doesNotThrow); } //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// // Out of line virtual method, so the vtable, etc has a home. TerminatorInst::~TerminatorInst() { } // Out of line virtual method, so the vtable, etc has a home. UnaryInstruction::~UnaryInstruction() { } //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// PHINode::PHINode(const PHINode &PN) : Instruction(PN.getType(), Instruction::PHI, new Use[PN.getNumOperands()], PN.getNumOperands()), ReservedSpace(PN.getNumOperands()) { Use *OL = OperandList; for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) { OL[i].init(PN.getOperand(i), this); OL[i+1].init(PN.getOperand(i+1), this); } } PHINode::~PHINode() { delete [] OperandList; } // removeIncomingValue - Remove an incoming value. This is useful if a // predecessor basic block is deleted. Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { unsigned NumOps = getNumOperands(); Use *OL = OperandList; assert(Idx*2 < NumOps && "BB not in PHI node!"); Value *Removed = OL[Idx*2]; // Move everything after this operand down. // // FIXME: we could just swap with the end of the list, then erase. However, // client might not expect this to happen. The code as it is thrashes the // use/def lists, which is kinda lame. for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) { OL[i-2] = OL[i]; OL[i-2+1] = OL[i+1]; } // Nuke the last value. OL[NumOps-2].set(0); OL[NumOps-2+1].set(0); NumOperands = NumOps-2; // If the PHI node is dead, because it has zero entries, nuke it now. if (NumOps == 2 && DeletePHIIfEmpty) { // If anyone is using this PHI, make them use a dummy value instead... replaceAllUsesWith(UndefValue::get(getType())); eraseFromParent(); } return Removed; } /// resizeOperands - resize operands - This adjusts the length of the operands /// list according to the following behavior: /// 1. If NumOps == 0, grow the operand list in response to a push_back style /// of operation. This grows the number of ops by 1.5 times. /// 2. If NumOps > NumOperands, reserve space for NumOps operands. /// 3. If NumOps == NumOperands, trim the reserved space. /// void PHINode::resizeOperands(unsigned NumOps) { if (NumOps == 0) { NumOps = (getNumOperands())*3/2; if (NumOps < 4) NumOps = 4; // 4 op PHI nodes are VERY common. } else if (NumOps*2 > NumOperands) { // No resize needed. if (ReservedSpace >= NumOps) return; } else if (NumOps == NumOperands) { if (ReservedSpace == NumOps) return; } else { return; } ReservedSpace = NumOps; Use *NewOps = new Use[NumOps]; Use *OldOps = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { NewOps[i].init(OldOps[i], this); OldOps[i].set(0); } delete [] OldOps; OperandList = NewOps; } /// hasConstantValue - If the specified PHI node always merges together the same /// value, return the value, otherwise return null. /// Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const { // If the PHI node only has one incoming value, eliminate the PHI node... if (getNumIncomingValues() == 1) { if (getIncomingValue(0) != this) // not X = phi X return getIncomingValue(0); else return UndefValue::get(getType()); // Self cycle is dead. } // Otherwise if all of the incoming values are the same for the PHI, replace // the PHI node with the incoming value. // Value *InVal = 0; bool HasUndefInput = false; for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) if (isa(getIncomingValue(i))) { HasUndefInput = true; } else if (getIncomingValue(i) != this) { // Not the PHI node itself... if (InVal && getIncomingValue(i) != InVal) return 0; // Not the same, bail out. else InVal = getIncomingValue(i); } // The only case that could cause InVal to be null is if we have a PHI node // that only has entries for itself. In this case, there is no entry into the // loop, so kill the PHI. // if (InVal == 0) InVal = UndefValue::get(getType()); // If we have a PHI node like phi(X, undef, X), where X is defined by some // instruction, we cannot always return X as the result of the PHI node. Only // do this if X is not an instruction (thus it must dominate the PHI block), // or if the client is prepared to deal with this possibility. if (HasUndefInput && !AllowNonDominatingInstruction) if (Instruction *IV = dyn_cast(InVal)) // If it's in the entry block, it dominates everything. if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() || isa(IV)) return 0; // Cannot guarantee that InVal dominates this PHINode. // All of the incoming values are the same, return the value now. return InVal; } //===----------------------------------------------------------------------===// // CallInst Implementation //===----------------------------------------------------------------------===// CallInst::~CallInst() { delete [] OperandList; if (ParamAttrs) ParamAttrs->dropRef(); } void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) { ParamAttrs = 0; NumOperands = NumParams+1; Use *OL = OperandList = new Use[NumParams+1]; OL[0].init(Func, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); FTy = FTy; // silence warning. assert((NumParams == FTy->getNumParams() || (FTy->isVarArg() && NumParams > FTy->getNumParams())) && "Calling a function with bad signature!"); for (unsigned i = 0; i != NumParams; ++i) { assert((i >= FTy->getNumParams() || FTy->getParamType(i) == Params[i]->getType()) && "Calling a function with a bad signature!"); OL[i+1].init(Params[i], this); } } void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) { ParamAttrs = 0; NumOperands = 3; Use *OL = OperandList = new Use[3]; OL[0].init(Func, this); OL[1].init(Actual1, this); OL[2].init(Actual2, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); FTy = FTy; // silence warning. assert((FTy->getNumParams() == 2 || (FTy->isVarArg() && FTy->getNumParams() < 2)) && "Calling a function with bad signature"); assert((0 >= FTy->getNumParams() || FTy->getParamType(0) == Actual1->getType()) && "Calling a function with a bad signature!"); assert((1 >= FTy->getNumParams() || FTy->getParamType(1) == Actual2->getType()) && "Calling a function with a bad signature!"); } void CallInst::init(Value *Func, Value *Actual) { ParamAttrs = 0; NumOperands = 2; Use *OL = OperandList = new Use[2]; OL[0].init(Func, this); OL[1].init(Actual, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); FTy = FTy; // silence warning. assert((FTy->getNumParams() == 1 || (FTy->isVarArg() && FTy->getNumParams() == 0)) && "Calling a function with bad signature"); assert((0 == FTy->getNumParams() || FTy->getParamType(0) == Actual->getType()) && "Calling a function with a bad signature!"); } void CallInst::init(Value *Func) { ParamAttrs = 0; NumOperands = 1; Use *OL = OperandList = new Use[1]; OL[0].init(Func, this); const FunctionType *FTy = cast(cast(Func->getType())->getElementType()); FTy = FTy; // silence warning. assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, InsertBefore) { init(Func, Actual); setName(Name); } CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, InsertAtEnd) { init(Func, Actual); setName(Name); } CallInst::CallInst(Value *Func, const std::string &Name, Instruction *InsertBefore) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, InsertBefore) { init(Func); setName(Name); } CallInst::CallInst(Value *Func, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(cast(cast(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, 0, 0, InsertAtEnd) { init(Func); setName(Name); } CallInst::CallInst(const CallInst &CI) : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()], CI.getNumOperands()), ParamAttrs(0) { setParamAttrs(CI.getParamAttrs()); SubclassData = CI.SubclassData; Use *OL = OperandList; Use *InOL = CI.OperandList; for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i) OL[i].init(InOL[i], this); } void CallInst::setParamAttrs(const ParamAttrsList *newAttrs) { if (ParamAttrs == newAttrs) return; if (ParamAttrs) ParamAttrs->dropRef(); if (newAttrs) newAttrs->addRef(); ParamAttrs = newAttrs; } bool CallInst::paramHasAttr(uint16_t i, ParameterAttributes attr) const { if (ParamAttrs && ParamAttrs->paramHasAttr(i, attr)) return true; if (const Function *F = getCalledFunction()) return F->paramHasAttr(i, attr); return false; } uint16_t CallInst::getParamAlignment(uint16_t i) const { if (ParamAttrs && ParamAttrs->getParamAlignment(i)) return ParamAttrs->getParamAlignment(i); if (const Function *F = getCalledFunction()) return F->getParamAlignment(i); return 0; } /// @brief Determine if the call does not access memory. bool CallInst::doesNotAccessMemory() const { return paramHasAttr(0, ParamAttr::ReadNone); } /// @brief Determine if the call does not access or only reads memory. bool CallInst::onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly); } /// @brief Determine if the call cannot return. bool CallInst::doesNotReturn() const { return paramHasAttr(0, ParamAttr::NoReturn); } /// @brief Determine if the call cannot unwind. bool CallInst::doesNotThrow() const { return paramHasAttr(0, ParamAttr::NoUnwind); } /// @brief Determine if the call returns a structure. bool CallInst::isStructReturn() const { // Be friendly and also check the callee. return paramHasAttr(1, ParamAttr::StructRet); } /// @brief Determine if any call argument is an aggregate passed by value. bool CallInst::hasByValArgument() const { if (ParamAttrs && ParamAttrs->hasAttrSomewhere(ParamAttr::ByVal)) return true; // Be consistent with other methods and check the callee too. if (const Function *F = getCalledFunction()) if (const ParamAttrsList *PAL = F->getParamAttrs()) return PAL->hasAttrSomewhere(ParamAttr::ByVal); return false; } void CallInst::setDoesNotThrow(bool doesNotThrow) { const ParamAttrsList *PAL = getParamAttrs(); if (doesNotThrow) PAL = ParamAttrsList::includeAttrs(PAL, 0, ParamAttr::NoUnwind); else PAL = ParamAttrsList::excludeAttrs(PAL, 0, ParamAttr::NoUnwind); setParamAttrs(PAL); } //===----------------------------------------------------------------------===// // InvokeInst Implementation //===----------------------------------------------------------------------===// InvokeInst::~InvokeInst() { delete [] OperandList; if (ParamAttrs) ParamAttrs->dropRef(); } void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, Value* const *Args, unsigned NumArgs) { ParamAttrs = 0; NumOperands = 3+NumArgs; Use *OL = OperandList = new Use[3+NumArgs]; OL[0].init(Fn, this); OL[1].init(IfNormal, this); OL[2].init(IfException, this); const FunctionType *FTy = cast(cast(Fn->getType())->getElementType()); FTy = FTy; // silence warning. assert(((NumArgs == FTy->getNumParams()) || (FTy->isVarArg() && NumArgs > FTy->getNumParams())) && "Calling a function with bad signature"); for (unsigned i = 0, e = NumArgs; i != e; i++) { assert((i >= FTy->getNumParams() || FTy->getParamType(i) == Args[i]->getType()) && "Invoking a function with a bad signature!"); OL[i+3].init(Args[i], this); } } InvokeInst::InvokeInst(const InvokeInst &II) : TerminatorInst(II.getType(), Instruction::Invoke, new Use[II.getNumOperands()], II.getNumOperands()), ParamAttrs(0) { setParamAttrs(II.getParamAttrs()); SubclassData = II.SubclassData; Use *OL = OperandList, *InOL = II.OperandList; for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i) OL[i].init(InOL[i], this); } BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned InvokeInst::getNumSuccessorsV() const { return getNumSuccessors(); } void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { return setSuccessor(idx, B); } void InvokeInst::setParamAttrs(const ParamAttrsList *newAttrs) { if (ParamAttrs == newAttrs) return; if (ParamAttrs) ParamAttrs->dropRef(); if (newAttrs) newAttrs->addRef(); ParamAttrs = newAttrs; } bool InvokeInst::paramHasAttr(uint16_t i, ParameterAttributes attr) const { if (ParamAttrs && ParamAttrs->paramHasAttr(i, attr)) return true; if (const Function *F = getCalledFunction()) return F->paramHasAttr(i, attr); return false; } uint16_t InvokeInst::getParamAlignment(uint16_t i) const { if (ParamAttrs && ParamAttrs->getParamAlignment(i)) return ParamAttrs->getParamAlignment(i); if (const Function *F = getCalledFunction()) return F->getParamAlignment(i); return 0; } /// @brief Determine if the call does not access memory. bool InvokeInst::doesNotAccessMemory() const { return paramHasAttr(0, ParamAttr::ReadNone); } /// @brief Determine if the call does not access or only reads memory. bool InvokeInst::onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly); } /// @brief Determine if the call cannot return. bool InvokeInst::doesNotReturn() const { return paramHasAttr(0, ParamAttr::NoReturn); } /// @brief Determine if the call cannot unwind. bool InvokeInst::doesNotThrow() const { return paramHasAttr(0, ParamAttr::NoUnwind); } void InvokeInst::setDoesNotThrow(bool doesNotThrow) { const ParamAttrsList *PAL = getParamAttrs(); if (doesNotThrow) PAL = ParamAttrsList::includeAttrs(PAL, 0, ParamAttr::NoUnwind); else PAL = ParamAttrsList::excludeAttrs(PAL, 0, ParamAttr::NoUnwind); setParamAttrs(PAL); } /// @brief Determine if the call returns a structure. bool InvokeInst::isStructReturn() const { // Be friendly and also check the callee. return paramHasAttr(1, ParamAttr::StructRet); } //===----------------------------------------------------------------------===// // ReturnInst Implementation //===----------------------------------------------------------------------===// ReturnInst::ReturnInst(const ReturnInst &RI) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, RI.getNumOperands()) { unsigned N = RI.getNumOperands(); Use *OL = OperandList = new Use[N]; for (unsigned i = 0; i < N; ++i) OL[i].init(RI.getOperand(i), this); } ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, 0, InsertBefore) { init(retVal); } ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, 0, InsertAtEnd) { init(retVal); } ReturnInst::ReturnInst(BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, 0, InsertAtEnd) { } ReturnInst::ReturnInst(std::vector &retVals, Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, retVals.size(), InsertBefore) { init(retVals); } ReturnInst::ReturnInst(std::vector &retVals, BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, retVals.size(), InsertAtEnd) { init(retVals); } ReturnInst::ReturnInst(std::vector &retVals) : TerminatorInst(Type::VoidTy, Instruction::Ret, OperandList, retVals.size()) { init(retVals); } void ReturnInst::init(Value *retVal) { if (retVal && retVal->getType() != Type::VoidTy) { assert(!isa(retVal) && "Cannot return basic block. Probably using the incorrect ctor"); NumOperands = 1; Use *OL = OperandList = new Use[1]; OL[0].init(retVal, this); } } void ReturnInst::init(std::vector &retVals) { if (retVals.empty()) return; NumOperands = retVals.size(); if (NumOperands == 1) { Value *V = retVals[0]; if (V->getType() == Type::VoidTy) return; } Use *OL = OperandList = new Use[NumOperands]; for (unsigned i = 0; i < NumOperands; ++i) { Value *V = retVals[i]; assert(!isa(V) && "Cannot return basic block. Probably using the incorrect ctor"); OL[i].init(V, this); } } Value *ReturnInst::getReturnValue(unsigned n) const { if (NumOperands) return OperandList[n]; else return 0; } unsigned ReturnInst::getNumSuccessorsV() const { return getNumSuccessors(); } // Out-of-line ReturnInst method, put here so the C++ compiler can choose to // emit the vtable for the class in this translation unit. void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "ReturnInst has no successors!"); } BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { assert(0 && "ReturnInst has no successors!"); abort(); return 0; } ReturnInst::~ReturnInst() { if (NumOperands) delete [] OperandList; } //===----------------------------------------------------------------------===// // UnwindInst Implementation //===----------------------------------------------------------------------===// UnwindInst::UnwindInst(Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) { } UnwindInst::UnwindInst(BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) { } unsigned UnwindInst::getNumSuccessorsV() const { return getNumSuccessors(); } void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnwindInst has no successors!"); } BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const { assert(0 && "UnwindInst has no successors!"); abort(); return 0; } //===----------------------------------------------------------------------===// // UnreachableInst Implementation //===----------------------------------------------------------------------===// UnreachableInst::UnreachableInst(Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) { } UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) { } unsigned UnreachableInst::getNumSuccessorsV() const { return getNumSuccessors(); } void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { assert(0 && "UnwindInst has no successors!"); } BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { assert(0 && "UnwindInst has no successors!"); abort(); return 0; } //===----------------------------------------------------------------------===// // BranchInst Implementation //===----------------------------------------------------------------------===// void BranchInst::AssertOK() { if (isConditional()) assert(getCondition()->getType() == Type::Int1Ty && "May only branch on boolean predicates!"); } BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertBefore) { assert(IfTrue != 0 && "Branch destination may not be null!"); Ops[0].init(reinterpret_cast(IfTrue), this); } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertBefore) { Ops[0].init(reinterpret_cast(IfTrue), this); Ops[1].init(reinterpret_cast(IfFalse), this); Ops[2].init(Cond, this); #ifndef NDEBUG AssertOK(); #endif } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertAtEnd) { assert(IfTrue != 0 && "Branch destination may not be null!"); Ops[0].init(reinterpret_cast(IfTrue), this); } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertAtEnd) { Ops[0].init(reinterpret_cast(IfTrue), this); Ops[1].init(reinterpret_cast(IfFalse), this); Ops[2].init(Cond, this); #ifndef NDEBUG AssertOK(); #endif } BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, BI.getNumOperands()) { OperandList[0].init(BI.getOperand(0), this); if (BI.getNumOperands() != 1) { assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); OperandList[1].init(BI.getOperand(1), this); OperandList[2].init(BI.getOperand(2), this); } } BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned BranchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // AllocationInst Implementation //===----------------------------------------------------------------------===// static Value *getAISize(Value *Amt) { if (!Amt) Amt = ConstantInt::get(Type::Int32Ty, 1); else { assert(!isa(Amt) && "Passed basic block into allocation size parameter! Use other ctor"); assert(Amt->getType() == Type::Int32Ty && "Malloc/Allocation array size is not a 32-bit integer!"); } return Amt; } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name, Instruction *InsertBefore) : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize), InsertBefore), Alignment(Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); assert(Ty != Type::VoidTy && "Cannot allocate void!"); setName(Name); } AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy, unsigned Align, const std::string &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize), InsertAtEnd), Alignment(Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); assert(Ty != Type::VoidTy && "Cannot allocate void!"); setName(Name); } // Out of line virtual method, so the vtable, etc has a home. AllocationInst::~AllocationInst() { } bool AllocationInst::isArrayAllocation() const { if (ConstantInt *CI = dyn_cast(getOperand(0))) return CI->getZExtValue() != 1; return true; } const Type *AllocationInst::getAllocatedType() const { return getType()->getElementType(); } AllocaInst::AllocaInst(const AllocaInst &AI) : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0), Instruction::Alloca, AI.getAlignment()) { } MallocInst::MallocInst(const MallocInst &MI) : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0), Instruction::Malloc, MI.getAlignment()) { } //===----------------------------------------------------------------------===// // FreeInst Implementation //===----------------------------------------------------------------------===// void FreeInst::AssertOK() { assert(isa(getOperand(0)->getType()) && "Can not free something of nonpointer type!"); } FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore) : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) { AssertOK(); } FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd) : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) { AssertOK(); } //===----------------------------------------------------------------------===// // LoadInst Implementation //===----------------------------------------------------------------------===// void LoadInst::AssertOK() { assert(isa(getOperand(0)->getType()) && "Ptr must have pointer type."); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(false); setAlignment(0); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(false); setAlignment(0); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(0); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, unsigned Align, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(Align); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, unsigned Align, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(Align); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(0); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(false); setAlignment(0); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(false); setAlignment(0); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, Instruction *InsertBef) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(0); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, BasicBlock *InsertAE) : UnaryInstruction(cast(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(0); AssertOK(); if (Name && Name[0]) setName(Name); } void LoadInst::setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1); } //===----------------------------------------------------------------------===// // StoreInst Implementation //===----------------------------------------------------------------------===// void StoreInst::AssertOK() { assert(isa(getOperand(1)->getType()) && "Ptr must have pointer type!"); assert(getOperand(0)->getType() == cast(getOperand(1)->getType())->getElementType() && "Ptr must be a pointer to Val type!"); } StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(false); setAlignment(0); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(false); setAlignment(0); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); setAlignment(0); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, Instruction *InsertBefore) : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); setAlignment(Align); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); setAlignment(Align); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, BasicBlock *InsertAtEnd) : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) { Ops[0].init(val, this); Ops[1].init(addr, this); setVolatile(isVolatile); setAlignment(0); AssertOK(); } void StoreInst::setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1); } //===----------------------------------------------------------------------===// // GetElementPtrInst Implementation //===----------------------------------------------------------------------===// static unsigned retrieveAddrSpace(const Value *Val) { return cast(Val->getType())->getAddressSpace(); } void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx) { NumOperands = 1+NumIdx; Use *OL = OperandList = new Use[NumOperands]; OL[0].init(Ptr, this); for (unsigned i = 0; i != NumIdx; ++i) OL[i+1].init(Idx[i], this); } void GetElementPtrInst::init(Value *Ptr, Value *Idx) { NumOperands = 2; Use *OL = OperandList = new Use[2]; OL[0].init(Ptr, this); OL[1].init(Idx, this); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name, Instruction *InBe) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)), GetElementPtr, 0, 0, InBe) { init(Ptr, Idx); setName(Name); } GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx, const std::string &Name, BasicBlock *IAE) : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)), GetElementPtr, 0, 0, IAE) { init(Ptr, Idx); setName(Name); } GetElementPtrInst::~GetElementPtrInst() { delete[] OperandList; } // getIndexedType - Returns the type of the element that would be loaded with // a load instruction with the specified parameters. // // A null type is returned if the indices are invalid for the specified // pointer type. // const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value* const *Idxs, unsigned NumIdx, bool AllowCompositeLeaf) { if (!isa(Ptr)) return 0; // Type isn't a pointer type! // Handle the special case of the empty set index set... if (NumIdx == 0) { if (AllowCompositeLeaf || cast(Ptr)->getElementType()->isFirstClassType()) return cast(Ptr)->getElementType(); else return 0; } unsigned CurIdx = 0; while (const CompositeType *CT = dyn_cast(Ptr)) { if (NumIdx == CurIdx) { if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr; return 0; // Can't load a whole structure or array!?!? } Value *Index = Idxs[CurIdx++]; if (isa(CT) && CurIdx != 1) return 0; // Can only index into pointer types at the first index! if (!CT->indexValid(Index)) return 0; Ptr = CT->getTypeAtIndex(Index); // If the new type forwards to another type, then it is in the middle // of being refined to another type (and hence, may have dropped all // references to what it was using before). So, use the new forwarded // type. if (const Type * Ty = Ptr->getForwardedType()) { Ptr = Ty; } } return CurIdx == NumIdx ? Ptr : 0; } const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) { const PointerType *PTy = dyn_cast(Ptr); if (!PTy) return 0; // Type isn't a pointer type! // Check the pointer index. if (!PTy->indexValid(Idx)) return 0; return PTy->getElementType(); } /// hasAllZeroIndices - Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool GetElementPtrInst::hasAllZeroIndices() const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { if (ConstantInt *CI = dyn_cast(getOperand(i))) { if (!CI->isZero()) return false; } else { return false; } } return true; } /// hasAllConstantIndices - Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool GetElementPtrInst::hasAllConstantIndices() const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { if (!isa(getOperand(i))) return false; } return true; } //===----------------------------------------------------------------------===// // ExtractElementInst Implementation //===----------------------------------------------------------------------===// ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, const std::string &Name, Instruction *InsertBef) : Instruction(cast(Val->getType())->getElementType(), ExtractElement, Ops, 2, InsertBef) { assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Ops[0].init(Val, this); Ops[1].init(Index, this); setName(Name); } ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV, const std::string &Name, Instruction *InsertBef) : Instruction(cast(Val->getType())->getElementType(), ExtractElement, Ops, 2, InsertBef) { Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV); assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Ops[0].init(Val, this); Ops[1].init(Index, this); setName(Name); } ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, const std::string &Name, BasicBlock *InsertAE) : Instruction(cast(Val->getType())->getElementType(), ExtractElement, Ops, 2, InsertAE) { assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Ops[0].init(Val, this); Ops[1].init(Index, this); setName(Name); } ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV, const std::string &Name, BasicBlock *InsertAE) : Instruction(cast(Val->getType())->getElementType(), ExtractElement, Ops, 2, InsertAE) { Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV); assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Ops[0].init(Val, this); Ops[1].init(Index, this); setName(Name); } bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { if (!isa(Val->getType()) || Index->getType() != Type::Int32Ty) return false; return true; } //===----------------------------------------------------------------------===// // InsertElementInst Implementation //===----------------------------------------------------------------------===// InsertElementInst::InsertElementInst(const InsertElementInst &IE) : Instruction(IE.getType(), InsertElement, Ops, 3) { Ops[0].init(IE.Ops[0], this); Ops[1].init(IE.Ops[1], this); Ops[2].init(IE.Ops[2], this); } InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, const std::string &Name, Instruction *InsertBef) : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) { assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Ops[0].init(Vec, this); Ops[1].init(Elt, this); Ops[2].init(Index, this); setName(Name); } InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV, const std::string &Name, Instruction *InsertBef) : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) { Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV); assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Ops[0].init(Vec, this); Ops[1].init(Elt, this); Ops[2].init(Index, this); setName(Name); } InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, const std::string &Name, BasicBlock *InsertAE) : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) { assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Ops[0].init(Vec, this); Ops[1].init(Elt, this); Ops[2].init(Index, this); setName(Name); } InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV, const std::string &Name, BasicBlock *InsertAE) : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) { Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV); assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Ops[0].init(Vec, this); Ops[1].init(Elt, this); Ops[2].init(Index, this); setName(Name); } bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, const Value *Index) { if (!isa(Vec->getType())) return false; // First operand of insertelement must be vector type. if (Elt->getType() != cast(Vec->getType())->getElementType()) return false;// Second operand of insertelement must be vector element type. if (Index->getType() != Type::Int32Ty) return false; // Third operand of insertelement must be uint. return true; } //===----------------------------------------------------------------------===// // ShuffleVectorInst Implementation //===----------------------------------------------------------------------===// ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV) : Instruction(SV.getType(), ShuffleVector, Ops, 3) { Ops[0].init(SV.Ops[0], this); Ops[1].init(SV.Ops[1], this); Ops[2].init(SV.Ops[2], this); } ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &Name, Instruction *InsertBefore) : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertBefore) { assert(isValidOperands(V1, V2, Mask) && "Invalid shuffle vector instruction operands!"); Ops[0].init(V1, this); Ops[1].init(V2, this); Ops[2].init(Mask, this); setName(Name); } ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertAtEnd) { assert(isValidOperands(V1, V2, Mask) && "Invalid shuffle vector instruction operands!"); Ops[0].init(V1, this); Ops[1].init(V2, this); Ops[2].init(Mask, this); setName(Name); } bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, const Value *Mask) { if (!isa(V1->getType())) return false; if (V1->getType() != V2->getType()) return false; if (!isa(Mask->getType()) || cast(Mask->getType())->getElementType() != Type::Int32Ty || cast(Mask->getType())->getNumElements() != cast(V1->getType())->getNumElements()) return false; return true; } //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty, const std::string &Name, Instruction *InsertBefore) : Instruction(Ty, iType, Ops, 2, InsertBefore) { Ops[0].init(S1, this); Ops[1].init(S2, this); init(iType); setName(Name); } BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(Ty, iType, Ops, 2, InsertAtEnd) { Ops[0].init(S1, this); Ops[1].init(S2, this); init(iType); setName(Name); } void BinaryOperator::init(BinaryOps iType) { Value *LHS = getOperand(0), *RHS = getOperand(1); LHS = LHS; RHS = RHS; // Silence warnings. assert(LHS->getType() == RHS->getType() && "Binary operator operand types must match!"); #ifndef NDEBUG switch (iType) { case Add: case Sub: case Mul: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isInteger() || getType()->isFloatingPoint() || isa(getType())) && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case UDiv: case SDiv: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isInteger() || (isa(getType()) && cast(getType())->getElementType()->isInteger())) && "Incorrect operand type (not integer) for S/UDIV"); break; case FDiv: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isFloatingPoint() || (isa(getType()) && cast(getType())->getElementType()->isFloatingPoint())) && "Incorrect operand type (not floating point) for FDIV"); break; case URem: case SRem: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isInteger() || (isa(getType()) && cast(getType())->getElementType()->isInteger())) && "Incorrect operand type (not integer) for S/UREM"); break; case FRem: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isFloatingPoint() || (isa(getType()) && cast(getType())->getElementType()->isFloatingPoint())) && "Incorrect operand type (not floating point) for FREM"); break; case Shl: case LShr: case AShr: assert(getType() == LHS->getType() && "Shift operation should return same type as operands!"); assert(getType()->isInteger() && "Shift operation requires integer operands"); break; case And: case Or: case Xor: assert(getType() == LHS->getType() && "Logical operation should return same type as operands!"); assert((getType()->isInteger() || (isa(getType()) && cast(getType())->getElementType()->isInteger())) && "Tried to create a logical operation on a non-integral type!"); break; default: break; } #endif } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) { assert(S1->getType() == S2->getType() && "Cannot create binary operator with two operands of differing type!"); return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) { BinaryOperator *Res = create(Op, S1, S2, Name); InsertAtEnd->getInstList().push_back(Res); return Res; } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, Instruction *InsertBefore) { Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType()); return new BinaryOperator(Instruction::Sub, zero, Op, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType()); return new BinaryOperator(Instruction::Sub, zero, Op, Op->getType(), Name, InsertAtEnd); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, Instruction *InsertBefore) { Constant *C; if (const VectorType *PTy = dyn_cast(Op->getType())) { C = ConstantInt::getAllOnesValue(PTy->getElementType()); C = ConstantVector::get(std::vector(PTy->getNumElements(), C)); } else { C = ConstantInt::getAllOnesValue(Op->getType()); } return new BinaryOperator(Instruction::Xor, Op, C, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name, BasicBlock *InsertAtEnd) { Constant *AllOnes; if (const VectorType *PTy = dyn_cast(Op->getType())) { // Create a vector of all ones values. Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType()); AllOnes = ConstantVector::get(std::vector(PTy->getNumElements(), Elt)); } else { AllOnes = ConstantInt::getAllOnesValue(Op->getType()); } return new BinaryOperator(Instruction::Xor, Op, AllOnes, Op->getType(), Name, InsertAtEnd); } // isConstantAllOnes - Helper function for several functions below static inline bool isConstantAllOnes(const Value *V) { if (const ConstantInt *CI = dyn_cast(V)) return CI->isAllOnesValue(); if (const ConstantVector *CV = dyn_cast(V)) return CV->isAllOnesValue(); return false; } bool BinaryOperator::isNeg(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) if (Bop->getOpcode() == Instruction::Sub) return Bop->getOperand(0) == ConstantExpr::getZeroValueForNegationExpr(Bop->getType()); return false; } bool BinaryOperator::isNot(const Value *V) { if (const BinaryOperator *Bop = dyn_cast(V)) return (Bop->getOpcode() == Instruction::Xor && (isConstantAllOnes(Bop->getOperand(1)) || isConstantAllOnes(Bop->getOperand(0)))); return false; } Value *BinaryOperator::getNegArgument(Value *BinOp) { assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!"); return cast(BinOp)->getOperand(1); } const Value *BinaryOperator::getNegArgument(const Value *BinOp) { return getNegArgument(const_cast(BinOp)); } Value *BinaryOperator::getNotArgument(Value *BinOp) { assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); BinaryOperator *BO = cast(BinOp); Value *Op0 = BO->getOperand(0); Value *Op1 = BO->getOperand(1); if (isConstantAllOnes(Op0)) return Op1; assert(isConstantAllOnes(Op1)); return Op0; } const Value *BinaryOperator::getNotArgument(const Value *BinOp) { return getNotArgument(const_cast(BinOp)); } // swapOperands - Exchange the two operands to this instruction. This // instruction is safe to use on any binary instruction and does not // modify the semantics of the instruction. If the instruction is // order dependent (SetLT f.e.) the opcode is changed. // bool BinaryOperator::swapOperands() { if (!isCommutative()) return true; // Can't commute operands std::swap(Ops[0], Ops[1]); return false; } //===----------------------------------------------------------------------===// // CastInst Class //===----------------------------------------------------------------------===// // Just determine if this cast only deals with integral->integral conversion. bool CastInst::isIntegerCast() const { switch (getOpcode()) { default: return false; case Instruction::ZExt: case Instruction::SExt: case Instruction::Trunc: return true; case Instruction::BitCast: return getOperand(0)->getType()->isInteger() && getType()->isInteger(); } } bool CastInst::isLosslessCast() const { // Only BitCast can be lossless, exit fast if we're not BitCast if (getOpcode() != Instruction::BitCast) return false; // Identity cast is always lossless const Type* SrcTy = getOperand(0)->getType(); const Type* DstTy = getType(); if (SrcTy == DstTy) return true; // Pointer to pointer is always lossless. if (isa(SrcTy)) return isa(DstTy); return false; // Other types have no identity values } /// This function determines if the CastInst does not require any bits to be /// changed in order to effect the cast. Essentially, it identifies cases where /// no code gen is necessary for the cast, hence the name no-op cast. For /// example, the following are all no-op casts: /// # bitcast uint %X, int /// # bitcast uint* %x, sbyte* /// # bitcast vector< 2 x int > %x, vector< 4 x short> /// # ptrtoint uint* %x, uint ; on 32-bit plaforms only /// @brief Determine if a cast is a no-op. bool CastInst::isNoopCast(const Type *IntPtrTy) const { switch (getOpcode()) { default: assert(!"Invalid CastOp"); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: return false; // These always modify bits case Instruction::BitCast: return true; // BitCast never modifies bits. case Instruction::PtrToInt: return IntPtrTy->getPrimitiveSizeInBits() == getType()->getPrimitiveSizeInBits(); case Instruction::IntToPtr: return IntPtrTy->getPrimitiveSizeInBits() == getOperand(0)->getType()->getPrimitiveSizeInBits(); } } /// This function determines if a pair of casts can be eliminated and what /// opcode should be used in the elimination. This assumes that there are two /// instructions like this: /// * %F = firstOpcode SrcTy %x to MidTy /// * %S = secondOpcode MidTy %F to DstTy /// The function returns a resultOpcode so these two casts can be replaced with: /// * %Replacement = resultOpcode %SrcTy %x to DstTy /// If no such cast is permited, the function returns 0. unsigned CastInst::isEliminableCastPair( Instruction::CastOps firstOp, Instruction::CastOps secondOp, const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy) { // Define the 144 possibilities for these two cast instructions. The values // in this matrix determine what to do in a given situation and select the // case in the switch below. The rows correspond to firstOp, the columns // correspond to secondOp. In looking at the table below, keep in mind // the following cast properties: // // Size Compare Source Destination // Operator Src ? Size Type Sign Type Sign // -------- ------------ ------------------- --------------------- // TRUNC > Integer Any Integral Any // ZEXT < Integral Unsigned Integer Any // SEXT < Integral Signed Integer Any // FPTOUI n/a FloatPt n/a Integral Unsigned // FPTOSI n/a FloatPt n/a Integral Signed // UITOFP n/a Integral Unsigned FloatPt n/a // SITOFP n/a Integral Signed FloatPt n/a // FPTRUNC > FloatPt n/a FloatPt n/a // FPEXT < FloatPt n/a FloatPt n/a // PTRTOINT n/a Pointer n/a Integral Unsigned // INTTOPTR n/a Integral Unsigned Pointer n/a // BITCONVERT = FirstClass n/a FirstClass n/a // // NOTE: some transforms are safe, but we consider them to be non-profitable. // For example, we could merge "fptoui double to uint" + "zext uint to ulong", // into "fptoui double to ulong", but this loses information about the range // of the produced value (we no longer know the top-part is all zeros). // Further this conversion is often much more expensive for typical hardware, // and causes issues when building libgcc. We disallow fptosi+sext for the // same reason. const unsigned numCastOps = Instruction::CastOpsEnd - Instruction::CastOpsBegin; static const uint8_t CastResults[numCastOps][numCastOps] = { // T F F U S F F P I B -+ // R Z S P P I I T P 2 N T | // U E E 2 2 2 2 R E I T C +- secondOp // N X X U S F F N X N 2 V | // C T T I I P P C T T P T -+ { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ }; int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] [secondOp-Instruction::CastOpsBegin]; switch (ElimCase) { case 0: // categorically disallowed return 0; case 1: // allowed, use first cast's opcode return firstOp; case 2: // allowed, use second cast's opcode return secondOp; case 3: // no-op cast in second op implies firstOp as long as the DestTy // is integer if (DstTy->isInteger()) return firstOp; return 0; case 4: // no-op cast in second op implies firstOp as long as the DestTy // is floating point if (DstTy->isFloatingPoint()) return firstOp; return 0; case 5: // no-op cast in first op implies secondOp as long as the SrcTy // is an integer if (SrcTy->isInteger()) return secondOp; return 0; case 6: // no-op cast in first op implies secondOp as long as the SrcTy // is a floating point if (SrcTy->isFloatingPoint()) return secondOp; return 0; case 7: { // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits(); unsigned MidSize = MidTy->getPrimitiveSizeInBits(); if (MidSize >= PtrSize) return Instruction::BitCast; return 0; } case 8: { // ext, trunc -> bitcast, if the SrcTy and DstTy are same size // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); unsigned DstSize = DstTy->getPrimitiveSizeInBits(); if (SrcSize == DstSize) return Instruction::BitCast; else if (SrcSize < DstSize) return firstOp; return secondOp; } case 9: // zext, sext -> zext, because sext can't sign extend after zext return Instruction::ZExt; case 10: // fpext followed by ftrunc is allowed if the bit size returned to is // the same as the original, in which case its just a bitcast if (SrcTy == DstTy) return Instruction::BitCast; return 0; // If the types are not the same we can't eliminate it. case 11: // bitcast followed by ptrtoint is allowed as long as the bitcast // is a pointer to pointer cast. if (isa(SrcTy) && isa(MidTy)) return secondOp; return 0; case 12: // inttoptr, bitcast -> intptr if bitcast is a ptr to ptr cast if (isa(MidTy) && isa(DstTy)) return firstOp; return 0; case 13: { // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits(); unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); unsigned DstSize = DstTy->getPrimitiveSizeInBits(); if (SrcSize <= PtrSize && SrcSize == DstSize) return Instruction::BitCast; return 0; } case 99: // cast combination can't happen (error in input). This is for all cases // where the MidTy is not the same for the two cast instructions. assert(!"Invalid Cast Combination"); return 0; default: assert(!"Error in CastResults table!!!"); return 0; } return 0; } CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { // Construct and return the appropriate CastInst subclass switch (op) { case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); case SExt: return new SExtInst (S, Ty, Name, InsertBefore); case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); default: assert(!"Invalid opcode provided"); } return 0; } CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { // Construct and return the appropriate CastInst subclass switch (op) { case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); default: assert(!"Invalid opcode provided"); } return 0; } CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertBefore); return create(Instruction::ZExt, S, Ty, Name, InsertBefore); } CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertBefore); return create(Instruction::SExt, S, Ty, Name, InsertBefore); } CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return create(Instruction::SExt, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertBefore); return create(Instruction::Trunc, S, Ty, Name, InsertBefore); } CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits()) return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::createPointerCast(Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { assert(isa(S->getType()) && "Invalid cast"); assert((Ty->isInteger() || isa(Ty)) && "Invalid cast"); if (Ty->isInteger()) return create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); } /// @brief Create a BitCast or a PtrToInt cast instruction CastInst *CastInst::createPointerCast(Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { assert(isa(S->getType()) && "Invalid cast"); assert((Ty->isInteger() || isa(Ty)) && "Invalid cast"); if (Ty->isInteger()) return create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); return create(Instruction::BitCast, S, Ty, Name, InsertBefore); } CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty, bool isSigned, const std::string &Name, Instruction *InsertBefore) { assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); unsigned DstBits = Ty->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return create(opcode, C, Ty, Name, InsertBefore); } CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty, bool isSigned, const std::string &Name, BasicBlock *InsertAtEnd) { assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast"); unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); unsigned DstBits = Ty->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return create(opcode, C, Ty, Name, InsertAtEnd); } CastInst *CastInst::createFPCast(Value *C, const Type *Ty, const std::string &Name, Instruction *InsertBefore) { assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && "Invalid cast"); unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); unsigned DstBits = Ty->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); return create(opcode, C, Ty, Name, InsertBefore); } CastInst *CastInst::createFPCast(Value *C, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd) { assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() && "Invalid cast"); unsigned SrcBits = C->getType()->getPrimitiveSizeInBits(); unsigned DstBits = Ty->getPrimitiveSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); return create(opcode, C, Ty, Name, InsertAtEnd); } // Check whether it is valid to call getCastOpcode for these types. // This routine must be kept in sync with getCastOpcode. bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) { if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) return false; if (SrcTy == DestTy) return true; // Get the bit sizes, we'll need these unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector // Run through the possibilities ... if (DestTy->isInteger()) { // Casting to integral if (SrcTy->isInteger()) { // Casting from integral return true; } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt return true; } else if (const VectorType *PTy = dyn_cast(SrcTy)) { // Casting from vector return DestBits == PTy->getBitWidth(); } else { // Casting from something else return isa(SrcTy); } } else if (DestTy->isFloatingPoint()) { // Casting to floating pt if (SrcTy->isInteger()) { // Casting from integral return true; } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt return true; } else if (const VectorType *PTy = dyn_cast(SrcTy)) { // Casting from vector return DestBits == PTy->getBitWidth(); } else { // Casting from something else return false; } } else if (const VectorType *DestPTy = dyn_cast(DestTy)) { // Casting to vector if (const VectorType *SrcPTy = dyn_cast(SrcTy)) { // Casting from vector return DestPTy->getBitWidth() == SrcPTy->getBitWidth(); } else { // Casting from something else return DestPTy->getBitWidth() == SrcBits; } } else if (isa(DestTy)) { // Casting to pointer if (isa(SrcTy)) { // Casting from pointer return true; } else if (SrcTy->isInteger()) { // Casting from integral return true; } else { // Casting from something else return false; } } else { // Casting to something else return false; } } // Provide a way to get a "cast" where the cast opcode is inferred from the // types and size of the operand. This, basically, is a parallel of the // logic in the castIsValid function below. This axiom should hold: // castIsValid( getCastOpcode(Val, Ty), Val, Ty) // should not assert in castIsValid. In other words, this produces a "correct" // casting opcode for the arguments passed to it. // This routine must be kept in sync with isCastable. Instruction::CastOps CastInst::getCastOpcode( const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) { // Get the bit sizes, we'll need these const Type *SrcTy = Src->getType(); unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr/vector unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && "Only first class types are castable!"); // Run through the possibilities ... if (DestTy->isInteger()) { // Casting to integral if (SrcTy->isInteger()) { // Casting from integral if (DestBits < SrcBits) return Trunc; // int -> smaller int else if (DestBits > SrcBits) { // its an extension if (SrcIsSigned) return SExt; // signed -> SEXT else return ZExt; // unsigned -> ZEXT } else { return BitCast; // Same size, No-op cast } } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt if (DestIsSigned) return FPToSI; // FP -> sint else return FPToUI; // FP -> uint } else if (const VectorType *PTy = dyn_cast(SrcTy)) { assert(DestBits == PTy->getBitWidth() && "Casting vector to integer of different width"); return BitCast; // Same size, no-op cast } else { assert(isa(SrcTy) && "Casting from a value that is not first-class type"); return PtrToInt; // ptr -> int } } else if (DestTy->isFloatingPoint()) { // Casting to floating pt if (SrcTy->isInteger()) { // Casting from integral if (SrcIsSigned) return SIToFP; // sint -> FP else return UIToFP; // uint -> FP } else if (SrcTy->isFloatingPoint()) { // Casting from floating pt if (DestBits < SrcBits) { return FPTrunc; // FP -> smaller FP } else if (DestBits > SrcBits) { return FPExt; // FP -> larger FP } else { return BitCast; // same size, no-op cast } } else if (const VectorType *PTy = dyn_cast(SrcTy)) { assert(DestBits == PTy->getBitWidth() && "Casting vector to floating point of different width"); return BitCast; // same size, no-op cast } else { assert(0 && "Casting pointer or non-first class to float"); } } else if (const VectorType *DestPTy = dyn_cast(DestTy)) { if (const VectorType *SrcPTy = dyn_cast(SrcTy)) { assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() && "Casting vector to vector of different widths"); return BitCast; // vector -> vector } else if (DestPTy->getBitWidth() == SrcBits) { return BitCast; // float/int -> vector } else { assert(!"Illegal cast to vector (wrong type or size)"); } } else if (isa(DestTy)) { if (isa(SrcTy)) { return BitCast; // ptr -> ptr } else if (SrcTy->isInteger()) { return IntToPtr; // int -> ptr } else { assert(!"Casting pointer to other than pointer or int"); } } else { assert(!"Casting to type that is not first-class"); } // If we fall through to here we probably hit an assertion cast above // and assertions are not turned on. Anything we return is an error, so // BitCast is as good a choice as any. return BitCast; } //===----------------------------------------------------------------------===// // CastInst SubClass Constructors //===----------------------------------------------------------------------===// /// Check that the construction parameters for a CastInst are correct. This /// could be broken out into the separate constructors but it is useful to have /// it in one place and to eliminate the redundant code for getting the sizes /// of the types involved. bool CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) { // Check for type sanity on the arguments const Type *SrcTy = S->getType(); if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType()) return false; // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DstBitSize = DstTy->getPrimitiveSizeInBits(); // Switch on the opcode provided switch (op) { default: return false; // This is an input error case Instruction::Trunc: return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize > DstBitSize; case Instruction::ZExt: return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize; case Instruction::SExt: return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize; case Instruction::FPTrunc: return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && SrcBitSize > DstBitSize; case Instruction::FPExt: return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() && SrcBitSize < DstBitSize; case Instruction::UIToFP: case Instruction::SIToFP: if (const VectorType *SVTy = dyn_cast(SrcTy)) { if (const VectorType *DVTy = dyn_cast(DstTy)) { return SVTy->getElementType()->isInteger() && DVTy->getElementType()->isFloatingPoint() && SVTy->getNumElements() == DVTy->getNumElements(); } } return SrcTy->isInteger() && DstTy->isFloatingPoint(); case Instruction::FPToUI: case Instruction::FPToSI: if (const VectorType *SVTy = dyn_cast(SrcTy)) { if (const VectorType *DVTy = dyn_cast(DstTy)) { return SVTy->getElementType()->isFloatingPoint() && DVTy->getElementType()->isInteger() && SVTy->getNumElements() == DVTy->getNumElements(); } } return SrcTy->isFloatingPoint() && DstTy->isInteger(); case Instruction::PtrToInt: return isa(SrcTy) && DstTy->isInteger(); case Instruction::IntToPtr: return SrcTy->isInteger() && isa(DstTy); case Instruction::BitCast: // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. if (isa(SrcTy) != isa(DstTy)) return false; // Now we know we're not dealing with a pointer/non-pointer mismatch. In all // these cases, the cast is okay if the source and destination bit widths // are identical. return SrcBitSize == DstBitSize; } } TruncInst::TruncInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); } TruncInst::TruncInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); } ZExtInst::ZExtInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); } ZExtInst::ZExtInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); } SExtInst::SExtInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, SExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); } SExtInst::SExtInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); } FPTruncInst::FPTruncInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); } FPTruncInst::FPTruncInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); } FPExtInst::FPExtInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); } FPExtInst::FPExtInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); } UIToFPInst::UIToFPInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); } UIToFPInst::UIToFPInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); } SIToFPInst::SIToFPInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); } SIToFPInst::SIToFPInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); } FPToUIInst::FPToUIInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); } FPToUIInst::FPToUIInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); } FPToSIInst::FPToSIInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); } FPToSIInst::FPToSIInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); } PtrToIntInst::PtrToIntInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); } PtrToIntInst::PtrToIntInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); } IntToPtrInst::IntToPtrInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); } IntToPtrInst::IntToPtrInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); } BitCastInst::BitCastInst( Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); } BitCastInst::BitCastInst( Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); } //===----------------------------------------------------------------------===// // CmpInst Classes //===----------------------------------------------------------------------===// CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS, const std::string &Name, Instruction *InsertBefore) : Instruction(Type::Int1Ty, op, Ops, 2, InsertBefore) { Ops[0].init(LHS, this); Ops[1].init(RHS, this); SubclassData = predicate; setName(Name); if (op == Instruction::ICmp) { assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE && predicate <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); const Type* Op0Ty = getOperand(0)->getType(); const Type* Op1Ty = getOperand(1)->getType(); assert(Op0Ty == Op1Ty && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((Op0Ty->isInteger() || isa(Op0Ty)) && "Invalid operand types for ICmp instruction"); return; } assert(op == Instruction::FCmp && "Invalid CmpInst opcode"); assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); const Type* Op0Ty = getOperand(0)->getType(); const Type* Op1Ty = getOperand(1)->getType(); assert(Op0Ty == Op1Ty && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(Op0Ty->isFloatingPoint() && "Invalid operand types for FCmp instruction"); } CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS, const std::string &Name, BasicBlock *InsertAtEnd) : Instruction(Type::Int1Ty, op, Ops, 2, InsertAtEnd) { Ops[0].init(LHS, this); Ops[1].init(RHS, this); SubclassData = predicate; setName(Name); if (op == Instruction::ICmp) { assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE && predicate <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp predicate value"); const Type* Op0Ty = getOperand(0)->getType(); const Type* Op1Ty = getOperand(1)->getType(); assert(Op0Ty == Op1Ty && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((Op0Ty->isInteger() || isa(Op0Ty)) && "Invalid operand types for ICmp instruction"); return; } assert(op == Instruction::FCmp && "Invalid CmpInst opcode"); assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp predicate value"); const Type* Op0Ty = getOperand(0)->getType(); const Type* Op1Ty = getOperand(1)->getType(); assert(Op0Ty == Op1Ty && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(Op0Ty->isFloatingPoint() && "Invalid operand types for FCmp instruction"); } CmpInst * CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const std::string &Name, Instruction *InsertBefore) { if (Op == Instruction::ICmp) { return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name, InsertBefore); } return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name, InsertBefore); } CmpInst * CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const std::string &Name, BasicBlock *InsertAtEnd) { if (Op == Instruction::ICmp) { return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name, InsertAtEnd); } return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name, InsertAtEnd); } void CmpInst::swapOperands() { if (ICmpInst *IC = dyn_cast(this)) IC->swapOperands(); else cast(this)->swapOperands(); } bool CmpInst::isCommutative() { if (ICmpInst *IC = dyn_cast(this)) return IC->isCommutative(); return cast(this)->isCommutative(); } bool CmpInst::isEquality() { if (ICmpInst *IC = dyn_cast(this)) return IC->isEquality(); return cast(this)->isEquality(); } ICmpInst::Predicate ICmpInst::getInversePredicate(Predicate pred) { switch (pred) { default: assert(!"Unknown icmp predicate!"); case ICMP_EQ: return ICMP_NE; case ICMP_NE: return ICMP_EQ; case ICMP_UGT: return ICMP_ULE; case ICMP_ULT: return ICMP_UGE; case ICMP_UGE: return ICMP_ULT; case ICMP_ULE: return ICMP_UGT; case ICMP_SGT: return ICMP_SLE; case ICMP_SLT: return ICMP_SGE; case ICMP_SGE: return ICMP_SLT; case ICMP_SLE: return ICMP_SGT; } } ICmpInst::Predicate ICmpInst::getSwappedPredicate(Predicate pred) { switch (pred) { default: assert(! "Unknown icmp predicate!"); case ICMP_EQ: case ICMP_NE: return pred; case ICMP_SGT: return ICMP_SLT; case ICMP_SLT: return ICMP_SGT; case ICMP_SGE: return ICMP_SLE; case ICMP_SLE: return ICMP_SGE; case ICMP_UGT: return ICMP_ULT; case ICMP_ULT: return ICMP_UGT; case ICMP_UGE: return ICMP_ULE; case ICMP_ULE: return ICMP_UGE; } } ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { switch (pred) { default: assert(! "Unknown icmp predicate!"); case ICMP_EQ: case ICMP_NE: case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: return pred; case ICMP_UGT: return ICMP_SGT; case ICMP_ULT: return ICMP_SLT; case ICMP_UGE: return ICMP_SGE; case ICMP_ULE: return ICMP_SLE; } } ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { switch (pred) { default: assert(! "Unknown icmp predicate!"); case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: return pred; case ICMP_SGT: return ICMP_UGT; case ICMP_SLT: return ICMP_ULT; case ICMP_SGE: return ICMP_UGE; case ICMP_SLE: return ICMP_ULE; } } bool ICmpInst::isSignedPredicate(Predicate pred) { switch (pred) { default: assert(! "Unknown icmp predicate!"); case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: return true; case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: return false; } } /// Initialize a set of values that all satisfy the condition with C. /// ConstantRange ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { APInt Lower(C); APInt Upper(C); uint32_t BitWidth = C.getBitWidth(); switch (pred) { default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!"); case ICmpInst::ICMP_EQ: Upper++; break; case ICmpInst::ICMP_NE: Lower++; break; case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break; case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break; case ICmpInst::ICMP_UGT: Lower++; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) break; case ICmpInst::ICMP_SGT: Lower++; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) break; case ICmpInst::ICMP_ULE: Lower = APInt::getMinValue(BitWidth); Upper++; break; case ICmpInst::ICMP_SLE: Lower = APInt::getSignedMinValue(BitWidth); Upper++; break; case ICmpInst::ICMP_UGE: Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) break; case ICmpInst::ICMP_SGE: Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) break; } return ConstantRange(Lower, Upper); } FCmpInst::Predicate FCmpInst::getInversePredicate(Predicate pred) { switch (pred) { default: assert(!"Unknown icmp predicate!"); case FCMP_OEQ: return FCMP_UNE; case FCMP_ONE: return FCMP_UEQ; case FCMP_OGT: return FCMP_ULE; case FCMP_OLT: return FCMP_UGE; case FCMP_OGE: return FCMP_ULT; case FCMP_OLE: return FCMP_UGT; case FCMP_UEQ: return FCMP_ONE; case FCMP_UNE: return FCMP_OEQ; case FCMP_UGT: return FCMP_OLE; case FCMP_ULT: return FCMP_OGE; case FCMP_UGE: return FCMP_OLT; case FCMP_ULE: return FCMP_OGT; case FCMP_ORD: return FCMP_UNO; case FCMP_UNO: return FCMP_ORD; case FCMP_TRUE: return FCMP_FALSE; case FCMP_FALSE: return FCMP_TRUE; } } FCmpInst::Predicate FCmpInst::getSwappedPredicate(Predicate pred) { switch (pred) { default: assert(!"Unknown fcmp predicate!"); case FCMP_FALSE: case FCMP_TRUE: case FCMP_OEQ: case FCMP_ONE: case FCMP_UEQ: case FCMP_UNE: case FCMP_ORD: case FCMP_UNO: return pred; case FCMP_OGT: return FCMP_OLT; case FCMP_OLT: return FCMP_OGT; case FCMP_OGE: return FCMP_OLE; case FCMP_OLE: return FCMP_OGE; case FCMP_UGT: return FCMP_ULT; case FCMP_ULT: return FCMP_UGT; case FCMP_UGE: return FCMP_ULE; case FCMP_ULE: return FCMP_UGE; } } bool CmpInst::isUnsigned(unsigned short predicate) { switch (predicate) { default: return false; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return true; } } bool CmpInst::isSigned(unsigned short predicate){ switch (predicate) { default: return false; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return true; } } bool CmpInst::isOrdered(unsigned short predicate) { switch (predicate) { default: return false; case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ORD: return true; } } bool CmpInst::isUnordered(unsigned short predicate) { switch (predicate) { default: return false; case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNO: return true; } } //===----------------------------------------------------------------------===// // SwitchInst Implementation //===----------------------------------------------------------------------===// void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) { assert(Value && Default); ReservedSpace = 2+NumCases*2; NumOperands = 2; OperandList = new Use[ReservedSpace]; OperandList[0].init(Value, this); OperandList[1].init(Default, this); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor can also autoinsert before another instruction. SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore) : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) { init(Value, Default, NumCases); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor also autoinserts at the end of the specified BasicBlock. SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) { init(Value, Default, NumCases); } SwitchInst::SwitchInst(const SwitchInst &SI) : TerminatorInst(Type::VoidTy, Instruction::Switch, new Use[SI.getNumOperands()], SI.getNumOperands()) { Use *OL = OperandList, *InOL = SI.OperandList; for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) { OL[i].init(InOL[i], this); OL[i+1].init(InOL[i+1], this); } } SwitchInst::~SwitchInst() { delete [] OperandList; } /// addCase - Add an entry to the switch instruction... /// void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { unsigned OpNo = NumOperands; if (OpNo+2 > ReservedSpace) resizeOperands(0); // Get more space! // Initialize some new operands. assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); NumOperands = OpNo+2; OperandList[OpNo].init(OnVal, this); OperandList[OpNo+1].init(Dest, this); } /// removeCase - This method removes the specified successor from the switch /// instruction. Note that this cannot be used to remove the default /// destination (successor #0). /// void SwitchInst::removeCase(unsigned idx) { assert(idx != 0 && "Cannot remove the default case!"); assert(idx*2 < getNumOperands() && "Successor index out of range!!!"); unsigned NumOps = getNumOperands(); Use *OL = OperandList; // Move everything after this operand down. // // FIXME: we could just swap with the end of the list, then erase. However, // client might not expect this to happen. The code as it is thrashes the // use/def lists, which is kinda lame. for (unsigned i = (idx+1)*2; i != NumOps; i += 2) { OL[i-2] = OL[i]; OL[i-2+1] = OL[i+1]; } // Nuke the last value. OL[NumOps-2].set(0); OL[NumOps-2+1].set(0); NumOperands = NumOps-2; } /// resizeOperands - resize operands - This adjusts the length of the operands /// list according to the following behavior: /// 1. If NumOps == 0, grow the operand list in response to a push_back style /// of operation. This grows the number of ops by 1.5 times. /// 2. If NumOps > NumOperands, reserve space for NumOps operands. /// 3. If NumOps == NumOperands, trim the reserved space. /// void SwitchInst::resizeOperands(unsigned NumOps) { if (NumOps == 0) { NumOps = getNumOperands()/2*6; } else if (NumOps*2 > NumOperands) { // No resize needed. if (ReservedSpace >= NumOps) return; } else if (NumOps == NumOperands) { if (ReservedSpace == NumOps) return; } else { return; } ReservedSpace = NumOps; Use *NewOps = new Use[NumOps]; Use *OldOps = OperandList; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { NewOps[i].init(OldOps[i], this); OldOps[i].set(0); } delete [] OldOps; OperandList = NewOps; } BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned SwitchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // GetResultInst Implementation //===----------------------------------------------------------------------===// GetResultInst::GetResultInst(Value *Aggregate, unsigned Index, const std::string &Name, Instruction *InsertBef) : Instruction(cast(Aggregate->getType())->getElementType(Index), GetResult, &Aggr, 1, InsertBef) { assert(isValidOperands(Aggregate, Index) && "Invalid GetResultInst operands!"); Aggr.init(Aggregate, this); Idx = Index; setName(Name); } bool GetResultInst::isValidOperands(const Value *Aggregate, unsigned Index) { if (!Aggregate) return false; if (const StructType *STy = dyn_cast(Aggregate->getType())) { unsigned NumElements = STy->getNumElements(); if (Index >= NumElements) return false; // getresult aggregate value's element types are restricted to // avoid nested aggregates. for (unsigned i = 0; i < NumElements; ++i) if (!STy->getElementType(i)->isFirstClassType()) return false; // Otherwise, Aggregate is valid. return true; } return false; } // Define these methods here so vtables don't get emitted into every translation // unit that uses these classes. GetElementPtrInst *GetElementPtrInst::clone() const { return new GetElementPtrInst(*this); } BinaryOperator *BinaryOperator::clone() const { return create(getOpcode(), Ops[0], Ops[1]); } FCmpInst* FCmpInst::clone() const { return new FCmpInst(getPredicate(), Ops[0], Ops[1]); } ICmpInst* ICmpInst::clone() const { return new ICmpInst(getPredicate(), Ops[0], Ops[1]); } MallocInst *MallocInst::clone() const { return new MallocInst(*this); } AllocaInst *AllocaInst::clone() const { return new AllocaInst(*this); } FreeInst *FreeInst::clone() const { return new FreeInst(getOperand(0)); } LoadInst *LoadInst::clone() const { return new LoadInst(*this); } StoreInst *StoreInst::clone() const { return new StoreInst(*this); } CastInst *TruncInst::clone() const { return new TruncInst(*this); } CastInst *ZExtInst::clone() const { return new ZExtInst(*this); } CastInst *SExtInst::clone() const { return new SExtInst(*this); } CastInst *FPTruncInst::clone() const { return new FPTruncInst(*this); } CastInst *FPExtInst::clone() const { return new FPExtInst(*this); } CastInst *UIToFPInst::clone() const { return new UIToFPInst(*this); } CastInst *SIToFPInst::clone() const { return new SIToFPInst(*this); } CastInst *FPToUIInst::clone() const { return new FPToUIInst(*this); } CastInst *FPToSIInst::clone() const { return new FPToSIInst(*this); } CastInst *PtrToIntInst::clone() const { return new PtrToIntInst(*this); } CastInst *IntToPtrInst::clone() const { return new IntToPtrInst(*this); } CastInst *BitCastInst::clone() const { return new BitCastInst(*this); } CallInst *CallInst::clone() const { return new CallInst(*this); } SelectInst *SelectInst::clone() const { return new SelectInst(*this); } VAArgInst *VAArgInst::clone() const { return new VAArgInst(*this); } ExtractElementInst *ExtractElementInst::clone() const { return new ExtractElementInst(*this); } InsertElementInst *InsertElementInst::clone() const { return new InsertElementInst(*this); } ShuffleVectorInst *ShuffleVectorInst::clone() const { return new ShuffleVectorInst(*this); } PHINode *PHINode::clone() const { return new PHINode(*this); } ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); } BranchInst *BranchInst::clone() const { return new BranchInst(*this); } SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); } InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); } UnwindInst *UnwindInst::clone() const { return new UnwindInst(); } UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();} GetResultInst *GetResultInst::clone() const { return new GetResultInst(*this); }