//===--------------- LLVMContextImpl.cpp - Implementation ------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements LLVMContextImpl, the opaque implementation // of LLVMContext. // //===----------------------------------------------------------------------===// #include "LLVMContextImpl.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/LLVMContext.h" #include "llvm/MDNode.h" using namespace llvm; static char getValType(ConstantAggregateZero *CPZ) { return 0; } static std::vector getValType(ConstantArray *CA) { std::vector Elements; Elements.reserve(CA->getNumOperands()); for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) Elements.push_back(cast(CA->getOperand(i))); return Elements; } namespace llvm { template struct VISIBILITY_HIDDEN ConstantTraits< std::vector > { static unsigned uses(const std::vector& v) { return v.size(); } }; template struct VISIBILITY_HIDDEN ConstantCreator { static ConstantClass *create(const TypeClass *Ty, const ValType &V) { return new(ConstantTraits::uses(V)) ConstantClass(Ty, V); } }; template struct VISIBILITY_HIDDEN ConvertConstantType { static void convert(ConstantClass *OldC, const TypeClass *NewTy) { llvm_unreachable("This type cannot be converted!"); } }; // ConstantAggregateZero does not take extra "value" argument... template struct ConstantCreator { static ConstantAggregateZero *create(const Type *Ty, const ValType &V){ return new ConstantAggregateZero(Ty); } }; template<> struct ConvertConstantType { static void convert(ConstantAggregateZero *OldC, const Type *NewTy) { // Make everyone now use a constant of the new type... Constant *New = NewTy->getContext().getConstantAggregateZero(NewTy); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; template<> struct ConvertConstantType { static void convert(ConstantArray *OldC, const ArrayType *NewTy) { // Make everyone now use a constant of the new type... std::vector C; for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i) C.push_back(cast(OldC->getOperand(i))); Constant *New = NewTy->getContext().getConstantArray(NewTy, C); assert(New != OldC && "Didn't replace constant??"); OldC->uncheckedReplaceAllUsesWith(New); OldC->destroyConstant(); // This constant is now dead, destroy it. } }; } template class VISIBILITY_HIDDEN ValueMap : public AbstractTypeUser { public: typedef std::pair MapKey; typedef std::map MapTy; typedef std::map InverseMapTy; typedef std::map AbstractTypeMapTy; private: /// Map - This is the main map from the element descriptor to the Constants. /// This is the primary way we avoid creating two of the same shape /// constant. MapTy Map; /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping /// from the constants to their element in Map. This is important for /// removal of constants from the array, which would otherwise have to scan /// through the map with very large keys. InverseMapTy InverseMap; /// AbstractTypeMap - Map for abstract type constants. /// AbstractTypeMapTy AbstractTypeMap; /// ValueMapLock - Mutex for this map. sys::SmartMutex ValueMapLock; public: // NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator map_end() { return Map.end(); } /// InsertOrGetItem - Return an iterator for the specified element. /// If the element exists in the map, the returned iterator points to the /// entry and Exists=true. If not, the iterator points to the newly /// inserted entry and returns Exists=false. Newly inserted entries have /// I->second == 0, and should be filled in. /// NOTE: This function is not locked. It is the caller's responsibility // to enforce proper synchronization. typename MapTy::iterator InsertOrGetItem(std::pair &InsertVal, bool &Exists) { std::pair IP = Map.insert(InsertVal); Exists = !IP.second; return IP.first; } private: typename MapTy::iterator FindExistingElement(ConstantClass *CP) { if (HasLargeKey) { typename InverseMapTy::iterator IMI = InverseMap.find(CP); assert(IMI != InverseMap.end() && IMI->second != Map.end() && IMI->second->second == CP && "InverseMap corrupt!"); return IMI->second; } typename MapTy::iterator I = Map.find(MapKey(static_cast(CP->getRawType()), getValType(CP))); if (I == Map.end() || I->second != CP) { // FIXME: This should not use a linear scan. If this gets to be a // performance problem, someone should look at this. for (I = Map.begin(); I != Map.end() && I->second != CP; ++I) /* empty */; } return I; } ConstantClass* Create(const TypeClass *Ty, const ValType &V, typename MapTy::iterator I) { ConstantClass* Result = ConstantCreator::create(Ty, V); assert(Result->getType() == Ty && "Type specified is not correct!"); I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result)); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.insert(std::make_pair(Result, I)); // If the type of the constant is abstract, make sure that an entry // exists for it in the AbstractTypeMap. if (Ty->isAbstract()) { typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(Ty); if (TI == AbstractTypeMap.end()) { // Add ourselves to the ATU list of the type. cast(Ty)->addAbstractTypeUser(this); AbstractTypeMap.insert(TI, std::make_pair(Ty, I)); } } return Result; } public: /// getOrCreate - Return the specified constant from the map, creating it if /// necessary. ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) { sys::SmartScopedLock Lock(ValueMapLock); MapKey Lookup(Ty, V); ConstantClass* Result = 0; typename MapTy::iterator I = Map.find(Lookup); // Is it in the map? if (I != Map.end()) Result = static_cast(I->second); if (!Result) { // If no preexisting value, create one now... Result = Create(Ty, V, I); } return Result; } void remove(ConstantClass *CP) { sys::SmartScopedLock Lock(ValueMapLock); typename MapTy::iterator I = FindExistingElement(CP); assert(I != Map.end() && "Constant not found in constant table!"); assert(I->second == CP && "Didn't find correct element?"); if (HasLargeKey) // Remember the reverse mapping if needed. InverseMap.erase(CP); // Now that we found the entry, make sure this isn't the entry that // the AbstractTypeMap points to. const TypeClass *Ty = static_cast(I->first.first); if (Ty->isAbstract()) { assert(AbstractTypeMap.count(Ty) && "Abstract type not in AbstractTypeMap?"); typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty]; if (ATMEntryIt == I) { // Yes, we are removing the representative entry for this type. // See if there are any other entries of the same type. typename MapTy::iterator TmpIt = ATMEntryIt; // First check the entry before this one... if (TmpIt != Map.begin()) { --TmpIt; if (TmpIt->first.first != Ty) // Not the same type, move back... ++TmpIt; } // If we didn't find the same type, try to move forward... if (TmpIt == ATMEntryIt) { ++TmpIt; if (TmpIt == Map.end() || TmpIt->first.first != Ty) --TmpIt; // No entry afterwards with the same type } // If there is another entry in the map of the same abstract type, // update the AbstractTypeMap entry now. if (TmpIt != ATMEntryIt) { ATMEntryIt = TmpIt; } else { // Otherwise, we are removing the last instance of this type // from the table. Remove from the ATM, and from user list. cast(Ty)->removeAbstractTypeUser(this); AbstractTypeMap.erase(Ty); } } } Map.erase(I); } /// MoveConstantToNewSlot - If we are about to change C to be the element /// specified by I, update our internal data structures to reflect this /// fact. /// NOTE: This function is not locked. It is the responsibility of the /// caller to enforce proper synchronization if using this method. void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) { // First, remove the old location of the specified constant in the map. typename MapTy::iterator OldI = FindExistingElement(C); assert(OldI != Map.end() && "Constant not found in constant table!"); assert(OldI->second == C && "Didn't find correct element?"); // If this constant is the representative element for its abstract type, // update the AbstractTypeMap so that the representative element is I. if (C->getType()->isAbstract()) { typename AbstractTypeMapTy::iterator ATI = AbstractTypeMap.find(C->getType()); assert(ATI != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); if (ATI->second == OldI) ATI->second = I; } // Remove the old entry from the map. Map.erase(OldI); // Update the inverse map so that we know that this constant is now // located at descriptor I. if (HasLargeKey) { assert(I->second == C && "Bad inversemap entry!"); InverseMap[C] = I; } } void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) { sys::SmartScopedLock Lock(ValueMapLock); typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(cast(OldTy)); assert(I != AbstractTypeMap.end() && "Abstract type not in AbstractTypeMap?"); // Convert a constant at a time until the last one is gone. The last one // leaving will remove() itself, causing the AbstractTypeMapEntry to be // eliminated eventually. do { ConvertConstantType::convert( static_cast(I->second->second), cast(NewTy)); I = AbstractTypeMap.find(cast(OldTy)); } while (I != AbstractTypeMap.end()); } // If the type became concrete without being refined to any other existing // type, we just remove ourselves from the ATU list. void typeBecameConcrete(const DerivedType *AbsTy) { AbsTy->removeAbstractTypeUser(this); } void dump() const { DOUT << "Constant.cpp: ValueMap\n"; } }; LLVMContextImpl::LLVMContextImpl(LLVMContext &C) : Context(C), TheTrueVal(0), TheFalseVal(0) { AggZeroConstants = new ValueMap(); ArrayConstants = new ArrayConstantsTy(); } LLVMContextImpl::~LLVMContextImpl() { delete AggZeroConstants; delete ArrayConstants; } // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the // operator== and operator!= to ensure that the DenseMap doesn't attempt to // compare APInt's of different widths, which would violate an APInt class // invariant which generates an assertion. ConstantInt *LLVMContextImpl::getConstantInt(const APInt& V) { // Get the corresponding integer type for the bit width of the value. const IntegerType *ITy = Context.getIntegerType(V.getBitWidth()); // get an existing value or the insertion position DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); ConstantsLock.reader_acquire(); ConstantInt *&Slot = IntConstants[Key]; ConstantsLock.reader_release(); if (!Slot) { sys::SmartScopedWriter Writer(ConstantsLock); ConstantInt *&NewSlot = IntConstants[Key]; if (!Slot) { NewSlot = new ConstantInt(ITy, V); } return NewSlot; } else { return Slot; } } ConstantFP *LLVMContextImpl::getConstantFP(const APFloat &V) { DenseMapAPFloatKeyInfo::KeyTy Key(V); ConstantsLock.reader_acquire(); ConstantFP *&Slot = FPConstants[Key]; ConstantsLock.reader_release(); if (!Slot) { sys::SmartScopedWriter Writer(ConstantsLock); ConstantFP *&NewSlot = FPConstants[Key]; if (!NewSlot) { const Type *Ty; if (&V.getSemantics() == &APFloat::IEEEsingle) Ty = Type::FloatTy; else if (&V.getSemantics() == &APFloat::IEEEdouble) Ty = Type::DoubleTy; else if (&V.getSemantics() == &APFloat::x87DoubleExtended) Ty = Type::X86_FP80Ty; else if (&V.getSemantics() == &APFloat::IEEEquad) Ty = Type::FP128Ty; else { assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && "Unknown FP format"); Ty = Type::PPC_FP128Ty; } NewSlot = new ConstantFP(Ty, V); } return NewSlot; } return Slot; } MDString *LLVMContextImpl::getMDString(const char *StrBegin, unsigned StrLength) { sys::SmartScopedWriter Writer(ConstantsLock); StringMapEntry &Entry = MDStringCache.GetOrCreateValue(StringRef(StrBegin, StrLength)); MDString *&S = Entry.getValue(); if (!S) S = new MDString(Entry.getKeyData(), Entry.getKeyLength()); return S; } MDNode *LLVMContextImpl::getMDNode(Value*const* Vals, unsigned NumVals) { FoldingSetNodeID ID; for (unsigned i = 0; i != NumVals; ++i) ID.AddPointer(Vals[i]); ConstantsLock.reader_acquire(); void *InsertPoint; MDNode *N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); ConstantsLock.reader_release(); if (!N) { sys::SmartScopedWriter Writer(ConstantsLock); N = MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); if (!N) { // InsertPoint will have been set by the FindNodeOrInsertPos call. N = new MDNode(Vals, NumVals); MDNodeSet.InsertNode(N, InsertPoint); } } return N; } ConstantAggregateZero* LLVMContextImpl::getConstantAggregateZero(const Type *Ty) { assert((isa(Ty) || isa(Ty) || isa(Ty)) && "Cannot create an aggregate zero of non-aggregate type!"); // Implicitly locked. return AggZeroConstants->getOrCreate(Ty, 0); } Constant *LLVMContextImpl::getConstantArray(const ArrayType *Ty, const std::vector &V) { // If this is an all-zero array, return a ConstantAggregateZero object if (!V.empty()) { Constant *C = V[0]; if (!C->isNullValue()) { // Implicitly locked. return ArrayConstants->getOrCreate(Ty, V); } for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) { // Implicitly locked. return ArrayConstants->getOrCreate(Ty, V); } } return Context.getConstantAggregateZero(Ty); } // *** erase methods *** void LLVMContextImpl::erase(MDString *M) { sys::SmartScopedWriter Writer(ConstantsLock); MDStringCache.erase(MDStringCache.find(StringRef(M->StrBegin, M->length()))); } void LLVMContextImpl::erase(MDNode *M) { sys::SmartScopedWriter Writer(ConstantsLock); MDNodeSet.RemoveNode(M); } void LLVMContextImpl::erase(ConstantAggregateZero *Z) { AggZeroConstants->remove(Z); } void LLVMContextImpl::erase(ConstantArray *C) { ArrayConstants->remove(C); } // *** RAUW helpers *** Constant *LLVMContextImpl::replaceUsesOfWithOnConstant(ConstantArray *CA, Value *From, Value *To, Use *U) { assert(isa(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast(To); std::pair Lookup; Lookup.first.first = CA->getType(); Lookup.second = CA; std::vector &Values = Lookup.first.second; Values.reserve(CA->getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. bool isAllZeros = false; unsigned NumUpdated = 0; if (!ToC->isNullValue()) { for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { Val = ToC; ++NumUpdated; } Values.push_back(Val); } } else { isAllZeros = true; for (Use *O = CA->OperandList, *E = CA->OperandList + CA->getNumOperands(); O != E; ++O) { Constant *Val = cast(O->get()); if (Val == From) { Val = ToC; ++NumUpdated; } Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } Constant *Replacement = 0; if (isAllZeros) { Replacement = Context.getConstantAggregateZero(CA->getType()); } else { // Check to see if we have this array type already. sys::SmartScopedWriter Writer(ConstantsLock); bool Exists; ArrayConstantsTy::MapTy::iterator I = ArrayConstants->InsertOrGetItem(Lookup, Exists); if (Exists) { Replacement = I->second; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! ArrayConstants->MoveConstantToNewSlot(CA, I); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. if (NumUpdated == 1) { unsigned OperandToUpdate = U - CA->OperandList; assert(CA->getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); CA->setOperand(OperandToUpdate, ToC); } else { for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) if (CA->getOperand(i) == From) CA->setOperand(i, ToC); } return 0; } } return Replacement; }