//===-- Module.cpp - Implement the Module class ---------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Module class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/InstrTypes.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/LeakDetector.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/TypeSymbolTable.h" #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Methods to implement the globals and functions lists. // Function *ilist_traits::createSentinel() { FunctionType *FTy = FunctionType::get(Type::VoidTy, std::vector(), false); Function *Ret = new Function(FTy, GlobalValue::ExternalLinkage); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } GlobalVariable *ilist_traits::createSentinel() { GlobalVariable *Ret = new GlobalVariable(Type::Int32Ty, false, GlobalValue::ExternalLinkage); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Module *M) { return M->getFunctionList(); } iplist &ilist_traits::getList(Module *M) { return M->getGlobalList(); } // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file. template class SymbolTableListTraits; template class SymbolTableListTraits; //===----------------------------------------------------------------------===// // Primitive Module methods. // Module::Module(const std::string &MID) : ModuleID(MID), DataLayout("") { FunctionList.setItemParent(this); FunctionList.setParent(this); GlobalList.setItemParent(this); GlobalList.setParent(this); ValSymTab = new ValueSymbolTable(); TypeSymTab = new TypeSymbolTable(); } Module::~Module() { dropAllReferences(); GlobalList.clear(); GlobalList.setParent(0); FunctionList.clear(); FunctionList.setParent(0); LibraryList.clear(); delete ValSymTab; delete TypeSymTab; } // Module::dump() - Allow printing from debugger void Module::dump() const { print(*cerr.stream()); } /// Target endian information... Module::Endianness Module::getEndianness() const { std::string temp = DataLayout; Module::Endianness ret = AnyEndianness; while (!temp.empty()) { std::string token = getToken(temp, "-"); if (token[0] == 'e') { ret = LittleEndian; } else if (token[0] == 'E') { ret = BigEndian; } } return ret; } /// Target Pointer Size information... Module::PointerSize Module::getPointerSize() const { std::string temp = DataLayout; Module::PointerSize ret = AnyPointerSize; while (!temp.empty()) { std::string token = getToken(temp, "-"); char signal = getToken(token, ":")[0]; if (signal == 'p') { int size = atoi(getToken(token, ":").c_str()); if (size == 32) ret = Pointer32; else if (size == 64) ret = Pointer64; } } return ret; } //===----------------------------------------------------------------------===// // Methods for easy access to the functions in the module. // // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // Constant *Module::getOrInsertFunction(const std::string &Name, const FunctionType *Ty) { ValueSymbolTable &SymTab = getValueSymbolTable(); // See if we have a definition for the specified function already. GlobalValue *F = dyn_cast_or_null(SymTab.lookup(Name)); if (F == 0) { // Nope, add it Function *New = new Function(Ty, GlobalVariable::ExternalLinkage, Name); FunctionList.push_back(New); return New; // Return the new prototype. } // Okay, the function exists. Does it have externally visible linkage? if (F->hasInternalLinkage()) { // Rename the function. F->setName(SymTab.getUniqueName(F->getName())); // Retry, now there won't be a conflict. return getOrInsertFunction(Name, Ty); } // If the function exists but has the wrong type, return a bitcast to the // right type. if (F->getType() != PointerType::get(Ty)) return ConstantExpr::getBitCast(F, PointerType::get(Ty)); // Otherwise, we just found the existing function or a prototype. return F; } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return it. // This version of the method takes a null terminated list of function // arguments, which makes it easier for clients to use. // Constant *Module::getOrInsertFunction(const std::string &Name, const Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector ArgTys; while (const Type *ArgTy = va_arg(Args, const Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false)); } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(const std::string &Name) const { const ValueSymbolTable &SymTab = getValueSymbolTable(); return dyn_cast_or_null(SymTab.lookup(Name)); } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // /// getGlobalVariable - Look up the specified global variable in the module /// symbol table. If it does not exist, return null. The type argument /// should be the underlying type of the global, i.e., it should not have /// the top-level PointerType, which represents the address of the global. /// If AllowInternal is set to true, this function will return types that /// have InternalLinkage. By default, these types are not returned. /// GlobalVariable *Module::getGlobalVariable(const std::string &Name, bool AllowInternal) const { if (Value *V = ValSymTab->lookup(Name)) { GlobalVariable *Result = dyn_cast(V); if (Result && (AllowInternal || !Result->hasInternalLinkage())) return Result; } return 0; } //===----------------------------------------------------------------------===// // Methods for easy access to the types in the module. // // addTypeName - Insert an entry in the symbol table mapping Str to Type. If // there is already an entry for this name, true is returned and the symbol // table is not modified. // bool Module::addTypeName(const std::string &Name, const Type *Ty) { TypeSymbolTable &ST = getTypeSymbolTable(); if (ST.lookup(Name)) return true; // Already in symtab... // Not in symbol table? Set the name with the Symtab as an argument so the // type knows what to update... ST.insert(Name, Ty); return false; } /// getTypeByName - Return the type with the specified name in this module, or /// null if there is none by that name. const Type *Module::getTypeByName(const std::string &Name) const { const TypeSymbolTable &ST = getTypeSymbolTable(); return cast_or_null(ST.lookup(Name)); } // getTypeName - If there is at least one entry in the symbol table for the // specified type, return it. // std::string Module::getTypeName(const Type *Ty) const { const TypeSymbolTable &ST = getTypeSymbolTable(); TypeSymbolTable::const_iterator TI = ST.begin(); TypeSymbolTable::const_iterator TE = ST.end(); if ( TI == TE ) return ""; // No names for types while (TI != TE && TI->second != Ty) ++TI; if (TI != TE) // Must have found an entry! return TI->first; return ""; // Must not have found anything... } //===----------------------------------------------------------------------===// // Other module related stuff. // // dropAllReferences() - This function causes all the subelementss to "let go" // of all references that they are maintaining. This allows one to 'delete' a // whole module at a time, even though there may be circular references... first // all references are dropped, and all use counts go to zero. Then everything // is deleted for real. Note that no operations are valid on an object that // has "dropped all references", except operator delete. // void Module::dropAllReferences() { for(Module::iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); for(Module::global_iterator I = global_begin(), E = global_end(); I != E; ++I) I->dropAllReferences(); } void Module::addLibrary(const std::string& Lib) { for (Module::lib_iterator I = lib_begin(), E = lib_end(); I != E; ++I) if (*I == Lib) return; LibraryList.push_back(Lib); } void Module::removeLibrary(const std::string& Lib) { LibraryListType::iterator I = LibraryList.begin(); LibraryListType::iterator E = LibraryList.end(); for (;I != E; ++I) if (*I == Lib) { LibraryList.erase(I); return; } }