//===-- Value.cpp - Implement the Value class -----------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Value and User classes. // //===----------------------------------------------------------------------===// #include "llvm/Constant.h" #include "llvm/DerivedTypes.h" #include "llvm/InstrTypes.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Constants.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/InstrTypes.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline const Type *checkType(const Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return Ty; } Value::Value(const Type *ty, unsigned scid) : SubclassID(scid), SubclassData(0), Ty(checkType(ty)), UseList(0), Name(0) { if (!isa(this) && !isa(this)) assert((Ty->isFirstClassType() || Ty == Type::VoidTy || isa(ty)) && "Cannot create non-first-class values except for constants!"); } Value::~Value() { switch(SubclassID) { case ArgumentVal: Argument::destroyThis(cast(this)); break; case BasicBlockVal: BasicBlock::destroyThis(cast(this)); break; case FunctionVal: Function::destroyThis(cast(this)); break; case GlobalAliasVal: GlobalAlias::destroyThis(cast(this)); break; case GlobalVariableVal: GlobalVariable::destroyThis(cast(this)); break; case UndefValueVal: UndefValue::destroyThis(cast(this)); break; case ConstantExprVal: { ConstantExpr* CE = dyn_cast(this); if(CE->getOpcode() == Instruction::GetElementPtr) { GetElementPtrConstantExpr* GECE = dyn_cast(CE); GetElementPtrConstantExpr::destroyThis(GECE); } else if(CE->getOpcode() == Instruction::ExtractElement) { ExtractElementConstantExpr* EECE = dyn_cast(CE); ExtractElementConstantExpr::destroyThis(EECE); } else if(CE->getOpcode() == Instruction::InsertElement) { InsertElementConstantExpr* IECE = dyn_cast(CE); InsertElementConstantExpr::destroyThis(IECE); } else if(CE->getOpcode() == Instruction::Select) { SelectConstantExpr* SCE = dyn_cast(CE); SelectConstantExpr::destroyThis(SCE); } else if(CE->getOpcode() == Instruction::ShuffleVector) { ShuffleVectorConstantExpr* SVCE = dyn_cast(CE); ShuffleVectorConstantExpr::destroyThis(SVCE); } else if(BinaryConstantExpr* BCE = dyn_cast(this)) BinaryConstantExpr::destroyThis(BCE); else if(UnaryConstantExpr* UCE = dyn_cast(this)) UnaryConstantExpr::destroyThis(UCE); else if(CompareConstantExpr* CCE = dyn_cast(this)) CompareConstantExpr::destroyThis(CCE); else assert(0 && "Unknown ConstantExpr-inherited class in ~Value."); } break; case ConstantAggregateZeroVal: ConstantAggregateZero::destroyThis(cast(this)); break; case ConstantIntVal: ConstantInt::destroyThis(cast(this)); break; case ConstantFPVal: ConstantFP::destroyThis(cast(this)); break; case ConstantArrayVal: ConstantArray::destroyThis(cast(this)); break; case ConstantStructVal: ConstantStruct::destroyThis(cast(this)); break; case ConstantVectorVal: ConstantVector::destroyThis(cast(this)); break; case ConstantPointerNullVal: ConstantPointerNull::destroyThis(cast(this)); break; case InlineAsmVal: InlineAsm::destroyThis(cast(this)); break; default: if (BinaryOperator *BO = dyn_cast(this)) BinaryOperator::destroyThis(BO); else if (CallInst *CI = dyn_cast(this)) { if(IntrinsicInst* II = dyn_cast(this)) { if(DbgInfoIntrinsic* DII = dyn_cast(this)) { if(DbgDeclareInst* DDI = dyn_cast(this)) DbgDeclareInst::destroyThis(DDI); else if(DbgFuncStartInst* DFSI = dyn_cast(this)) DbgFuncStartInst::destroyThis(DFSI); else if(DbgRegionEndInst* DREI = dyn_cast(this)) DbgRegionEndInst::destroyThis(DREI); else if(DbgRegionStartInst* DRSI = dyn_cast(this)) DbgRegionStartInst::destroyThis(DRSI); else if(DbgStopPointInst* DSPI = dyn_cast(this)) DbgStopPointInst::destroyThis(DSPI); else assert(0 && "Unknown DbgInfo-inherited class in ~Value."); } else if(MemIntrinsic* MI = dyn_cast(this)) { if(MemCpyInst* MCI = dyn_cast(this)) MemCpyInst::destroyThis(MCI); else if(MemMoveInst* MMI = dyn_cast(this)) MemMoveInst::destroyThis(MMI); else if(MemSetInst* MSI = dyn_cast(this)) MemSetInst::destroyThis(MSI); else assert(0 && "Unknown MemIntrinsic-inherited class in ~Value."); } else assert(0 && "Unknown IntrinsicInst-inherited class in ~Value."); } else assert(0 && "Unknown CallInst-inherited class in ~Value."); } else if (CmpInst *CI = dyn_cast(this)) { if (FCmpInst *FCI = dyn_cast(this)) FCmpInst::destroyThis(FCI); else if (ICmpInst *ICI = dyn_cast(this)) ICmpInst::destroyThis(ICI); else assert(0 && "Unknown CmpInst-inherited class in ~Value."); } else if (ExtractElementInst *EEI = dyn_cast(this)) ExtractElementInst::destroyThis(EEI); else if (GetElementPtrInst *GEP = dyn_cast(this)) GetElementPtrInst::destroyThis(GEP); else if (InsertElementInst* IE = dyn_cast(this)) InsertElementInst::destroyThis(IE); else if (PHINode *PN = dyn_cast(this)) PHINode::destroyThis(PN); else if (SelectInst *SI = dyn_cast(this)) SelectInst::destroyThis(SI); else if (ShuffleVectorInst *SVI = dyn_cast(this)) ShuffleVectorInst::destroyThis(SVI); else if (StoreInst *SI = dyn_cast(this)) StoreInst::destroyThis(SI); else if (TerminatorInst *TI = dyn_cast(this)) { if (BranchInst* BI = dyn_cast(this)) BranchInst::destroyThis(BI); else if (InvokeInst* II = dyn_cast(this)) InvokeInst::destroyThis(II); else if (ReturnInst* RI = dyn_cast(this)) ReturnInst::destroyThis(RI); else if (SwitchInst *SI = dyn_cast(this)) SwitchInst::destroyThis(SI); else if (UnreachableInst *UI = dyn_cast(this)) UnreachableInst::destroyThis(UI); else if (UnwindInst *UI = dyn_cast(this)) UnwindInst::destroyThis(UI); else assert(0 && "Unknown TerminatorInst-inherited class in ~Value."); } else if(UnaryInstruction* UI = dyn_cast(this)) { if(AllocationInst* AI = dyn_cast(this)) { if(AllocaInst* AI = dyn_cast(this)) AllocaInst::destroyThis(AI); else if(MallocInst* MI = dyn_cast(this)) MallocInst::destroyThis(MI); else assert(0 && "Unknown AllocationInst-inherited class in ~Value."); } else if(CastInst* CI = dyn_cast(this)) { if(BitCastInst* BCI = dyn_cast(this)) BitCastInst::destroyThis(BCI); else if(FPExtInst* FPEI = dyn_cast(this)) FPExtInst::destroyThis(FPEI); else if(FPToSIInst* FPSII = dyn_cast(this)) FPToSIInst::destroyThis(FPSII); else if(FPToUIInst* FPUII = dyn_cast(this)) FPToUIInst::destroyThis(FPUII); else if(FPTruncInst* FPTI = dyn_cast(this)) FPTruncInst::destroyThis(FPTI); else if(IntToPtrInst* I2PI = dyn_cast(this)) IntToPtrInst::destroyThis(I2PI); else if(PtrToIntInst* P2II = dyn_cast(this)) PtrToIntInst::destroyThis(P2II); else if(SExtInst* SEI = dyn_cast(this)) SExtInst::destroyThis(SEI); else if(SIToFPInst* SIFPI = dyn_cast(this)) SIToFPInst::destroyThis(SIFPI); else if(TruncInst* TI = dyn_cast(this)) TruncInst::destroyThis(TI); else if(UIToFPInst* UIFPI = dyn_cast(this)) UIToFPInst::destroyThis(UIFPI); else if(ZExtInst* ZEI = dyn_cast(this)) ZExtInst::destroyThis(ZEI); else assert(0 && "Unknown CastInst-inherited class in ~Value."); } else if(FreeInst* FI = dyn_cast(this)) FreeInst::destroyThis(FI); else if(LoadInst* LI = dyn_cast(this)) LoadInst::destroyThis(LI); else if(VAArgInst* VAI = dyn_cast(this)) VAArgInst::destroyThis(VAI); else assert(0 && "Unknown UnaryInstruction-inherited class in ~Value."); } else if (DummyInst *DI = dyn_cast(this)) DummyInst::destroyThis(DI); else assert(0 && "Unknown Instruction-inherited class in ~Value."); break; } } void Value::destroyThis(Value*v) { #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out what is // still being referenced. The value in question should be printed as // a // if (!v->use_empty()) { DOUT << "While deleting: " << *v->Ty << " %" << v->Name << "\n"; for (use_iterator I = v->use_begin(), E = v->use_end(); I != E; ++I) DOUT << "Use still stuck around after Def is destroyed:" << **I << "\n"; } #endif assert(v->use_empty() && "Uses remain when a value is destroyed!"); // If this value is named, destroy the name. This should not be in a symtab // at this point. if (v->Name) v->Name->Destroy(); // There should be no uses of this object anymore, remove it. LeakDetector::removeGarbageObject(v); } /// hasNUses - Return true if this Value has exactly N users. /// bool Value::hasNUses(unsigned N) const { use_const_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return UI == E; } /// hasNUsesOrMore - Return true if this value has N users or more. This is /// logically equivalent to getNumUses() >= N. /// bool Value::hasNUsesOrMore(unsigned N) const { use_const_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return true; } /// getNumUses - This method computes the number of uses of this Value. This /// is a linear time operation. Use hasOneUse or hasNUses to check for specific /// values. unsigned Value::getNumUses() const { return (unsigned)std::distance(use_begin(), use_end()); } static bool getSymTab(Value *V, ValueSymbolTable *&ST) { ST = 0; if (Instruction *I = dyn_cast(V)) { if (BasicBlock *P = I->getParent()) if (Function *PP = P->getParent()) ST = &PP->getValueSymbolTable(); } else if (BasicBlock *BB = dyn_cast(V)) { if (Function *P = BB->getParent()) ST = &P->getValueSymbolTable(); } else if (GlobalValue *GV = dyn_cast(V)) { if (Module *P = GV->getParent()) ST = &P->getValueSymbolTable(); } else if (Argument *A = dyn_cast(V)) { if (Function *P = A->getParent()) ST = &P->getValueSymbolTable(); } else { assert(isa(V) && "Unknown value type!"); return true; // no name is setable for this. } return false; } /// getNameStart - Return a pointer to a null terminated string for this name. /// Note that names can have null characters within the string as well as at /// their end. This always returns a non-null pointer. const char *Value::getNameStart() const { if (Name == 0) return ""; return Name->getKeyData(); } /// getNameLen - Return the length of the string, correctly handling nul /// characters embedded into them. unsigned Value::getNameLen() const { return Name ? Name->getKeyLength() : 0; } std::string Value::getNameStr() const { if (Name == 0) return ""; return std::string(Name->getKeyData(), Name->getKeyData()+Name->getKeyLength()); } void Value::setName(const std::string &name) { setName(&name[0], name.size()); } void Value::setName(const char *Name) { setName(Name, Name ? strlen(Name) : 0); } void Value::setName(const char *NameStr, unsigned NameLen) { if (NameLen == 0 && !hasName()) return; assert(getType() != Type::VoidTy && "Cannot assign a name to void values!"); // Get the symbol table to update for this object. ValueSymbolTable *ST; if (getSymTab(this, ST)) return; // Cannot set a name on this value (e.g. constant). if (!ST) { // No symbol table to update? Just do the change. if (NameLen == 0) { // Free the name for this value. Name->Destroy(); Name = 0; return; } if (Name) { // Name isn't changing? if (NameLen == Name->getKeyLength() && !memcmp(Name->getKeyData(), NameStr, NameLen)) return; Name->Destroy(); } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. // Create the new name. Name = ValueName::Create(NameStr, NameStr+NameLen); Name->setValue(this); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. if (hasName()) { // Name isn't changing? if (NameLen == Name->getKeyLength() && !memcmp(Name->getKeyData(), NameStr, NameLen)) return; // Remove old name. ST->removeValueName(Name); Name->Destroy(); Name = 0; if (NameLen == 0) return; } // Name is changing to something new. Name = ST->createValueName(NameStr, NameLen, this); } /// takeName - transfer the name from V to this value, setting V's name to /// empty. It is an error to call V->takeName(V). void Value::takeName(Value *V) { ValueSymbolTable *ST = 0; // If this value has a name, drop it. if (hasName()) { // Get the symtab this is in. if (getSymTab(this, ST)) { // We can't set a name on this value, but we need to clear V's name if // it has one. if (V->hasName()) V->setName(0, 0); return; // Cannot set a name on this value (e.g. constant). } // Remove old name. if (ST) ST->removeValueName(Name); Name->Destroy(); Name = 0; } // Now we know that this has no name. // If V has no name either, we're done. if (!V->hasName()) return; // Get this's symtab if we didn't before. if (!ST) { if (getSymTab(this, ST)) { // Clear V's name. V->setName(0, 0); return; // Cannot set a name on this value (e.g. constant). } } // Get V's ST, this should always succed, because V has a name. ValueSymbolTable *VST; bool Failure = getSymTab(V, VST); assert(!Failure && "V has a name, so it should have a ST!"); // If these values are both in the same symtab, we can do this very fast. // This works even if both values have no symtab yet. if (ST == VST) { // Take the name! Name = V->Name; V->Name = 0; Name->setValue(this); return; } // Otherwise, things are slightly more complex. Remove V's name from VST and // then reinsert it into ST. if (VST) VST->removeValueName(V->Name); Name = V->Name; V->Name = 0; Name->setValue(this); if (ST) ST->reinsertValue(this); } // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith, // except that it doesn't have all of the asserts. The asserts fail because we // are half-way done resolving types, which causes some types to exist as two // different Type*'s at the same time. This is a sledgehammer to work around // this problem. // void Value::uncheckedReplaceAllUsesWith(Value *New) { while (!use_empty()) { Use &U = *UseList; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (Constant *C = dyn_cast(U.getUser())) { if (!isa(C)) { C->replaceUsesOfWithOnConstant(this, New, &U); continue; } } U.set(New); } } void Value::replaceAllUsesWith(Value *New) { assert(New && "Value::replaceAllUsesWith() is invalid!"); assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!"); assert(New->getType() == getType() && "replaceAllUses of value with new value of different type!"); uncheckedReplaceAllUsesWith(New); } //===----------------------------------------------------------------------===// // User Class //===----------------------------------------------------------------------===// // replaceUsesOfWith - Replaces all references to the "From" definition with // references to the "To" definition. // void User::replaceUsesOfWith(Value *From, Value *To) { if (From == To) return; // Duh what? assert(!isa(this) || isa(this) && "Cannot call User::replaceUsesofWith on a constant!"); for (unsigned i = 0, E = getNumOperands(); i != E; ++i) if (getOperand(i) == From) { // Is This operand is pointing to oldval? // The side effects of this setOperand call include linking to // "To", adding "this" to the uses list of To, and // most importantly, removing "this" from the use list of "From". setOperand(i, To); // Fix it now... } }