; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s ; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s ; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s ; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s ; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s ; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s ; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s ; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s ; Test the integer arguments for all ABI's and byte orders as specified by ; section 5 of MD00305 (MIPS ABIs Described). ; ; N32/N64 are identical in this area so their checks have been combined into ; the 'NEW' prefix (the N stands for New). ; ; Varargs are covered in arguments-hard-float-varargs.ll. @bytes = global [11 x i8] zeroinitializer @dwords = global [11 x i64] zeroinitializer @floats = global [11 x float] zeroinitializer @doubles = global [11 x double] zeroinitializer define void @align_to_arg_slots(i8 signext %a, i8 signext %b, i8 signext %c, i8 signext %d, i8 signext %e, i8 signext %f, i8 signext %g, i8 signext %h, i8 signext %i, i8 signext %j) nounwind { entry: %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 store volatile i8 %a, i8* %0 %1 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2 store volatile i8 %b, i8* %1 %2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3 store volatile i8 %c, i8* %2 %3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4 store volatile i8 %d, i8* %3 %4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5 store volatile i8 %e, i8* %4 %5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6 store volatile i8 %f, i8* %5 %6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7 store volatile i8 %g, i8* %6 %7 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 8 store volatile i8 %h, i8* %7 %8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 9 store volatile i8 %i, i8* %8 %9 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 10 store volatile i8 %j, i8* %9 ret void } ; ALL-LABEL: align_to_arg_slots: ; We won't test the way the global address is calculated in this test. This is ; just to get the register number for the other checks. ; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) ; SYM64-DAG: ld [[R1:\$[0-9]+]], %got_disp(bytes)( ; The first four arguments are the same in O32/N32/N64 ; ALL-DAG: sb $4, 1([[R1]]) ; ALL-DAG: sb $5, 2([[R1]]) ; ALL-DAG: sb $6, 3([[R1]]) ; ALL-DAG: sb $7, 4([[R1]]) ; N32/N64 get an extra four arguments in registers ; O32 starts loading from the stack. The addresses start at 16 because space is ; always reserved for the first four arguments. ; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp) ; O32-DAG: sb [[R3]], 5([[R1]]) ; NEW-DAG: sb $8, 5([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp) ; O32-DAG: sb [[R3]], 6([[R1]]) ; NEW-DAG: sb $9, 6([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp) ; O32-DAG: sb [[R3]], 7([[R1]]) ; NEW-DAG: sb $10, 7([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp) ; O32-DAG: sb [[R3]], 8([[R1]]) ; NEW-DAG: sb $11, 8([[R1]]) ; O32/N32/N64 are accessing the stack at this point. ; Unlike O32, N32/N64 do not reserve space for the arguments. ; increase by 4 for O32 and 8 for N32/N64. ; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp) ; O32-DAG: sb [[R3]], 9([[R1]]) ; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp) ; NEW-DAG: sb [[R3]], 9([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 36($sp) ; O32-DAG: sb [[R3]], 10([[R1]]) ; NEW-DAG: ld [[R3:\$[0-9]+]], 8($sp) ; NEW-DAG: sb [[R3]], 10([[R1]]) define void @slot_skipping(i8 signext %a, i64 signext %b, i8 signext %c, i8 signext %d, i8 signext %e, i8 signext %f, i8 signext %g, i64 signext %i, i8 signext %j) nounwind { entry: %0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1 store volatile i8 %a, i8* %0 %1 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 1 store volatile i64 %b, i64* %1 %2 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 2 store volatile i8 %c, i8* %2 %3 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 3 store volatile i8 %d, i8* %3 %4 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 4 store volatile i8 %e, i8* %4 %5 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 5 store volatile i8 %f, i8* %5 %6 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 6 store volatile i8 %g, i8* %6 %7 = getelementptr [11 x i64], [11 x i64]* @dwords, i32 0, i32 2 store volatile i64 %i, i64* %7 %8 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 7 store volatile i8 %j, i8* %8 ret void } ; ALL-LABEL: slot_skipping: ; We won't test the way the global address is calculated in this test. This is ; just to get the register number for the other checks. ; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes) ; SYM64-DAG: ld [[R1:\$[0-9]+]], %got_disp(bytes)( ; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(dwords) ; SYM64-DAG: ld [[R2:\$[0-9]+]], %got_disp(dwords)( ; The first argument is the same in O32/N32/N64. ; ALL-DAG: sb $4, 1([[R1]]) ; The second slot is insufficiently aligned for i64 on O32 so it is skipped. ; Also, i64 occupies two slots on O32 and only one for N32/N64. ; O32-DAG: sw $6, 8([[R2]]) ; O32-DAG: sw $7, 12([[R2]]) ; NEW-DAG: sd $5, 8([[R2]]) ; N32/N64 get an extra four arguments in registers and still have two left from ; the first four. ; O32 starts loading from the stack. The addresses start at 16 because space is ; always reserved for the first four arguments. ; It's not clear why O32 uses lbu for this argument, but it's not wrong so we'll ; accept it for now. The only IR difference is that this argument has ; anyext from i8 and align 8 on it. ; O32-DAG: lw [[R3:\$[0-9]+]], 16($sp) ; O32-DAG: sb [[R3]], 2([[R1]]) ; NEW-DAG: sb $6, 2([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 20($sp) ; O32-DAG: sb [[R3]], 3([[R1]]) ; NEW-DAG: sb $7, 3([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 24($sp) ; O32-DAG: sb [[R3]], 4([[R1]]) ; NEW-DAG: sb $8, 4([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 28($sp) ; O32-DAG: sb [[R3]], 5([[R1]]) ; NEW-DAG: sb $9, 5([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 32($sp) ; O32-DAG: sb [[R3]], 6([[R1]]) ; NEW-DAG: sb $10, 6([[R1]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 40($sp) ; O32-DAG: sw [[R3]], 16([[R2]]) ; O32-DAG: lw [[R3:\$[0-9]+]], 44($sp) ; O32-DAG: sw [[R3]], 20([[R2]]) ; NEW-DAG: sd $11, 16([[R2]]) ; O32/N32/N64 are accessing the stack at this point. ; Unlike O32, N32/N64 do not reserve space for the arguments. ; increase by 4 for O32 and 8 for N32/N64. ; O32-DAG: lw [[R3:\$[0-9]+]], 48($sp) ; O32-DAG: sb [[R3]], 7([[R1]]) ; NEW-DAG: ld [[R3:\$[0-9]+]], 0($sp) ; NEW-DAG: sb [[R3]], 7([[R1]])