; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 | FileCheck %s -check-prefix=X64 ; RUN: llc < %s -O3 -march=x86 -mcpu=core2 | FileCheck %s -check-prefix=X32 ; RUN: llc < %s -O3 -march=x86-64 -mcpu=core2 -addr-sink-using-gep=1 | FileCheck %s -check-prefix=X64 ; RUN: llc < %s -O3 -march=x86 -mcpu=core2 -addr-sink-using-gep=1 | FileCheck %s -check-prefix=X32 ; @simple is the most basic chain of address induction variables. Chaining ; saves at least one register and avoids complex addressing and setup ; code. ; ; X64: @simple ; %x * 4 ; X64: shlq $2 ; no other address computation in the preheader ; X64-NEXT: xorl ; X64-NEXT: .align ; X64: %loop ; no complex address modes ; X64-NOT: (%{{[^)]+}},%{{[^)]+}}, ; ; X32: @simple ; no expensive address computation in the preheader ; X32-NOT: imul ; X32: %loop ; no complex address modes ; X32-NOT: (%{{[^)]+}},%{{[^)]+}}, define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind { entry: br label %loop loop: %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] %s = phi i32 [ 0, %entry ], [ %s4, %loop ] %v = load i32* %iv %iv1 = getelementptr inbounds i32* %iv, i32 %x %v1 = load i32* %iv1 %iv2 = getelementptr inbounds i32* %iv1, i32 %x %v2 = load i32* %iv2 %iv3 = getelementptr inbounds i32* %iv2, i32 %x %v3 = load i32* %iv3 %s1 = add i32 %s, %v %s2 = add i32 %s1, %v1 %s3 = add i32 %s2, %v2 %s4 = add i32 %s3, %v3 %iv4 = getelementptr inbounds i32* %iv3, i32 %x %cmp = icmp eq i32* %iv4, %b br i1 %cmp, label %exit, label %loop exit: ret i32 %s4 } ; @user is not currently chained because the IV is live across memory ops. ; ; X64: @user ; X64: shlq $4 ; X64: lea ; X64: lea ; X64: %loop ; complex address modes ; X64: (%{{[^)]+}},%{{[^)]+}}, ; ; X32: @user ; expensive address computation in the preheader ; X32: shll $4 ; X32: lea ; X32: lea ; X32: %loop ; complex address modes ; X32: (%{{[^)]+}},%{{[^)]+}}, define i32 @user(i32* %a, i32* %b, i32 %x) nounwind { entry: br label %loop loop: %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ] %s = phi i32 [ 0, %entry ], [ %s4, %loop ] %v = load i32* %iv %iv1 = getelementptr inbounds i32* %iv, i32 %x %v1 = load i32* %iv1 %iv2 = getelementptr inbounds i32* %iv1, i32 %x %v2 = load i32* %iv2 %iv3 = getelementptr inbounds i32* %iv2, i32 %x %v3 = load i32* %iv3 %s1 = add i32 %s, %v %s2 = add i32 %s1, %v1 %s3 = add i32 %s2, %v2 %s4 = add i32 %s3, %v3 %iv4 = getelementptr inbounds i32* %iv3, i32 %x store i32 %s4, i32* %iv %cmp = icmp eq i32* %iv4, %b br i1 %cmp, label %exit, label %loop exit: ret i32 %s4 } ; @extrastride is a slightly more interesting case of a single ; complete chain with multiple strides. The test case IR is what LSR ; used to do, and exactly what we don't want to do. LSR's new IV ; chaining feature should now undo the damage. ; ; X64: extrastride: ; We currently don't handle this on X64 because the sexts cause ; strange increment expressions like this: ; IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) ; ; X32: extrastride: ; no spills in the preheader ; X32-NOT: mov{{.*}}(%esp){{$}} ; X32: %for.body{{$}} ; no complex address modes ; X32-NOT: (%{{[^)]+}},%{{[^)]+}}, ; no reloads ; X32-NOT: (%esp) define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind { entry: %cmp8 = icmp eq i32 %z, 0 br i1 %cmp8, label %for.end, label %for.body.lr.ph for.body.lr.ph: ; preds = %entry %add.ptr.sum = shl i32 %main_stride, 1 ; s*2 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3 %add.ptr2.sum = add i32 %x, %main_stride ; s + x %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x br label %for.body for.body: ; preds = %for.body.lr.ph, %for.body %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ] %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ] %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ] %0 = bitcast i8* %main.addr.011 to i32* %1 = load i32* %0, align 4 %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride %2 = bitcast i8* %add.ptr to i32* %3 = load i32* %2, align 4 %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum %4 = bitcast i8* %add.ptr1 to i32* %5 = load i32* %4, align 4 %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum %6 = bitcast i8* %add.ptr2 to i32* %7 = load i32* %6, align 4 %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum %8 = bitcast i8* %add.ptr3 to i32* %9 = load i32* %8, align 4 %add = add i32 %3, %1 %add4 = add i32 %add, %5 %add5 = add i32 %add4, %7 %add6 = add i32 %add5, %9 store i32 %add6, i32* %res.addr.09, align 4 %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y %inc = add i32 %i.010, 1 %cmp = icmp eq i32 %inc, %z br i1 %cmp, label %for.end, label %for.body for.end: ; preds = %for.body, %entry ret void } ; @foldedidx is an unrolled variant of this loop: ; for (unsigned long i = 0; i < len; i += s) { ; c[i] = a[i] + b[i]; ; } ; where 's' can be folded into the addressing mode. ; Consequently, we should *not* form any chains. ; ; X64: foldedidx: ; X64: movzbl -3( ; ; X32: foldedidx: ; X32: movzbl -3( define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp { entry: br label %for.body for.body: ; preds = %for.body, %entry %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ] %arrayidx = getelementptr inbounds i8* %a, i32 %i.07 %0 = load i8* %arrayidx, align 1 %conv5 = zext i8 %0 to i32 %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07 %1 = load i8* %arrayidx1, align 1 %conv26 = zext i8 %1 to i32 %add = add nsw i32 %conv26, %conv5 %conv3 = trunc i32 %add to i8 %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07 store i8 %conv3, i8* %arrayidx4, align 1 %inc1 = or i32 %i.07, 1 %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1 %2 = load i8* %arrayidx.1, align 1 %conv5.1 = zext i8 %2 to i32 %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1 %3 = load i8* %arrayidx1.1, align 1 %conv26.1 = zext i8 %3 to i32 %add.1 = add nsw i32 %conv26.1, %conv5.1 %conv3.1 = trunc i32 %add.1 to i8 %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1 store i8 %conv3.1, i8* %arrayidx4.1, align 1 %inc.12 = or i32 %i.07, 2 %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12 %4 = load i8* %arrayidx.2, align 1 %conv5.2 = zext i8 %4 to i32 %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12 %5 = load i8* %arrayidx1.2, align 1 %conv26.2 = zext i8 %5 to i32 %add.2 = add nsw i32 %conv26.2, %conv5.2 %conv3.2 = trunc i32 %add.2 to i8 %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12 store i8 %conv3.2, i8* %arrayidx4.2, align 1 %inc.23 = or i32 %i.07, 3 %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23 %6 = load i8* %arrayidx.3, align 1 %conv5.3 = zext i8 %6 to i32 %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23 %7 = load i8* %arrayidx1.3, align 1 %conv26.3 = zext i8 %7 to i32 %add.3 = add nsw i32 %conv26.3, %conv5.3 %conv3.3 = trunc i32 %add.3 to i8 %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23 store i8 %conv3.3, i8* %arrayidx4.3, align 1 %inc.3 = add nsw i32 %i.07, 4 %exitcond.3 = icmp eq i32 %inc.3, 400 br i1 %exitcond.3, label %for.end, label %for.body for.end: ; preds = %for.body ret void } ; @multioper tests instructions with multiple IV user operands. We ; should be able to chain them independent of each other. ; ; X64: @multioper ; X64: %for.body ; X64: movl %{{.*}},4) ; X64-NEXT: leal 1( ; X64-NEXT: movl %{{.*}},4) ; X64-NEXT: leal 2( ; X64-NEXT: movl %{{.*}},4) ; X64-NEXT: leal 3( ; X64-NEXT: movl %{{.*}},4) ; ; X32: @multioper ; X32: %for.body ; X32: movl %{{.*}},4) ; X32-NEXT: leal 1( ; X32-NEXT: movl %{{.*}},4) ; X32-NEXT: leal 2( ; X32-NEXT: movl %{{.*}},4) ; X32-NEXT: leal 3( ; X32-NEXT: movl %{{.*}},4) define void @multioper(i32* %a, i32 %n) nounwind { entry: br label %for.body for.body: %p = phi i32* [ %p.next, %for.body ], [ %a, %entry ] %i = phi i32 [ %inc4, %for.body ], [ 0, %entry ] store i32 %i, i32* %p, align 4 %inc1 = or i32 %i, 1 %add.ptr.i1 = getelementptr inbounds i32* %p, i32 1 store i32 %inc1, i32* %add.ptr.i1, align 4 %inc2 = add nsw i32 %i, 2 %add.ptr.i2 = getelementptr inbounds i32* %p, i32 2 store i32 %inc2, i32* %add.ptr.i2, align 4 %inc3 = add nsw i32 %i, 3 %add.ptr.i3 = getelementptr inbounds i32* %p, i32 3 store i32 %inc3, i32* %add.ptr.i3, align 4 %p.next = getelementptr inbounds i32* %p, i32 4 %inc4 = add nsw i32 %i, 4 %cmp = icmp slt i32 %inc4, %n br i1 %cmp, label %for.body, label %exit exit: ret void } ; @testCmpZero has a ICmpZero LSR use that should not be hidden from ; LSR. Profitable chains should have more than one nonzero increment ; anyway. ; ; X32: @testCmpZero ; X32: %for.body82.us ; X32: dec ; X32: jne define void @testCmpZero(i8* %src, i8* %dst, i32 %srcidx, i32 %dstidx, i32 %len) nounwind ssp { entry: %dest0 = getelementptr inbounds i8* %src, i32 %srcidx %source0 = getelementptr inbounds i8* %dst, i32 %dstidx %add.ptr79.us.sum = add i32 %srcidx, %len %lftr.limit = getelementptr i8* %src, i32 %add.ptr79.us.sum br label %for.body82.us for.body82.us: %dest = phi i8* [ %dest0, %entry ], [ %incdec.ptr91.us, %for.body82.us ] %source = phi i8* [ %source0, %entry ], [ %add.ptr83.us, %for.body82.us ] %0 = bitcast i8* %source to i32* %1 = load i32* %0, align 4 %trunc = trunc i32 %1 to i8 %add.ptr83.us = getelementptr inbounds i8* %source, i32 4 %incdec.ptr91.us = getelementptr inbounds i8* %dest, i32 1 store i8 %trunc, i8* %dest, align 1 %exitcond = icmp eq i8* %incdec.ptr91.us, %lftr.limit br i1 %exitcond, label %return, label %for.body82.us return: ret void }