//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This utility provides a simple wrapper around the LLVM Execution Engines, // which allow the direct execution of LLVM programs through a Just-In-Time // compiler, or through an interpreter if no JIT is available for this platform. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lli" #include "llvm/IR/LLVMContext.h" #include "RecordingMemoryManager.h" #include "RemoteTarget.h" #include "llvm/ADT/Triple.h" #include "llvm/Bitcode/ReaderWriter.h" #include "llvm/CodeGen/LinkAllCodegenComponents.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/Interpreter.h" #include "llvm/ExecutionEngine/JIT.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IRReader/IRReader.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/Format.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PluginLoader.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Process.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #ifdef __CYGWIN__ #include #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 #define DO_NOTHING_ATEXIT 1 #endif #endif using namespace llvm; namespace { cl::opt InputFile(cl::desc(""), cl::Positional, cl::init("-")); cl::list InputArgv(cl::ConsumeAfter, cl::desc("...")); cl::opt ForceInterpreter("force-interpreter", cl::desc("Force interpretation: disable JIT"), cl::init(false)); cl::opt UseMCJIT( "use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"), cl::init(false)); // The MCJIT supports building for a target address space separate from // the JIT compilation process. Use a forked process and a copying // memory manager with IPC to execute using this functionality. cl::opt RemoteMCJIT("remote-mcjit", cl::desc("Execute MCJIT'ed code in a separate process."), cl::init(false)); // Determine optimization level. cl::opt OptLevel("O", cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " "(default = '-O2')"), cl::Prefix, cl::ZeroOrMore, cl::init(' ')); cl::opt TargetTriple("mtriple", cl::desc("Override target triple for module")); cl::opt MArch("march", cl::desc("Architecture to generate assembly for (see --version)")); cl::opt MCPU("mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"), cl::value_desc("cpu-name"), cl::init("")); cl::list MAttrs("mattr", cl::CommaSeparated, cl::desc("Target specific attributes (-mattr=help for details)"), cl::value_desc("a1,+a2,-a3,...")); cl::opt EntryFunc("entry-function", cl::desc("Specify the entry function (default = 'main') " "of the executable"), cl::value_desc("function"), cl::init("main")); cl::opt FakeArgv0("fake-argv0", cl::desc("Override the 'argv[0]' value passed into the executing" " program"), cl::value_desc("executable")); cl::opt DisableCoreFiles("disable-core-files", cl::Hidden, cl::desc("Disable emission of core files if possible")); cl::opt NoLazyCompilation("disable-lazy-compilation", cl::desc("Disable JIT lazy compilation"), cl::init(false)); cl::opt RelocModel("relocation-model", cl::desc("Choose relocation model"), cl::init(Reloc::Default), cl::values( clEnumValN(Reloc::Default, "default", "Target default relocation model"), clEnumValN(Reloc::Static, "static", "Non-relocatable code"), clEnumValN(Reloc::PIC_, "pic", "Fully relocatable, position independent code"), clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic", "Relocatable external references, non-relocatable code"), clEnumValEnd)); cl::opt CMModel("code-model", cl::desc("Choose code model"), cl::init(CodeModel::JITDefault), cl::values(clEnumValN(CodeModel::JITDefault, "default", "Target default JIT code model"), clEnumValN(CodeModel::Small, "small", "Small code model"), clEnumValN(CodeModel::Kernel, "kernel", "Kernel code model"), clEnumValN(CodeModel::Medium, "medium", "Medium code model"), clEnumValN(CodeModel::Large, "large", "Large code model"), clEnumValEnd)); cl::opt GenerateSoftFloatCalls("soft-float", cl::desc("Generate software floating point library calls"), cl::init(false)); cl::opt FloatABIForCalls("float-abi", cl::desc("Choose float ABI type"), cl::init(FloatABI::Default), cl::values( clEnumValN(FloatABI::Default, "default", "Target default float ABI type"), clEnumValN(FloatABI::Soft, "soft", "Soft float ABI (implied by -soft-float)"), clEnumValN(FloatABI::Hard, "hard", "Hard float ABI (uses FP registers)"), clEnumValEnd)); cl::opt // In debug builds, make this default to true. #ifdef NDEBUG #define EMIT_DEBUG false #else #define EMIT_DEBUG true #endif EmitJitDebugInfo("jit-emit-debug", cl::desc("Emit debug information to debugger"), cl::init(EMIT_DEBUG)); #undef EMIT_DEBUG static cl::opt EmitJitDebugInfoToDisk("jit-emit-debug-to-disk", cl::Hidden, cl::desc("Emit debug info objfiles to disk"), cl::init(false)); } static ExecutionEngine *EE = 0; static void do_shutdown() { // Cygwin-1.5 invokes DLL's dtors before atexit handler. #ifndef DO_NOTHING_ATEXIT delete EE; llvm_shutdown(); #endif } void layoutRemoteTargetMemory(RemoteTarget *T, RecordingMemoryManager *JMM) { // Lay out our sections in order, with all the code sections first, then // all the data sections. uint64_t CurOffset = 0; unsigned MaxAlign = T->getPageAlignment(); SmallVector, 16> Offsets; SmallVector Sizes; for (RecordingMemoryManager::const_code_iterator I = JMM->code_begin(), E = JMM->code_end(); I != E; ++I) { DEBUG(dbgs() << "code region: size " << I->first.size() << ", alignment " << I->second << "\n"); // Align the current offset up to whatever is needed for the next // section. unsigned Align = I->second; CurOffset = (CurOffset + Align - 1) / Align * Align; // Save off the address of the new section and allocate its space. Offsets.push_back(std::pair(I->first.base(), CurOffset)); Sizes.push_back(I->first.size()); CurOffset += I->first.size(); } // Adjust to keep code and data aligned on seperate pages. CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign; unsigned FirstDataIndex = Offsets.size(); for (RecordingMemoryManager::const_data_iterator I = JMM->data_begin(), E = JMM->data_end(); I != E; ++I) { DEBUG(dbgs() << "data region: size " << I->first.size() << ", alignment " << I->second << "\n"); // Align the current offset up to whatever is needed for the next // section. unsigned Align = I->second; CurOffset = (CurOffset + Align - 1) / Align * Align; // Save off the address of the new section and allocate its space. Offsets.push_back(std::pair(I->first.base(), CurOffset)); Sizes.push_back(I->first.size()); CurOffset += I->first.size(); } // Allocate space in the remote target. uint64_t RemoteAddr; if (T->allocateSpace(CurOffset, MaxAlign, RemoteAddr)) report_fatal_error(T->getErrorMsg()); // Map the section addresses so relocations will get updated in the local // copies of the sections. for (unsigned i = 0, e = Offsets.size(); i != e; ++i) { uint64_t Addr = RemoteAddr + Offsets[i].second; EE->mapSectionAddress(const_cast(Offsets[i].first), Addr); DEBUG(dbgs() << " Mapping local: " << Offsets[i].first << " to remote: " << format("%p", Addr) << "\n"); } // Trigger application of relocations EE->finalizeObject(); // Now load it all to the target. for (unsigned i = 0, e = Offsets.size(); i != e; ++i) { uint64_t Addr = RemoteAddr + Offsets[i].second; if (i < FirstDataIndex) { T->loadCode(Addr, Offsets[i].first, Sizes[i]); DEBUG(dbgs() << " loading code: " << Offsets[i].first << " to remote: " << format("%p", Addr) << "\n"); } else { T->loadData(Addr, Offsets[i].first, Sizes[i]); DEBUG(dbgs() << " loading data: " << Offsets[i].first << " to remote: " << format("%p", Addr) << "\n"); } } } //===----------------------------------------------------------------------===// // main Driver function // int main(int argc, char **argv, char * const *envp) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); LLVMContext &Context = getGlobalContext(); atexit(do_shutdown); // Call llvm_shutdown() on exit. // If we have a native target, initialize it to ensure it is linked in and // usable by the JIT. InitializeNativeTarget(); InitializeNativeTargetAsmPrinter(); InitializeNativeTargetAsmParser(); cl::ParseCommandLineOptions(argc, argv, "llvm interpreter & dynamic compiler\n"); // If the user doesn't want core files, disable them. if (DisableCoreFiles) sys::Process::PreventCoreFiles(); // Load the bitcode... SMDiagnostic Err; Module *Mod = ParseIRFile(InputFile, Err, Context); if (!Mod) { Err.print(argv[0], errs()); return 1; } // If not jitting lazily, load the whole bitcode file eagerly too. std::string ErrorMsg; if (NoLazyCompilation) { if (Mod->MaterializeAllPermanently(&ErrorMsg)) { errs() << argv[0] << ": bitcode didn't read correctly.\n"; errs() << "Reason: " << ErrorMsg << "\n"; exit(1); } } EngineBuilder builder(Mod); builder.setMArch(MArch); builder.setMCPU(MCPU); builder.setMAttrs(MAttrs); builder.setRelocationModel(RelocModel); builder.setCodeModel(CMModel); builder.setErrorStr(&ErrorMsg); builder.setEngineKind(ForceInterpreter ? EngineKind::Interpreter : EngineKind::JIT); // If we are supposed to override the target triple, do so now. if (!TargetTriple.empty()) Mod->setTargetTriple(Triple::normalize(TargetTriple)); // Enable MCJIT if desired. JITMemoryManager *JMM = 0; if (UseMCJIT && !ForceInterpreter) { builder.setUseMCJIT(true); if (RemoteMCJIT) JMM = new RecordingMemoryManager(); else JMM = new SectionMemoryManager(); builder.setJITMemoryManager(JMM); } else { if (RemoteMCJIT) { errs() << "error: Remote process execution requires -use-mcjit\n"; exit(1); } builder.setJITMemoryManager(ForceInterpreter ? 0 : JITMemoryManager::CreateDefaultMemManager()); } CodeGenOpt::Level OLvl = CodeGenOpt::Default; switch (OptLevel) { default: errs() << argv[0] << ": invalid optimization level.\n"; return 1; case ' ': break; case '0': OLvl = CodeGenOpt::None; break; case '1': OLvl = CodeGenOpt::Less; break; case '2': OLvl = CodeGenOpt::Default; break; case '3': OLvl = CodeGenOpt::Aggressive; break; } builder.setOptLevel(OLvl); TargetOptions Options; Options.UseSoftFloat = GenerateSoftFloatCalls; if (FloatABIForCalls != FloatABI::Default) Options.FloatABIType = FloatABIForCalls; if (GenerateSoftFloatCalls) FloatABIForCalls = FloatABI::Soft; // Remote target execution doesn't handle EH or debug registration. if (!RemoteMCJIT) { Options.JITEmitDebugInfo = EmitJitDebugInfo; Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk; } builder.setTargetOptions(Options); EE = builder.create(); if (!EE) { if (!ErrorMsg.empty()) errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n"; else errs() << argv[0] << ": unknown error creating EE!\n"; exit(1); } // The following functions have no effect if their respective profiling // support wasn't enabled in the build configuration. EE->RegisterJITEventListener( JITEventListener::createOProfileJITEventListener()); EE->RegisterJITEventListener( JITEventListener::createIntelJITEventListener()); if (!NoLazyCompilation && RemoteMCJIT) { errs() << "warning: remote mcjit does not support lazy compilation\n"; NoLazyCompilation = true; } EE->DisableLazyCompilation(NoLazyCompilation); // If the user specifically requested an argv[0] to pass into the program, // do it now. if (!FakeArgv0.empty()) { InputFile = FakeArgv0; } else { // Otherwise, if there is a .bc suffix on the executable strip it off, it // might confuse the program. if (StringRef(InputFile).endswith(".bc")) InputFile.erase(InputFile.length() - 3); } // Add the module's name to the start of the vector of arguments to main(). InputArgv.insert(InputArgv.begin(), InputFile); // Call the main function from M as if its signature were: // int main (int argc, char **argv, const char **envp) // using the contents of Args to determine argc & argv, and the contents of // EnvVars to determine envp. // Function *EntryFn = Mod->getFunction(EntryFunc); if (!EntryFn) { errs() << '\'' << EntryFunc << "\' function not found in module.\n"; return -1; } // If the program doesn't explicitly call exit, we will need the Exit // function later on to make an explicit call, so get the function now. Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context), Type::getInt32Ty(Context), NULL); // Reset errno to zero on entry to main. errno = 0; // Remote target MCJIT doesn't (yet) support static constructors. No reason // it couldn't. This is a limitation of the LLI implemantation, not the // MCJIT itself. FIXME. // // Run static constructors. if (!RemoteMCJIT) { if (UseMCJIT && !ForceInterpreter) { // Give MCJIT a chance to apply relocations and set page permissions. EE->finalizeObject(); } EE->runStaticConstructorsDestructors(false); } if (NoLazyCompilation) { for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) { Function *Fn = &*I; if (Fn != EntryFn && !Fn->isDeclaration()) EE->getPointerToFunction(Fn); } } int Result; if (RemoteMCJIT) { RecordingMemoryManager *MM = static_cast(JMM); // Everything is prepared now, so lay out our program for the target // address space, assign the section addresses to resolve any relocations, // and send it to the target. RemoteTarget Target; Target.create(); // Ask for a pointer to the entry function. This triggers the actual // compilation. (void)EE->getPointerToFunction(EntryFn); // Enough has been compiled to execute the entry function now, so // layout the target memory. layoutRemoteTargetMemory(&Target, MM); // Since we're executing in a (at least simulated) remote address space, // we can't use the ExecutionEngine::runFunctionAsMain(). We have to // grab the function address directly here and tell the remote target // to execute the function. // FIXME: argv and envp handling. uint64_t Entry = (uint64_t)EE->getPointerToFunction(EntryFn); DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at " << format("%p", Entry) << "\n"); if (Target.executeCode(Entry, Result)) errs() << "ERROR: " << Target.getErrorMsg() << "\n"; Target.stop(); } else { // Trigger compilation separately so code regions that need to be // invalidated will be known. (void)EE->getPointerToFunction(EntryFn); // Clear instruction cache before code will be executed. if (JMM) static_cast(JMM)->invalidateInstructionCache(); // Run main. Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); } // Like static constructors, the remote target MCJIT support doesn't handle // this yet. It could. FIXME. if (!RemoteMCJIT) { // Run static destructors. EE->runStaticConstructorsDestructors(true); // If the program didn't call exit explicitly, we should call it now. // This ensures that any atexit handlers get called correctly. if (Function *ExitF = dyn_cast(Exit)) { std::vector Args; GenericValue ResultGV; ResultGV.IntVal = APInt(32, Result); Args.push_back(ResultGV); EE->runFunction(ExitF, Args); errs() << "ERROR: exit(" << Result << ") returned!\n"; abort(); } else { errs() << "ERROR: exit defined with wrong prototype!\n"; abort(); } } return Result; }