//===-- MachODump.cpp - Object file dumping utility for llvm --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the MachO-specific dumper for llvm-objdump. // //===----------------------------------------------------------------------===// #include "llvm-objdump.h" #include "llvm-c/Disassembler.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Triple.h" #include "llvm/Config/config.h" #include "llvm/DebugInfo/DWARF/DIContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Object/MachO.h" #include "llvm/Object/MachOUniversal.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MachO.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #include #include #if HAVE_CXXABI_H #include #endif using namespace llvm; using namespace object; static cl::opt UseDbg("g", cl::desc("Print line information from debug info if available")); static cl::opt DSYMFile("dsym", cl::desc("Use .dSYM file for debug info")); static cl::opt FullLeadingAddr("full-leading-addr", cl::desc("Print full leading address")); static cl::opt PrintImmHex("print-imm-hex", cl::desc("Use hex format for immediate values")); cl::opt llvm::UniversalHeaders("universal-headers", cl::desc("Print Mach-O universal headers " "(requires -macho)")); cl::opt llvm::ArchiveHeaders("archive-headers", cl::desc("Print archive headers for Mach-O archives " "(requires -macho)")); cl::opt llvm::IndirectSymbols("indirect-symbols", cl::desc("Print indirect symbol table for Mach-O " "objects (requires -macho)")); cl::opt llvm::DataInCode("data-in-code", cl::desc("Print the data in code table for Mach-O objects " "(requires -macho)")); cl::opt llvm::LinkOptHints("link-opt-hints", cl::desc("Print the linker optimization hints for " "Mach-O objects (requires -macho)")); cl::list llvm::DumpSections("section", cl::desc("Prints the specified segment,section for " "Mach-O objects (requires -macho)")); static cl::list ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"), cl::ZeroOrMore); bool ArchAll = false; static std::string ThumbTripleName; static const Target *GetTarget(const MachOObjectFile *MachOObj, const char **McpuDefault, const Target **ThumbTarget) { // Figure out the target triple. if (TripleName.empty()) { llvm::Triple TT("unknown-unknown-unknown"); llvm::Triple ThumbTriple = Triple(); TT = MachOObj->getArch(McpuDefault, &ThumbTriple); TripleName = TT.str(); ThumbTripleName = ThumbTriple.str(); } // Get the target specific parser. std::string Error; const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error); if (TheTarget && ThumbTripleName.empty()) return TheTarget; *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error); if (*ThumbTarget) return TheTarget; errs() << "llvm-objdump: error: unable to get target for '"; if (!TheTarget) errs() << TripleName; else errs() << ThumbTripleName; errs() << "', see --version and --triple.\n"; return nullptr; } struct SymbolSorter { bool operator()(const SymbolRef &A, const SymbolRef &B) { SymbolRef::Type AType, BType; A.getType(AType); B.getType(BType); uint64_t AAddr, BAddr; if (AType != SymbolRef::ST_Function) AAddr = 0; else A.getAddress(AAddr); if (BType != SymbolRef::ST_Function) BAddr = 0; else B.getAddress(BAddr); return AAddr < BAddr; } }; // Types for the storted data in code table that is built before disassembly // and the predicate function to sort them. typedef std::pair DiceTableEntry; typedef std::vector DiceTable; typedef DiceTable::iterator dice_table_iterator; // This is used to search for a data in code table entry for the PC being // disassembled. The j parameter has the PC in j.first. A single data in code // table entry can cover many bytes for each of its Kind's. So if the offset, // aka the i.first value, of the data in code table entry plus its Length // covers the PC being searched for this will return true. If not it will // return false. static bool compareDiceTableEntries(const DiceTableEntry &i, const DiceTableEntry &j) { uint16_t Length; i.second.getLength(Length); return j.first >= i.first && j.first < i.first + Length; } static uint64_t DumpDataInCode(const char *bytes, uint64_t Length, unsigned short Kind) { uint32_t Value, Size = 1; switch (Kind) { default: case MachO::DICE_KIND_DATA: if (Length >= 4) { if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 4)); Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value; Size = 4; } else if (Length >= 2) { if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 2)); Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << Value; Size = 2; } else { if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 2)); Value = bytes[0]; outs() << "\t.byte " << Value; Size = 1; } if (Kind == MachO::DICE_KIND_DATA) outs() << "\t@ KIND_DATA\n"; else outs() << "\t@ data in code kind = " << Kind << "\n"; break; case MachO::DICE_KIND_JUMP_TABLE8: if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 1)); Value = bytes[0]; outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n"; Size = 1; break; case MachO::DICE_KIND_JUMP_TABLE16: if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 2)); Value = bytes[1] << 8 | bytes[0]; outs() << "\t.short " << format("%5u", Value & 0xffff) << "\t@ KIND_JUMP_TABLE16\n"; Size = 2; break; case MachO::DICE_KIND_JUMP_TABLE32: case MachO::DICE_KIND_ABS_JUMP_TABLE32: if (!NoShowRawInsn) DumpBytes(StringRef(bytes, 4)); Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0]; outs() << "\t.long " << Value; if (Kind == MachO::DICE_KIND_JUMP_TABLE32) outs() << "\t@ KIND_JUMP_TABLE32\n"; else outs() << "\t@ KIND_ABS_JUMP_TABLE32\n"; Size = 4; break; } return Size; } static void getSectionsAndSymbols(const MachO::mach_header Header, MachOObjectFile *MachOObj, std::vector &Sections, std::vector &Symbols, SmallVectorImpl &FoundFns, uint64_t &BaseSegmentAddress) { for (const SymbolRef &Symbol : MachOObj->symbols()) { StringRef SymName; Symbol.getName(SymName); if (!SymName.startswith("ltmp")) Symbols.push_back(Symbol); } for (const SectionRef &Section : MachOObj->sections()) { StringRef SectName; Section.getName(SectName); Sections.push_back(Section); } MachOObjectFile::LoadCommandInfo Command = MachOObj->getFirstLoadCommandInfo(); bool BaseSegmentAddressSet = false; for (unsigned i = 0;; ++i) { if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) { // We found a function starts segment, parse the addresses for later // consumption. MachO::linkedit_data_command LLC = MachOObj->getLinkeditDataLoadCommand(Command); MachOObj->ReadULEB128s(LLC.dataoff, FoundFns); } else if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command); StringRef SegName = SLC.segname; if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") { BaseSegmentAddressSet = true; BaseSegmentAddress = SLC.vmaddr; } } if (i == Header.ncmds - 1) break; else Command = MachOObj->getNextLoadCommandInfo(Command); } } static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose, uint32_t n, uint32_t count, uint32_t stride, uint64_t addr) { MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand(); uint32_t nindirectsyms = Dysymtab.nindirectsyms; if (n > nindirectsyms) outs() << " (entries start past the end of the indirect symbol " "table) (reserved1 field greater than the table size)"; else if (n + count > nindirectsyms) outs() << " (entries extends past the end of the indirect symbol " "table)"; outs() << "\n"; uint32_t cputype = O->getHeader().cputype; if (cputype & MachO::CPU_ARCH_ABI64) outs() << "address index"; else outs() << "address index"; if (verbose) outs() << " name\n"; else outs() << "\n"; for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) { if (cputype & MachO::CPU_ARCH_ABI64) outs() << format("0x%016" PRIx64, addr + j * stride) << " "; else outs() << format("0x%08" PRIx32, addr + j * stride) << " "; MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand(); uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j); if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) { outs() << "LOCAL\n"; continue; } if (indirect_symbol == (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) { outs() << "LOCAL ABSOLUTE\n"; continue; } if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) { outs() << "ABSOLUTE\n"; continue; } outs() << format("%5u ", indirect_symbol); MachO::symtab_command Symtab = O->getSymtabLoadCommand(); if (indirect_symbol < Symtab.nsyms) { symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol); SymbolRef Symbol = *Sym; StringRef SymName; Symbol.getName(SymName); outs() << SymName; } else { outs() << "?"; } outs() << "\n"; } } static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) { uint32_t LoadCommandCount = O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = O->getFirstLoadCommandInfo(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = O->getSection64(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 8; if (stride == 0) { outs() << "Can't print indirect symbols for (" << Sec.segname << "," << Sec.sectname << ") " << "(size of stubs in reserved2 field is zero)\n"; continue; } uint32_t count = Sec.size / stride; outs() << "Indirect symbols for (" << Sec.segname << "," << Sec.sectname << ") " << count << " entries"; uint32_t n = Sec.reserved1; PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr); } } } else if (Load.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command Seg = O->getSegmentLoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section Sec = O->getSection(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 4; if (stride == 0) { outs() << "Can't print indirect symbols for (" << Sec.segname << "," << Sec.sectname << ") " << "(size of stubs in reserved2 field is zero)\n"; continue; } uint32_t count = Sec.size / stride; outs() << "Indirect symbols for (" << Sec.segname << "," << Sec.sectname << ") " << count << " entries"; uint32_t n = Sec.reserved1; PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr); } } } if (I == LoadCommandCount - 1) break; else Load = O->getNextLoadCommandInfo(Load); } } static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) { MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand(); uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry); outs() << "Data in code table (" << nentries << " entries)\n"; outs() << "offset length kind\n"; for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE; ++DI) { uint32_t Offset; DI->getOffset(Offset); outs() << format("0x%08" PRIx32, Offset) << " "; uint16_t Length; DI->getLength(Length); outs() << format("%6u", Length) << " "; uint16_t Kind; DI->getKind(Kind); if (verbose) { switch (Kind) { case MachO::DICE_KIND_DATA: outs() << "DATA"; break; case MachO::DICE_KIND_JUMP_TABLE8: outs() << "JUMP_TABLE8"; break; case MachO::DICE_KIND_JUMP_TABLE16: outs() << "JUMP_TABLE16"; break; case MachO::DICE_KIND_JUMP_TABLE32: outs() << "JUMP_TABLE32"; break; case MachO::DICE_KIND_ABS_JUMP_TABLE32: outs() << "ABS_JUMP_TABLE32"; break; default: outs() << format("0x%04" PRIx32, Kind); break; } } else outs() << format("0x%04" PRIx32, Kind); outs() << "\n"; } } static void PrintLinkOptHints(MachOObjectFile *O) { MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand(); const char *loh = O->getData().substr(LohLC.dataoff, 1).data(); uint32_t nloh = LohLC.datasize; outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n"; for (uint32_t i = 0; i < nloh;) { unsigned n; uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n); i += n; outs() << " identifier " << identifier << " "; if (i >= nloh) return; switch (identifier) { case 1: outs() << "AdrpAdrp\n"; break; case 2: outs() << "AdrpLdr\n"; break; case 3: outs() << "AdrpAddLdr\n"; break; case 4: outs() << "AdrpLdrGotLdr\n"; break; case 5: outs() << "AdrpAddStr\n"; break; case 6: outs() << "AdrpLdrGotStr\n"; break; case 7: outs() << "AdrpAdd\n"; break; case 8: outs() << "AdrpLdrGot\n"; break; default: outs() << "Unknown identifier value\n"; break; } uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n); i += n; outs() << " narguments " << narguments << "\n"; if (i >= nloh) return; for (uint32_t j = 0; j < narguments; j++) { uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n); i += n; outs() << "\tvalue " << format("0x%" PRIx64, value) << "\n"; if (i >= nloh) return; } } } typedef DenseMap SymbolAddressMap; static void CreateSymbolAddressMap(MachOObjectFile *O, SymbolAddressMap *AddrMap) { // Create a map of symbol addresses to symbol names. for (const SymbolRef &Symbol : O->symbols()) { SymbolRef::Type ST; Symbol.getType(ST); if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data || ST == SymbolRef::ST_Other) { uint64_t Address; Symbol.getAddress(Address); StringRef SymName; Symbol.getName(SymName); (*AddrMap)[Address] = SymName; } } } // GuessSymbolName is passed the address of what might be a symbol and a // pointer to the SymbolAddressMap. It returns the name of a symbol // with that address or nullptr if no symbol is found with that address. static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) { const char *SymbolName = nullptr; // A DenseMap can't lookup up some values. if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) { StringRef name = AddrMap->lookup(value); if (!name.empty()) SymbolName = name.data(); } return SymbolName; } static void DumpCstringChar(const char c) { char p[2]; p[0] = c; p[1] = '\0'; outs().write_escaped(p); } static void DumpCstringSection(MachOObjectFile *O, const char *sect, uint32_t sect_size, uint64_t sect_addr, bool print_addresses) { for (uint32_t i = 0; i < sect_size; i++) { if (print_addresses) { if (O->is64Bit()) outs() << format("%016" PRIx64, sect_addr + i) << " "; else outs() << format("%08" PRIx64, sect_addr + i) << " "; } for (; i < sect_size && sect[i] != '\0'; i++) DumpCstringChar(sect[i]); if (i < sect_size && sect[i] == '\0') outs() << "\n"; } } static void DumpLiteral4(uint32_t l, float f) { outs() << format("0x%08" PRIx32, l); if ((l & 0x7f800000) != 0x7f800000) outs() << format(" (%.16e)\n", f); else { if (l == 0x7f800000) outs() << " (+Infinity)\n"; else if (l == 0xff800000) outs() << " (-Infinity)\n"; else if ((l & 0x00400000) == 0x00400000) outs() << " (non-signaling Not-a-Number)\n"; else outs() << " (signaling Not-a-Number)\n"; } } static void DumpLiteral4Section(MachOObjectFile *O, const char *sect, uint32_t sect_size, uint64_t sect_addr, bool print_addresses) { for (uint32_t i = 0; i < sect_size; i += sizeof(float)) { if (print_addresses) { if (O->is64Bit()) outs() << format("%016" PRIx64, sect_addr + i) << " "; else outs() << format("%08" PRIx64, sect_addr + i) << " "; } float f; memcpy(&f, sect + i, sizeof(float)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(f); uint32_t l; memcpy(&l, sect + i, sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(l); DumpLiteral4(l, f); } } static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1, double d) { outs() << format("0x%08" PRIx32, l0) << " " << format("0x%08" PRIx32, l1); uint32_t Hi, Lo; if (O->isLittleEndian()) { Hi = l1; Lo = l0; } else { Hi = l0; Lo = l1; } // Hi is the high word, so this is equivalent to if(isfinite(d)) if ((Hi & 0x7ff00000) != 0x7ff00000) outs() << format(" (%.16e)\n", d); else { if (Hi == 0x7ff00000 && Lo == 0) outs() << " (+Infinity)\n"; else if (Hi == 0xfff00000 && Lo == 0) outs() << " (-Infinity)\n"; else if ((Hi & 0x00080000) == 0x00080000) outs() << " (non-signaling Not-a-Number)\n"; else outs() << " (signaling Not-a-Number)\n"; } } static void DumpLiteral8Section(MachOObjectFile *O, const char *sect, uint32_t sect_size, uint64_t sect_addr, bool print_addresses) { for (uint32_t i = 0; i < sect_size; i += sizeof(double)) { if (print_addresses) { if (O->is64Bit()) outs() << format("%016" PRIx64, sect_addr + i) << " "; else outs() << format("%08" PRIx64, sect_addr + i) << " "; } double d; memcpy(&d, sect + i, sizeof(double)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(d); uint32_t l0, l1; memcpy(&l0, sect + i, sizeof(uint32_t)); memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) { sys::swapByteOrder(l0); sys::swapByteOrder(l1); } DumpLiteral8(O, l0, l1, d); } } static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) { outs() << format("0x%08" PRIx32, l0) << " "; outs() << format("0x%08" PRIx32, l1) << " "; outs() << format("0x%08" PRIx32, l2) << " "; outs() << format("0x%08" PRIx32, l3) << "\n"; } static void DumpLiteral16Section(MachOObjectFile *O, const char *sect, uint32_t sect_size, uint64_t sect_addr, bool print_addresses) { for (uint32_t i = 0; i < sect_size; i += 16) { if (print_addresses) { if (O->is64Bit()) outs() << format("%016" PRIx64, sect_addr + i) << " "; else outs() << format("%08" PRIx64, sect_addr + i) << " "; } uint32_t l0, l1, l2, l3; memcpy(&l0, sect + i, sizeof(uint32_t)); memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t)); memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t)); memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) { sys::swapByteOrder(l0); sys::swapByteOrder(l1); sys::swapByteOrder(l2); sys::swapByteOrder(l3); } DumpLiteral16(l0, l1, l2, l3); } } static void DumpLiteralPointerSection(MachOObjectFile *O, const SectionRef &Section, const char *sect, uint32_t sect_size, uint64_t sect_addr, bool print_addresses) { // Collect the literal sections in this Mach-O file. std::vector LiteralSections; for (const SectionRef &Section : O->sections()) { DataRefImpl Ref = Section.getRawDataRefImpl(); uint32_t section_type; if (O->is64Bit()) { const MachO::section_64 Sec = O->getSection64(Ref); section_type = Sec.flags & MachO::SECTION_TYPE; } else { const MachO::section Sec = O->getSection(Ref); section_type = Sec.flags & MachO::SECTION_TYPE; } if (section_type == MachO::S_CSTRING_LITERALS || section_type == MachO::S_4BYTE_LITERALS || section_type == MachO::S_8BYTE_LITERALS || section_type == MachO::S_16BYTE_LITERALS) LiteralSections.push_back(Section); } // Set the size of the literal pointer. uint32_t lp_size = O->is64Bit() ? 8 : 4; // Collect the external relocation symbols for the the literal pointers. std::vector> Relocs; for (const RelocationRef &Reloc : Section.relocations()) { DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; Rel = Reloc.getRawDataRefImpl(); RE = O->getRelocation(Rel); isExtern = O->getPlainRelocationExternal(RE); if (isExtern) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); symbol_iterator RelocSym = Reloc.getSymbol(); Relocs.push_back(std::make_pair(RelocOffset, *RelocSym)); } } array_pod_sort(Relocs.begin(), Relocs.end()); // Dump each literal pointer. for (uint32_t i = 0; i < sect_size; i += lp_size) { if (print_addresses) { if (O->is64Bit()) outs() << format("%016" PRIx64, sect_addr + i) << " "; else outs() << format("%08" PRIx64, sect_addr + i) << " "; } uint64_t lp; if (O->is64Bit()) { memcpy(&lp, sect + i, sizeof(uint64_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(lp); } else { uint32_t li; memcpy(&li, sect + i, sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(li); lp = li; } // First look for an external relocation entry for this literal pointer. bool reloc_found = false; for (unsigned j = 0, e = Relocs.size(); j != e; ++j) { if (Relocs[i].first == i) { symbol_iterator RelocSym = Relocs[j].second; StringRef SymName; RelocSym->getName(SymName); outs() << "external relocation entry for symbol:" << SymName << "\n"; reloc_found = true; } } if (reloc_found == true) continue; // For local references see what the section the literal pointer points to. bool found = false; for (unsigned SectIdx = 0; SectIdx != LiteralSections.size(); SectIdx++) { uint64_t SectAddress = LiteralSections[SectIdx].getAddress(); uint64_t SectSize = LiteralSections[SectIdx].getSize(); if (lp >= SectAddress && lp < SectAddress + SectSize) { found = true; StringRef SectName; LiteralSections[SectIdx].getName(SectName); DataRefImpl Ref = LiteralSections[SectIdx].getRawDataRefImpl(); StringRef SegmentName = O->getSectionFinalSegmentName(Ref); outs() << SegmentName << ":" << SectName << ":"; uint32_t section_type; if (O->is64Bit()) { const MachO::section_64 Sec = O->getSection64(Ref); section_type = Sec.flags & MachO::SECTION_TYPE; } else { const MachO::section Sec = O->getSection(Ref); section_type = Sec.flags & MachO::SECTION_TYPE; } StringRef BytesStr; LiteralSections[SectIdx].getContents(BytesStr); const char *Contents = reinterpret_cast(BytesStr.data()); switch (section_type) { case MachO::S_CSTRING_LITERALS: for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0'; i++) { DumpCstringChar(Contents[i]); } outs() << "\n"; break; case MachO::S_4BYTE_LITERALS: float f; memcpy(&f, Contents + (lp - SectAddress), sizeof(float)); uint32_t l; memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) { sys::swapByteOrder(f); sys::swapByteOrder(l); } DumpLiteral4(l, f); break; case MachO::S_8BYTE_LITERALS: { double d; memcpy(&d, Contents + (lp - SectAddress), sizeof(double)); uint32_t l0, l1; memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t)); memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t), sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) { sys::swapByteOrder(f); sys::swapByteOrder(l0); sys::swapByteOrder(l1); } DumpLiteral8(O, l0, l1, d); break; } case MachO::S_16BYTE_LITERALS: { uint32_t l0, l1, l2, l3; memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t)); memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t), sizeof(uint32_t)); memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t), sizeof(uint32_t)); memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t), sizeof(uint32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) { sys::swapByteOrder(l0); sys::swapByteOrder(l1); sys::swapByteOrder(l2); sys::swapByteOrder(l3); } DumpLiteral16(l0, l1, l2, l3); break; } } } } if (found == false) outs() << format("0x%" PRIx64, lp) << " (not in a literal section)\n"; } } static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect, uint32_t sect_size, uint64_t sect_addr, SymbolAddressMap *AddrMap, bool verbose) { uint32_t stride; if (O->is64Bit()) stride = sizeof(uint64_t); else stride = sizeof(uint32_t); for (uint32_t i = 0; i < sect_size; i += stride) { const char *SymbolName = nullptr; if (O->is64Bit()) { outs() << format("0x%016" PRIx64, sect_addr + i * stride) << " "; uint64_t pointer_value; memcpy(&pointer_value, sect + i, stride); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(pointer_value); outs() << format("0x%016" PRIx64, pointer_value); if (verbose) SymbolName = GuessSymbolName(pointer_value, AddrMap); } else { outs() << format("0x%08" PRIx64, sect_addr + i * stride) << " "; uint32_t pointer_value; memcpy(&pointer_value, sect + i, stride); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(pointer_value); outs() << format("0x%08" PRIx32, pointer_value); if (verbose) SymbolName = GuessSymbolName(pointer_value, AddrMap); } if (SymbolName) outs() << " " << SymbolName; outs() << "\n"; } } static void DumpRawSectionContents(MachOObjectFile *O, const char *sect, uint32_t size, uint64_t addr) { uint32_t cputype = O->getHeader().cputype; if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) { uint32_t j; for (uint32_t i = 0; i < size; i += j, addr += j) { if (O->is64Bit()) outs() << format("%016" PRIx64, addr) << "\t"; else outs() << format("%08" PRIx64, sect) << "\t"; for (j = 0; j < 16 && i + j < size; j++) { uint8_t byte_word = *(sect + i + j); outs() << format("%02" PRIx32, (uint32_t)byte_word) << " "; } outs() << "\n"; } } else { uint32_t j; for (uint32_t i = 0; i < size; i += j, addr += j) { if (O->is64Bit()) outs() << format("%016" PRIx64, addr) << "\t"; else outs() << format("%08" PRIx64, sect) << "\t"; for (j = 0; j < 4 * sizeof(int32_t) && i + j < size; j += sizeof(int32_t)) { if (i + j + sizeof(int32_t) < size) { uint32_t long_word; memcpy(&long_word, sect + i + j, sizeof(int32_t)); if (O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(long_word); outs() << format("%08" PRIx32, long_word) << " "; } else { for (uint32_t k = 0; i + j + k < size; k++) { uint8_t byte_word = *(sect + i + j); outs() << format("%02" PRIx32, (uint32_t)byte_word) << " "; } } } outs() << "\n"; } } } static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF, StringRef DisSegName, StringRef DisSectName); static void DumpSectionContents(StringRef Filename, MachOObjectFile *O, bool verbose) { SymbolAddressMap AddrMap; if (verbose) CreateSymbolAddressMap(O, &AddrMap); for (unsigned i = 0; i < DumpSections.size(); ++i) { StringRef DumpSection = DumpSections[i]; std::pair DumpSegSectName; DumpSegSectName = DumpSection.split(','); StringRef DumpSegName, DumpSectName; if (DumpSegSectName.second.size()) { DumpSegName = DumpSegSectName.first; DumpSectName = DumpSegSectName.second; } else { DumpSegName = ""; DumpSectName = DumpSegSectName.first; } for (const SectionRef &Section : O->sections()) { StringRef SectName; Section.getName(SectName); DataRefImpl Ref = Section.getRawDataRefImpl(); StringRef SegName = O->getSectionFinalSegmentName(Ref); if ((DumpSegName.empty() || SegName == DumpSegName) && (SectName == DumpSectName)) { outs() << "Contents of (" << SegName << "," << SectName << ") section\n"; uint32_t section_flags; if (O->is64Bit()) { const MachO::section_64 Sec = O->getSection64(Ref); section_flags = Sec.flags; } else { const MachO::section Sec = O->getSection(Ref); section_flags = Sec.flags; } uint32_t section_type = section_flags & MachO::SECTION_TYPE; StringRef BytesStr; Section.getContents(BytesStr); const char *sect = reinterpret_cast(BytesStr.data()); uint32_t sect_size = BytesStr.size(); uint64_t sect_addr = Section.getAddress(); if (verbose) { if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) || (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) { DisassembleMachO(Filename, O, SegName, SectName); continue; } switch (section_type) { case MachO::S_REGULAR: DumpRawSectionContents(O, sect, sect_size, sect_addr); break; case MachO::S_ZEROFILL: outs() << "zerofill section and has no contents in the file\n"; break; case MachO::S_CSTRING_LITERALS: DumpCstringSection(O, sect, sect_size, sect_addr, verbose); break; case MachO::S_4BYTE_LITERALS: DumpLiteral4Section(O, sect, sect_size, sect_addr, verbose); break; case MachO::S_8BYTE_LITERALS: DumpLiteral8Section(O, sect, sect_size, sect_addr, verbose); break; case MachO::S_16BYTE_LITERALS: DumpLiteral16Section(O, sect, sect_size, sect_addr, verbose); break; case MachO::S_LITERAL_POINTERS: DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr, verbose); break; case MachO::S_MOD_INIT_FUNC_POINTERS: case MachO::S_MOD_TERM_FUNC_POINTERS: DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap, verbose); break; default: outs() << "Unknown section type (" << format("0x%08" PRIx32, section_type) << ")\n"; DumpRawSectionContents(O, sect, sect_size, sect_addr); break; } } else { if (section_type == MachO::S_ZEROFILL) outs() << "zerofill section and has no contents in the file\n"; else DumpRawSectionContents(O, sect, sect_size, sect_addr); } } } } } // checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file // and if it is and there is a list of architecture flags is specified then // check to make sure this Mach-O file is one of those architectures or all // architectures were specified. If not then an error is generated and this // routine returns false. Else it returns true. static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) { if (isa(O) && !ArchAll && ArchFlags.size() != 0) { MachOObjectFile *MachO = dyn_cast(O); bool ArchFound = false; MachO::mach_header H; MachO::mach_header_64 H_64; Triple T; if (MachO->is64Bit()) { H_64 = MachO->MachOObjectFile::getHeader64(); T = MachOObjectFile::getArch(H_64.cputype, H_64.cpusubtype); } else { H = MachO->MachOObjectFile::getHeader(); T = MachOObjectFile::getArch(H.cputype, H.cpusubtype); } unsigned i; for (i = 0; i < ArchFlags.size(); ++i) { if (ArchFlags[i] == T.getArchName()) ArchFound = true; break; } if (!ArchFound) { errs() << "llvm-objdump: file: " + Filename + " does not contain " << "architecture: " + ArchFlags[i] + "\n"; return false; } } return true; } // ProcessMachO() is passed a single opened Mach-O file, which may be an // archive member and or in a slice of a universal file. It prints the // the file name and header info and then processes it according to the // command line options. static void ProcessMachO(StringRef Filename, MachOObjectFile *MachOOF, StringRef ArchiveMemberName = StringRef(), StringRef ArchitectureName = StringRef()) { // If we are doing some processing here on the Mach-O file print the header // info. And don't print it otherwise like in the case of printing the // UniversalHeaders or ArchiveHeaders. if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind || LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints || DumpSections.size() != 0) { outs() << Filename; if (!ArchiveMemberName.empty()) outs() << '(' << ArchiveMemberName << ')'; if (!ArchitectureName.empty()) outs() << " (architecture " << ArchitectureName << ")"; outs() << ":\n"; } if (Disassemble) DisassembleMachO(Filename, MachOOF, "__TEXT", "__text"); if (IndirectSymbols) PrintIndirectSymbols(MachOOF, true); if (DataInCode) PrintDataInCodeTable(MachOOF, true); if (LinkOptHints) PrintLinkOptHints(MachOOF); if (Relocations) PrintRelocations(MachOOF); if (SectionHeaders) PrintSectionHeaders(MachOOF); if (SectionContents) PrintSectionContents(MachOOF); if (DumpSections.size() != 0) DumpSectionContents(Filename, MachOOF, true); if (SymbolTable) PrintSymbolTable(MachOOF); if (UnwindInfo) printMachOUnwindInfo(MachOOF); if (PrivateHeaders) printMachOFileHeader(MachOOF); if (ExportsTrie) printExportsTrie(MachOOF); if (Rebase) printRebaseTable(MachOOF); if (Bind) printBindTable(MachOOF); if (LazyBind) printLazyBindTable(MachOOF); if (WeakBind) printWeakBindTable(MachOOF); } // printUnknownCPUType() helps print_fat_headers for unknown CPU's. static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) { outs() << " cputype (" << cputype << ")\n"; outs() << " cpusubtype (" << cpusubtype << ")\n"; } // printCPUType() helps print_fat_headers by printing the cputype and // pusubtype (symbolically for the one's it knows about). static void printCPUType(uint32_t cputype, uint32_t cpusubtype) { switch (cputype) { case MachO::CPU_TYPE_I386: switch (cpusubtype) { case MachO::CPU_SUBTYPE_I386_ALL: outs() << " cputype CPU_TYPE_I386\n"; outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n"; break; default: printUnknownCPUType(cputype, cpusubtype); break; } break; case MachO::CPU_TYPE_X86_64: switch (cpusubtype) { case MachO::CPU_SUBTYPE_X86_64_ALL: outs() << " cputype CPU_TYPE_X86_64\n"; outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n"; break; case MachO::CPU_SUBTYPE_X86_64_H: outs() << " cputype CPU_TYPE_X86_64\n"; outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n"; break; default: printUnknownCPUType(cputype, cpusubtype); break; } break; case MachO::CPU_TYPE_ARM: switch (cpusubtype) { case MachO::CPU_SUBTYPE_ARM_ALL: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n"; break; case MachO::CPU_SUBTYPE_ARM_V4T: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n"; break; case MachO::CPU_SUBTYPE_ARM_V5TEJ: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n"; break; case MachO::CPU_SUBTYPE_ARM_XSCALE: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n"; break; case MachO::CPU_SUBTYPE_ARM_V6: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n"; break; case MachO::CPU_SUBTYPE_ARM_V6M: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n"; break; case MachO::CPU_SUBTYPE_ARM_V7: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n"; break; case MachO::CPU_SUBTYPE_ARM_V7EM: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n"; break; case MachO::CPU_SUBTYPE_ARM_V7K: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n"; break; case MachO::CPU_SUBTYPE_ARM_V7M: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n"; break; case MachO::CPU_SUBTYPE_ARM_V7S: outs() << " cputype CPU_TYPE_ARM\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n"; break; default: printUnknownCPUType(cputype, cpusubtype); break; } break; case MachO::CPU_TYPE_ARM64: switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM64_ALL: outs() << " cputype CPU_TYPE_ARM64\n"; outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n"; break; default: printUnknownCPUType(cputype, cpusubtype); break; } break; default: printUnknownCPUType(cputype, cpusubtype); break; } } static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB, bool verbose) { outs() << "Fat headers\n"; if (verbose) outs() << "fat_magic FAT_MAGIC\n"; else outs() << "fat_magic " << format("0x%" PRIx32, MachO::FAT_MAGIC) << "\n"; uint32_t nfat_arch = UB->getNumberOfObjects(); StringRef Buf = UB->getData(); uint64_t size = Buf.size(); uint64_t big_size = sizeof(struct MachO::fat_header) + nfat_arch * sizeof(struct MachO::fat_arch); outs() << "nfat_arch " << UB->getNumberOfObjects(); if (nfat_arch == 0) outs() << " (malformed, contains zero architecture types)\n"; else if (big_size > size) outs() << " (malformed, architectures past end of file)\n"; else outs() << "\n"; for (uint32_t i = 0; i < nfat_arch; ++i) { MachOUniversalBinary::ObjectForArch OFA(UB, i); uint32_t cputype = OFA.getCPUType(); uint32_t cpusubtype = OFA.getCPUSubType(); outs() << "architecture "; for (uint32_t j = 0; i != 0 && j <= i - 1; j++) { MachOUniversalBinary::ObjectForArch other_OFA(UB, j); uint32_t other_cputype = other_OFA.getCPUType(); uint32_t other_cpusubtype = other_OFA.getCPUSubType(); if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype && (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) == (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) { outs() << "(illegal duplicate architecture) "; break; } } if (verbose) { outs() << OFA.getArchTypeName() << "\n"; printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK); } else { outs() << i << "\n"; outs() << " cputype " << cputype << "\n"; outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) << "\n"; } if (verbose && (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) outs() << " capabilities CPU_SUBTYPE_LIB64\n"; else outs() << " capabilities " << format("0x%" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n"; outs() << " offset " << OFA.getOffset(); if (OFA.getOffset() > size) outs() << " (past end of file)"; if (OFA.getOffset() % (1 << OFA.getAlign()) != 0) outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")"; outs() << "\n"; outs() << " size " << OFA.getSize(); big_size = OFA.getOffset() + OFA.getSize(); if (big_size > size) outs() << " (past end of file)"; outs() << "\n"; outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign()) << ")\n"; } } static void printArchiveChild(Archive::Child &C, bool verbose, bool print_offset) { if (print_offset) outs() << C.getChildOffset() << "\t"; sys::fs::perms Mode = C.getAccessMode(); if (verbose) { // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG. // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG. outs() << "-"; if (Mode & sys::fs::owner_read) outs() << "r"; else outs() << "-"; if (Mode & sys::fs::owner_write) outs() << "w"; else outs() << "-"; if (Mode & sys::fs::owner_exe) outs() << "x"; else outs() << "-"; if (Mode & sys::fs::group_read) outs() << "r"; else outs() << "-"; if (Mode & sys::fs::group_write) outs() << "w"; else outs() << "-"; if (Mode & sys::fs::group_exe) outs() << "x"; else outs() << "-"; if (Mode & sys::fs::others_read) outs() << "r"; else outs() << "-"; if (Mode & sys::fs::others_write) outs() << "w"; else outs() << "-"; if (Mode & sys::fs::others_exe) outs() << "x"; else outs() << "-"; } else { outs() << format("0%o ", Mode); } unsigned UID = C.getUID(); outs() << format("%3d/", UID); unsigned GID = C.getGID(); outs() << format("%-3d ", GID); uint64_t Size = C.getRawSize(); outs() << format("%5" PRId64, Size) << " "; StringRef RawLastModified = C.getRawLastModified(); if (verbose) { unsigned Seconds; if (RawLastModified.getAsInteger(10, Seconds)) outs() << "(date: \"%s\" contains non-decimal chars) " << RawLastModified; else { // Since cime(3) returns a 26 character string of the form: // "Sun Sep 16 01:03:52 1973\n\0" // just print 24 characters. time_t t = Seconds; outs() << format("%.24s ", ctime(&t)); } } else { outs() << RawLastModified << " "; } if (verbose) { ErrorOr NameOrErr = C.getName(); if (NameOrErr.getError()) { StringRef RawName = C.getRawName(); outs() << RawName << "\n"; } else { StringRef Name = NameOrErr.get(); outs() << Name << "\n"; } } else { StringRef RawName = C.getRawName(); outs() << RawName << "\n"; } } static void printArchiveHeaders(Archive *A, bool verbose, bool print_offset) { if (A->hasSymbolTable()) { Archive::child_iterator S = A->getSymbolTableChild(); Archive::Child C = *S; printArchiveChild(C, verbose, print_offset); } for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); I != E; ++I) { Archive::Child C = *I; printArchiveChild(C, verbose, print_offset); } } // ParseInputMachO() parses the named Mach-O file in Filename and handles the // -arch flags selecting just those slices as specified by them and also parses // archive files. Then for each individual Mach-O file ProcessMachO() is // called to process the file based on the command line options. void llvm::ParseInputMachO(StringRef Filename) { // Check for -arch all and verifiy the -arch flags are valid. for (unsigned i = 0; i < ArchFlags.size(); ++i) { if (ArchFlags[i] == "all") { ArchAll = true; } else { if (!MachOObjectFile::isValidArch(ArchFlags[i])) { errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] + "'for the -arch option\n"; return; } } } // Attempt to open the binary. ErrorOr> BinaryOrErr = createBinary(Filename); if (std::error_code EC = BinaryOrErr.getError()) { errs() << "llvm-objdump: '" << Filename << "': " << EC.message() << ".\n"; return; } Binary &Bin = *BinaryOrErr.get().getBinary(); if (Archive *A = dyn_cast(&Bin)) { outs() << "Archive : " << Filename << "\n"; if (ArchiveHeaders) printArchiveHeaders(A, true, false); for (Archive::child_iterator I = A->child_begin(), E = A->child_end(); I != E; ++I) { ErrorOr> ChildOrErr = I->getAsBinary(); if (ChildOrErr.getError()) continue; if (MachOObjectFile *O = dyn_cast(&*ChildOrErr.get())) { if (!checkMachOAndArchFlags(O, Filename)) return; ProcessMachO(Filename, O, O->getFileName()); } } return; } if (UniversalHeaders) { if (MachOUniversalBinary *UB = dyn_cast(&Bin)) printMachOUniversalHeaders(UB, true); } if (MachOUniversalBinary *UB = dyn_cast(&Bin)) { // If we have a list of architecture flags specified dump only those. if (!ArchAll && ArchFlags.size() != 0) { // Look for a slice in the universal binary that matches each ArchFlag. bool ArchFound; for (unsigned i = 0; i < ArchFlags.size(); ++i) { ArchFound = false; for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), E = UB->end_objects(); I != E; ++I) { if (ArchFlags[i] == I->getArchTypeName()) { ArchFound = true; ErrorOr> ObjOrErr = I->getAsObjectFile(); std::string ArchitectureName = ""; if (ArchFlags.size() > 1) ArchitectureName = I->getArchTypeName(); if (ObjOrErr) { ObjectFile &O = *ObjOrErr.get(); if (MachOObjectFile *MachOOF = dyn_cast(&O)) ProcessMachO(Filename, MachOOF, "", ArchitectureName); } else if (ErrorOr> AOrErr = I->getAsArchive()) { std::unique_ptr &A = *AOrErr; outs() << "Archive : " << Filename; if (!ArchitectureName.empty()) outs() << " (architecture " << ArchitectureName << ")"; outs() << "\n"; if (ArchiveHeaders) printArchiveHeaders(A.get(), true, false); for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end(); AI != AE; ++AI) { ErrorOr> ChildOrErr = AI->getAsBinary(); if (ChildOrErr.getError()) continue; if (MachOObjectFile *O = dyn_cast(&*ChildOrErr.get())) ProcessMachO(Filename, O, O->getFileName(), ArchitectureName); } } } } if (!ArchFound) { errs() << "llvm-objdump: file: " + Filename + " does not contain " << "architecture: " + ArchFlags[i] + "\n"; return; } } return; } // No architecture flags were specified so if this contains a slice that // matches the host architecture dump only that. if (!ArchAll) { for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), E = UB->end_objects(); I != E; ++I) { if (MachOObjectFile::getHostArch().getArchName() == I->getArchTypeName()) { ErrorOr> ObjOrErr = I->getAsObjectFile(); std::string ArchiveName; ArchiveName.clear(); if (ObjOrErr) { ObjectFile &O = *ObjOrErr.get(); if (MachOObjectFile *MachOOF = dyn_cast(&O)) ProcessMachO(Filename, MachOOF); } else if (ErrorOr> AOrErr = I->getAsArchive()) { std::unique_ptr &A = *AOrErr; outs() << "Archive : " << Filename << "\n"; if (ArchiveHeaders) printArchiveHeaders(A.get(), true, false); for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end(); AI != AE; ++AI) { ErrorOr> ChildOrErr = AI->getAsBinary(); if (ChildOrErr.getError()) continue; if (MachOObjectFile *O = dyn_cast(&*ChildOrErr.get())) ProcessMachO(Filename, O, O->getFileName()); } } return; } } } // Either all architectures have been specified or none have been specified // and this does not contain the host architecture so dump all the slices. bool moreThanOneArch = UB->getNumberOfObjects() > 1; for (MachOUniversalBinary::object_iterator I = UB->begin_objects(), E = UB->end_objects(); I != E; ++I) { ErrorOr> ObjOrErr = I->getAsObjectFile(); std::string ArchitectureName = ""; if (moreThanOneArch) ArchitectureName = I->getArchTypeName(); if (ObjOrErr) { ObjectFile &Obj = *ObjOrErr.get(); if (MachOObjectFile *MachOOF = dyn_cast(&Obj)) ProcessMachO(Filename, MachOOF, "", ArchitectureName); } else if (ErrorOr> AOrErr = I->getAsArchive()) { std::unique_ptr &A = *AOrErr; outs() << "Archive : " << Filename; if (!ArchitectureName.empty()) outs() << " (architecture " << ArchitectureName << ")"; outs() << "\n"; if (ArchiveHeaders) printArchiveHeaders(A.get(), true, false); for (Archive::child_iterator AI = A->child_begin(), AE = A->child_end(); AI != AE; ++AI) { ErrorOr> ChildOrErr = AI->getAsBinary(); if (ChildOrErr.getError()) continue; if (MachOObjectFile *O = dyn_cast(&*ChildOrErr.get())) { if (MachOObjectFile *MachOOF = dyn_cast(O)) ProcessMachO(Filename, MachOOF, MachOOF->getFileName(), ArchitectureName); } } } } return; } if (ObjectFile *O = dyn_cast(&Bin)) { if (!checkMachOAndArchFlags(O, Filename)) return; if (MachOObjectFile *MachOOF = dyn_cast(&*O)) { ProcessMachO(Filename, MachOOF); } else errs() << "llvm-objdump: '" << Filename << "': " << "Object is not a Mach-O file type.\n"; } else errs() << "llvm-objdump: '" << Filename << "': " << "Unrecognized file type.\n"; } typedef std::pair BindInfoEntry; typedef std::vector BindTable; typedef BindTable::iterator bind_table_iterator; // The block of info used by the Symbolizer call backs. struct DisassembleInfo { bool verbose; MachOObjectFile *O; SectionRef S; SymbolAddressMap *AddrMap; std::vector *Sections; const char *class_name; const char *selector_name; char *method; char *demangled_name; uint64_t adrp_addr; uint32_t adrp_inst; BindTable *bindtable; }; // SymbolizerGetOpInfo() is the operand information call back function. // This is called to get the symbolic information for operand(s) of an // instruction when it is being done. This routine does this from // the relocation information, symbol table, etc. That block of information // is a pointer to the struct DisassembleInfo that was passed when the // disassembler context was created and passed to back to here when // called back by the disassembler for instruction operands that could have // relocation information. The address of the instruction containing operand is // at the Pc parameter. The immediate value the operand has is passed in // op_info->Value and is at Offset past the start of the instruction and has a // byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the // LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol // names and addends of the symbolic expression to add for the operand. The // value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic // information is returned then this function returns 1 else it returns 0. int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset, uint64_t Size, int TagType, void *TagBuf) { struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf; uint64_t value = op_info->Value; // Make sure all fields returned are zero if we don't set them. memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1)); op_info->Value = value; // If the TagType is not the value 1 which it code knows about or if no // verbose symbolic information is wanted then just return 0, indicating no // information is being returned. if (TagType != 1 || info->verbose == false) return 0; unsigned int Arch = info->O->getArch(); if (Arch == Triple::x86) { if (Size != 1 && Size != 2 && Size != 4 && Size != 0) return 0; // First search the section's relocation entries (if any) for an entry // for this section offset. uint32_t sect_addr = info->S.getAddress(); uint32_t sect_offset = (Pc + Offset) - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; bool r_scattered = false; uint32_t r_value, pair_r_value, r_type; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); r_type = info->O->getAnyRelocationType(RE); r_scattered = info->O->isRelocationScattered(RE); if (r_scattered) { r_value = info->O->getScatteredRelocationValue(RE); if (r_type == MachO::GENERIC_RELOC_SECTDIFF || r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) { DataRefImpl RelNext = Rel; info->O->moveRelocationNext(RelNext); MachO::any_relocation_info RENext; RENext = info->O->getRelocation(RelNext); if (info->O->isRelocationScattered(RENext)) pair_r_value = info->O->getScatteredRelocationValue(RENext); else return 0; } } else { isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } } reloc_found = true; break; } } if (reloc_found && isExtern) { StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); op_info->AddSymbol.Present = 1; op_info->AddSymbol.Name = name; // For i386 extern relocation entries the value in the instruction is // the offset from the symbol, and value is already set in op_info->Value. return 1; } if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF || r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) { const char *add = GuessSymbolName(r_value, info->AddrMap); const char *sub = GuessSymbolName(pair_r_value, info->AddrMap); uint32_t offset = value - (r_value - pair_r_value); op_info->AddSymbol.Present = 1; if (add != nullptr) op_info->AddSymbol.Name = add; else op_info->AddSymbol.Value = r_value; op_info->SubtractSymbol.Present = 1; if (sub != nullptr) op_info->SubtractSymbol.Name = sub; else op_info->SubtractSymbol.Value = pair_r_value; op_info->Value = offset; return 1; } // TODO: // Second search the external relocation entries of a fully linked image // (if any) for an entry that matches this segment offset. // uint32_t seg_offset = (Pc + Offset); return 0; } else if (Arch == Triple::x86_64) { if (Size != 1 && Size != 2 && Size != 4 && Size != 0) return 0; // First search the section's relocation entries (if any) for an entry // for this section offset. uint64_t sect_addr = info->S.getAddress(); uint64_t sect_offset = (Pc + Offset) - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); // NOTE: Scattered relocations don't exist on x86_64. isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } if (reloc_found && isExtern) { // The Value passed in will be adjusted by the Pc if the instruction // adds the Pc. But for x86_64 external relocation entries the Value // is the offset from the external symbol. if (info->O->getAnyRelocationPCRel(RE)) op_info->Value -= Pc + Offset + Size; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); unsigned Type = info->O->getAnyRelocationType(RE); if (Type == MachO::X86_64_RELOC_SUBTRACTOR) { DataRefImpl RelNext = Rel; info->O->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = info->O->getRelocation(RelNext); unsigned TypeNext = info->O->getAnyRelocationType(RENext); bool isExternNext = info->O->getPlainRelocationExternal(RENext); unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext); if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) { op_info->SubtractSymbol.Present = 1; op_info->SubtractSymbol.Name = name; symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum); Symbol = *RelocSymNext; StringRef SymNameNext; Symbol.getName(SymNameNext); name = SymNameNext.data(); } } // TODO: add the VariantKinds to op_info->VariantKind for relocation types // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT. op_info->AddSymbol.Present = 1; op_info->AddSymbol.Name = name; return 1; } // TODO: // Second search the external relocation entries of a fully linked image // (if any) for an entry that matches this segment offset. // uint64_t seg_offset = (Pc + Offset); return 0; } else if (Arch == Triple::arm) { if (Offset != 0 || (Size != 4 && Size != 2)) return 0; // First search the section's relocation entries (if any) for an entry // for this section offset. uint32_t sect_addr = info->S.getAddress(); uint32_t sect_offset = (Pc + Offset) - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; bool r_scattered = false; uint32_t r_value, pair_r_value, r_type, r_length, other_half; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); r_length = info->O->getAnyRelocationLength(RE); r_scattered = info->O->isRelocationScattered(RE); if (r_scattered) { r_value = info->O->getScatteredRelocationValue(RE); r_type = info->O->getScatteredRelocationType(RE); } else { r_type = info->O->getAnyRelocationType(RE); isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } } if (r_type == MachO::ARM_RELOC_HALF || r_type == MachO::ARM_RELOC_SECTDIFF || r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF || r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { DataRefImpl RelNext = Rel; info->O->moveRelocationNext(RelNext); MachO::any_relocation_info RENext; RENext = info->O->getRelocation(RelNext); other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff; if (info->O->isRelocationScattered(RENext)) pair_r_value = info->O->getScatteredRelocationValue(RENext); } reloc_found = true; break; } } if (reloc_found && isExtern) { StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); op_info->AddSymbol.Present = 1; op_info->AddSymbol.Name = name; switch (r_type) { case MachO::ARM_RELOC_HALF: if ((r_length & 0x1) == 1) { op_info->Value = value << 16 | other_half; op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; } else { op_info->Value = other_half << 16 | value; op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; } break; default: break; } return 1; } // If we have a branch that is not an external relocation entry then // return 0 so the code in tryAddingSymbolicOperand() can use the // SymbolLookUp call back with the branch target address to look up the // symbol and possiblity add an annotation for a symbol stub. if (reloc_found && isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 || r_type == MachO::ARM_THUMB_RELOC_BR22)) return 0; uint32_t offset = 0; if (reloc_found) { if (r_type == MachO::ARM_RELOC_HALF || r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { if ((r_length & 0x1) == 1) value = value << 16 | other_half; else value = other_half << 16 | value; } if (r_scattered && (r_type != MachO::ARM_RELOC_HALF && r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) { offset = value - r_value; value = r_value; } } if (reloc_found && r_type == MachO::ARM_RELOC_HALF_SECTDIFF) { if ((r_length & 0x1) == 1) op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; else op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; const char *add = GuessSymbolName(r_value, info->AddrMap); const char *sub = GuessSymbolName(pair_r_value, info->AddrMap); int32_t offset = value - (r_value - pair_r_value); op_info->AddSymbol.Present = 1; if (add != nullptr) op_info->AddSymbol.Name = add; else op_info->AddSymbol.Value = r_value; op_info->SubtractSymbol.Present = 1; if (sub != nullptr) op_info->SubtractSymbol.Name = sub; else op_info->SubtractSymbol.Value = pair_r_value; op_info->Value = offset; return 1; } if (reloc_found == false) return 0; op_info->AddSymbol.Present = 1; op_info->Value = offset; if (reloc_found) { if (r_type == MachO::ARM_RELOC_HALF) { if ((r_length & 0x1) == 1) op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI16; else op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO16; } } const char *add = GuessSymbolName(value, info->AddrMap); if (add != nullptr) { op_info->AddSymbol.Name = add; return 1; } op_info->AddSymbol.Value = value; return 1; } else if (Arch == Triple::aarch64) { if (Offset != 0 || Size != 4) return 0; // First search the section's relocation entries (if any) for an entry // for this section offset. uint64_t sect_addr = info->S.getAddress(); uint64_t sect_offset = (Pc + Offset) - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; uint32_t r_type = 0; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); r_type = info->O->getAnyRelocationType(RE); if (r_type == MachO::ARM64_RELOC_ADDEND) { DataRefImpl RelNext = Rel; info->O->moveRelocationNext(RelNext); MachO::any_relocation_info RENext = info->O->getRelocation(RelNext); if (value == 0) { value = info->O->getPlainRelocationSymbolNum(RENext); op_info->Value = value; } } // NOTE: Scattered relocations don't exist on arm64. isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } if (reloc_found && isExtern) { StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); op_info->AddSymbol.Present = 1; op_info->AddSymbol.Name = name; switch (r_type) { case MachO::ARM64_RELOC_PAGE21: /* @page */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE; break; case MachO::ARM64_RELOC_PAGEOFF12: /* @pageoff */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF; break; case MachO::ARM64_RELOC_GOT_LOAD_PAGE21: /* @gotpage */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE; break; case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12: /* @gotpageoff */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF; break; case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21: /* @tvlppage is not implemented in llvm-mc */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP; break; case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12: /* @tvlppageoff is not implemented in llvm-mc */ op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF; break; default: case MachO::ARM64_RELOC_BRANCH26: op_info->VariantKind = LLVMDisassembler_VariantKind_None; break; } return 1; } return 0; } else { return 0; } } // GuessCstringPointer is passed the address of what might be a pointer to a // literal string in a cstring section. If that address is in a cstring section // it returns a pointer to that string. Else it returns nullptr. const char *GuessCstringPointer(uint64_t ReferenceValue, struct DisassembleInfo *info) { uint32_t LoadCommandCount = info->O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = info->O->getSection64(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_CSTRING_LITERALS && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint64_t sect_offset = ReferenceValue - Sec.addr; uint64_t object_offset = Sec.offset + sect_offset; StringRef MachOContents = info->O->getData(); uint64_t object_size = MachOContents.size(); const char *object_addr = (const char *)MachOContents.data(); if (object_offset < object_size) { const char *name = object_addr + object_offset; return name; } else { return nullptr; } } } } else if (Load.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section Sec = info->O->getSection(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if (section_type == MachO::S_CSTRING_LITERALS && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint64_t sect_offset = ReferenceValue - Sec.addr; uint64_t object_offset = Sec.offset + sect_offset; StringRef MachOContents = info->O->getData(); uint64_t object_size = MachOContents.size(); const char *object_addr = (const char *)MachOContents.data(); if (object_offset < object_size) { const char *name = object_addr + object_offset; return name; } else { return nullptr; } } } } if (I == LoadCommandCount - 1) break; else Load = info->O->getNextLoadCommandInfo(Load); } return nullptr; } // GuessIndirectSymbol returns the name of the indirect symbol for the // ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe // an address of a symbol stub or a lazy or non-lazy pointer to associate the // symbol name being referenced by the stub or pointer. static const char *GuessIndirectSymbol(uint64_t ReferenceValue, struct DisassembleInfo *info) { uint32_t LoadCommandCount = info->O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand(); MachO::symtab_command Symtab = info->O->getSymtabLoadCommand(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = info->O->getSection64(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 8; if (stride == 0) return nullptr; uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; if (index < Dysymtab.nindirectsyms) { uint32_t indirect_symbol = info->O->getIndirectSymbolTableEntry(Dysymtab, index); if (indirect_symbol < Symtab.nsyms) { symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); SymbolRef Symbol = *Sym; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); return name; } } } } } else if (Load.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section Sec = info->O->getSection(Load, J); uint32_t section_type = Sec.flags & MachO::SECTION_TYPE; if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS || section_type == MachO::S_SYMBOL_STUBS) && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint32_t stride; if (section_type == MachO::S_SYMBOL_STUBS) stride = Sec.reserved2; else stride = 4; if (stride == 0) return nullptr; uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride; if (index < Dysymtab.nindirectsyms) { uint32_t indirect_symbol = info->O->getIndirectSymbolTableEntry(Dysymtab, index); if (indirect_symbol < Symtab.nsyms) { symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol); SymbolRef Symbol = *Sym; StringRef SymName; Symbol.getName(SymName); const char *name = SymName.data(); return name; } } } } } if (I == LoadCommandCount - 1) break; else Load = info->O->getNextLoadCommandInfo(Load); } return nullptr; } // method_reference() is called passing it the ReferenceName that might be // a reference it to an Objective-C method call. If so then it allocates and // assembles a method call string with the values last seen and saved in // the DisassembleInfo's class_name and selector_name fields. This is saved // into the method field of the info and any previous string is free'ed. // Then the class_name field in the info is set to nullptr. The method call // string is set into ReferenceName and ReferenceType is set to // LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call // then both ReferenceType and ReferenceName are left unchanged. static void method_reference(struct DisassembleInfo *info, uint64_t *ReferenceType, const char **ReferenceName) { unsigned int Arch = info->O->getArch(); if (*ReferenceName != nullptr) { if (strcmp(*ReferenceName, "_objc_msgSend") == 0) { if (info->selector_name != nullptr) { if (info->method != nullptr) free(info->method); if (info->class_name != nullptr) { info->method = (char *)malloc(5 + strlen(info->class_name) + strlen(info->selector_name)); if (info->method != nullptr) { strcpy(info->method, "+["); strcat(info->method, info->class_name); strcat(info->method, " "); strcat(info->method, info->selector_name); strcat(info->method, "]"); *ReferenceName = info->method; *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; } } else { info->method = (char *)malloc(9 + strlen(info->selector_name)); if (info->method != nullptr) { if (Arch == Triple::x86_64) strcpy(info->method, "-[%rdi "); else if (Arch == Triple::aarch64) strcpy(info->method, "-[x0 "); else strcpy(info->method, "-[r? "); strcat(info->method, info->selector_name); strcat(info->method, "]"); *ReferenceName = info->method; *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; } } info->class_name = nullptr; } } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) { if (info->selector_name != nullptr) { if (info->method != nullptr) free(info->method); info->method = (char *)malloc(17 + strlen(info->selector_name)); if (info->method != nullptr) { if (Arch == Triple::x86_64) strcpy(info->method, "-[[%rdi super] "); else if (Arch == Triple::aarch64) strcpy(info->method, "-[[x0 super] "); else strcpy(info->method, "-[[r? super] "); strcat(info->method, info->selector_name); strcat(info->method, "]"); *ReferenceName = info->method; *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message; } info->class_name = nullptr; } } } } // GuessPointerPointer() is passed the address of what might be a pointer to // a reference to an Objective-C class, selector, message ref or cfstring. // If so the value of the pointer is returned and one of the booleans are set // to true. If not zero is returned and all the booleans are set to false. static uint64_t GuessPointerPointer(uint64_t ReferenceValue, struct DisassembleInfo *info, bool &classref, bool &selref, bool &msgref, bool &cfstring) { classref = false; selref = false; msgref = false; cfstring = false; uint32_t LoadCommandCount = info->O->getHeader().ncmds; MachOObjectFile::LoadCommandInfo Load = info->O->getFirstLoadCommandInfo(); for (unsigned I = 0;; ++I) { if (Load.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load); for (unsigned J = 0; J < Seg.nsects; ++J) { MachO::section_64 Sec = info->O->getSection64(Load, J); if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 || strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 || strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 || strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 || strncmp(Sec.sectname, "__cfstring", 16) == 0) && ReferenceValue >= Sec.addr && ReferenceValue < Sec.addr + Sec.size) { uint64_t sect_offset = ReferenceValue - Sec.addr; uint64_t object_offset = Sec.offset + sect_offset; StringRef MachOContents = info->O->getData(); uint64_t object_size = MachOContents.size(); const char *object_addr = (const char *)MachOContents.data(); if (object_offset < object_size) { uint64_t pointer_value; memcpy(&pointer_value, object_addr + object_offset, sizeof(uint64_t)); if (info->O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(pointer_value); if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0) selref = true; else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 || strncmp(Sec.sectname, "__objc_superrefs", 16) == 0) classref = true; else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 && ReferenceValue + 8 < Sec.addr + Sec.size) { msgref = true; memcpy(&pointer_value, object_addr + object_offset + 8, sizeof(uint64_t)); if (info->O->isLittleEndian() != sys::IsLittleEndianHost) sys::swapByteOrder(pointer_value); } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0) cfstring = true; return pointer_value; } else { return 0; } } } } // TODO: Look for LC_SEGMENT for 32-bit Mach-O files. if (I == LoadCommandCount - 1) break; else Load = info->O->getNextLoadCommandInfo(Load); } return 0; } // get_pointer_64 returns a pointer to the bytes in the object file at the // Address from a section in the Mach-O file. And indirectly returns the // offset into the section, number of bytes left in the section past the offset // and which section is was being referenced. If the Address is not in a // section nullptr is returned. const char *get_pointer_64(uint64_t Address, uint32_t &offset, uint32_t &left, SectionRef &S, DisassembleInfo *info) { offset = 0; left = 0; S = SectionRef(); for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) { uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress(); uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize(); if (Address >= SectAddress && Address < SectAddress + SectSize) { S = (*(info->Sections))[SectIdx]; offset = Address - SectAddress; left = SectSize - offset; StringRef SectContents; ((*(info->Sections))[SectIdx]).getContents(SectContents); return SectContents.data() + offset; } } return nullptr; } // get_symbol_64() returns the name of a symbol (or nullptr) and the address of // the symbol indirectly through n_value. Based on the relocation information // for the specified section offset in the specified section reference. const char *get_symbol_64(uint32_t sect_offset, SectionRef S, DisassembleInfo *info, uint64_t &n_value) { n_value = 0; if (info->verbose == false) return nullptr; // See if there is an external relocation entry at the sect_offset. bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; for (const RelocationRef &Reloc : S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); if (info->O->isRelocationScattered(RE)) continue; isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } // If there is an external relocation entry for a symbol in this section // at this section_offset then use that symbol's value for the n_value // and return its name. const char *SymbolName = nullptr; if (reloc_found && isExtern) { Symbol.getAddress(n_value); StringRef name; Symbol.getName(name); if (!name.empty()) { SymbolName = name.data(); return SymbolName; } } // TODO: For fully linked images, look through the external relocation // entries off the dynamic symtab command. For these the r_offset is from the // start of the first writeable segment in the Mach-O file. So the offset // to this section from that segment is passed to this routine by the caller, // as the database_offset. Which is the difference of the section's starting // address and the first writable segment. // // NOTE: need add passing the database_offset to this routine. // TODO: We did not find an external relocation entry so look up the // ReferenceValue as an address of a symbol and if found return that symbol's // name. // // NOTE: need add passing the ReferenceValue to this routine. Then that code // would simply be this: // SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap); return SymbolName; } // These are structs in the Objective-C meta data and read to produce the // comments for disassembly. While these are part of the ABI they are no // public defintions. So the are here not in include/llvm/Support/MachO.h . // The cfstring object in a 64-bit Mach-O file. struct cfstring64_t { uint64_t isa; // class64_t * (64-bit pointer) uint64_t flags; // flag bits uint64_t characters; // char * (64-bit pointer) uint64_t length; // number of non-NULL characters in above }; // The class object in a 64-bit Mach-O file. struct class64_t { uint64_t isa; // class64_t * (64-bit pointer) uint64_t superclass; // class64_t * (64-bit pointer) uint64_t cache; // Cache (64-bit pointer) uint64_t vtable; // IMP * (64-bit pointer) uint64_t data; // class_ro64_t * (64-bit pointer) }; struct class_ro64_t { uint32_t flags; uint32_t instanceStart; uint32_t instanceSize; uint32_t reserved; uint64_t ivarLayout; // const uint8_t * (64-bit pointer) uint64_t name; // const char * (64-bit pointer) uint64_t baseMethods; // const method_list_t * (64-bit pointer) uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer) uint64_t ivars; // const ivar_list_t * (64-bit pointer) uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer) uint64_t baseProperties; // const struct objc_property_list (64-bit pointer) }; inline void swapStruct(struct cfstring64_t &cfs) { sys::swapByteOrder(cfs.isa); sys::swapByteOrder(cfs.flags); sys::swapByteOrder(cfs.characters); sys::swapByteOrder(cfs.length); } inline void swapStruct(struct class64_t &c) { sys::swapByteOrder(c.isa); sys::swapByteOrder(c.superclass); sys::swapByteOrder(c.cache); sys::swapByteOrder(c.vtable); sys::swapByteOrder(c.data); } inline void swapStruct(struct class_ro64_t &cro) { sys::swapByteOrder(cro.flags); sys::swapByteOrder(cro.instanceStart); sys::swapByteOrder(cro.instanceSize); sys::swapByteOrder(cro.reserved); sys::swapByteOrder(cro.ivarLayout); sys::swapByteOrder(cro.name); sys::swapByteOrder(cro.baseMethods); sys::swapByteOrder(cro.baseProtocols); sys::swapByteOrder(cro.ivars); sys::swapByteOrder(cro.weakIvarLayout); sys::swapByteOrder(cro.baseProperties); } static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue, struct DisassembleInfo *info); // get_objc2_64bit_class_name() is used for disassembly and is passed a pointer // to an Objective-C class and returns the class name. It is also passed the // address of the pointer, so when the pointer is zero as it can be in an .o // file, that is used to look for an external relocation entry with a symbol // name. const char *get_objc2_64bit_class_name(uint64_t pointer_value, uint64_t ReferenceValue, struct DisassembleInfo *info) { const char *r; uint32_t offset, left; SectionRef S; // The pointer_value can be 0 in an object file and have a relocation // entry for the class symbol at the ReferenceValue (the address of the // pointer). if (pointer_value == 0) { r = get_pointer_64(ReferenceValue, offset, left, S, info); if (r == nullptr || left < sizeof(uint64_t)) return nullptr; uint64_t n_value; const char *symbol_name = get_symbol_64(offset, S, info, n_value); if (symbol_name == nullptr) return nullptr; const char *class_name = strrchr(symbol_name, '$'); if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0') return class_name + 2; else return nullptr; } // The case were the pointer_value is non-zero and points to a class defined // in this Mach-O file. r = get_pointer_64(pointer_value, offset, left, S, info); if (r == nullptr || left < sizeof(struct class64_t)) return nullptr; struct class64_t c; memcpy(&c, r, sizeof(struct class64_t)); if (info->O->isLittleEndian() != sys::IsLittleEndianHost) swapStruct(c); if (c.data == 0) return nullptr; r = get_pointer_64(c.data, offset, left, S, info); if (r == nullptr || left < sizeof(struct class_ro64_t)) return nullptr; struct class_ro64_t cro; memcpy(&cro, r, sizeof(struct class_ro64_t)); if (info->O->isLittleEndian() != sys::IsLittleEndianHost) swapStruct(cro); if (cro.name == 0) return nullptr; const char *name = get_pointer_64(cro.name, offset, left, S, info); return name; } // get_objc2_64bit_cfstring_name is used for disassembly and is passed a // pointer to a cfstring and returns its name or nullptr. const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue, struct DisassembleInfo *info) { const char *r, *name; uint32_t offset, left; SectionRef S; struct cfstring64_t cfs; uint64_t cfs_characters; r = get_pointer_64(ReferenceValue, offset, left, S, info); if (r == nullptr || left < sizeof(struct cfstring64_t)) return nullptr; memcpy(&cfs, r, sizeof(struct cfstring64_t)); if (info->O->isLittleEndian() != sys::IsLittleEndianHost) swapStruct(cfs); if (cfs.characters == 0) { uint64_t n_value; const char *symbol_name = get_symbol_64( offset + offsetof(struct cfstring64_t, characters), S, info, n_value); if (symbol_name == nullptr) return nullptr; cfs_characters = n_value; } else cfs_characters = cfs.characters; name = get_pointer_64(cfs_characters, offset, left, S, info); return name; } // get_objc2_64bit_selref() is used for disassembly and is passed a the address // of a pointer to an Objective-C selector reference when the pointer value is // zero as in a .o file and is likely to have a external relocation entry with // who's symbol's n_value is the real pointer to the selector name. If that is // the case the real pointer to the selector name is returned else 0 is // returned uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue, struct DisassembleInfo *info) { uint32_t offset, left; SectionRef S; const char *r = get_pointer_64(ReferenceValue, offset, left, S, info); if (r == nullptr || left < sizeof(uint64_t)) return 0; uint64_t n_value; const char *symbol_name = get_symbol_64(offset, S, info, n_value); if (symbol_name == nullptr) return 0; return n_value; } // GuessLiteralPointer returns a string which for the item in the Mach-O file // for the address passed in as ReferenceValue for printing as a comment with // the instruction and also returns the corresponding type of that item // indirectly through ReferenceType. // // If ReferenceValue is an address of literal cstring then a pointer to the // cstring is returned and ReferenceType is set to // LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr . // // If ReferenceValue is an address of an Objective-C CFString, Selector ref or // Class ref that name is returned and the ReferenceType is set accordingly. // // Lastly, literals which are Symbol address in a literal pool are looked for // and if found the symbol name is returned and ReferenceType is set to // LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr . // // If there is no item in the Mach-O file for the address passed in as // ReferenceValue nullptr is returned and ReferenceType is unchanged. const char *GuessLiteralPointer(uint64_t ReferenceValue, uint64_t ReferencePC, uint64_t *ReferenceType, struct DisassembleInfo *info) { // First see if there is an external relocation entry at the ReferencePC. uint64_t sect_addr = info->S.getAddress(); uint64_t sect_offset = ReferencePC - sect_addr; bool reloc_found = false; DataRefImpl Rel; MachO::any_relocation_info RE; bool isExtern = false; SymbolRef Symbol; for (const RelocationRef &Reloc : info->S.relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); if (RelocOffset == sect_offset) { Rel = Reloc.getRawDataRefImpl(); RE = info->O->getRelocation(Rel); if (info->O->isRelocationScattered(RE)) continue; isExtern = info->O->getPlainRelocationExternal(RE); if (isExtern) { symbol_iterator RelocSym = Reloc.getSymbol(); Symbol = *RelocSym; } reloc_found = true; break; } } // If there is an external relocation entry for a symbol in a section // then used that symbol's value for the value of the reference. if (reloc_found && isExtern) { if (info->O->getAnyRelocationPCRel(RE)) { unsigned Type = info->O->getAnyRelocationType(RE); if (Type == MachO::X86_64_RELOC_SIGNED) { Symbol.getAddress(ReferenceValue); } } } // Look for literals such as Objective-C CFStrings refs, Selector refs, // Message refs and Class refs. bool classref, selref, msgref, cfstring; uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref, selref, msgref, cfstring); if (classref == true && pointer_value == 0) { // Note the ReferenceValue is a pointer into the __objc_classrefs section. // And the pointer_value in that section is typically zero as it will be // set by dyld as part of the "bind information". const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info); if (name != nullptr) { *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref; const char *class_name = strrchr(name, '$'); if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0') { info->class_name = class_name + 2; return name; } } } if (classref == true) { *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref; const char *name = get_objc2_64bit_class_name(pointer_value, ReferenceValue, info); if (name != nullptr) info->class_name = name; else name = "bad class ref"; return name; } if (cfstring == true) { *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref; const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info); return name; } if (selref == true && pointer_value == 0) pointer_value = get_objc2_64bit_selref(ReferenceValue, info); if (pointer_value != 0) ReferenceValue = pointer_value; const char *name = GuessCstringPointer(ReferenceValue, info); if (name) { if (pointer_value != 0 && selref == true) { *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref; info->selector_name = name; } else if (pointer_value != 0 && msgref == true) { info->class_name = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref; info->selector_name = name; } else *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr; return name; } // Lastly look for an indirect symbol with this ReferenceValue which is in // a literal pool. If found return that symbol name. name = GuessIndirectSymbol(ReferenceValue, info); if (name) { *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr; return name; } return nullptr; } // SymbolizerSymbolLookUp is the symbol lookup function passed when creating // the Symbolizer. It looks up the ReferenceValue using the info passed via the // pointer to the struct DisassembleInfo that was passed when MCSymbolizer // is created and returns the symbol name that matches the ReferenceValue or // nullptr if none. The ReferenceType is passed in for the IN type of // reference the instruction is making from the values in defined in the header // "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific // Out type and the ReferenceName will also be set which is added as a comment // to the disassembled instruction. // #if HAVE_CXXABI_H // If the symbol name is a C++ mangled name then the demangled name is // returned through ReferenceName and ReferenceType is set to // LLVMDisassembler_ReferenceType_DeMangled_Name . #endif // // When this is called to get a symbol name for a branch target then the // ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then // SymbolValue will be looked for in the indirect symbol table to determine if // it is an address for a symbol stub. If so then the symbol name for that // stub is returned indirectly through ReferenceName and then ReferenceType is // set to LLVMDisassembler_ReferenceType_Out_SymbolStub. // // When this is called with an value loaded via a PC relative load then // ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the // SymbolValue is checked to be an address of literal pointer, symbol pointer, // or an Objective-C meta data reference. If so the output ReferenceType is // set to correspond to that as well as setting the ReferenceName. const char *SymbolizerSymbolLookUp(void *DisInfo, uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName) { struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo; // If no verbose symbolic information is wanted then just return nullptr. if (info->verbose == false) { *ReferenceName = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; return nullptr; } const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap); if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch) { *ReferenceName = GuessIndirectSymbol(ReferenceValue, info); if (*ReferenceName != nullptr) { method_reference(info, ReferenceType, ReferenceName); if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message) *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub; } else #if HAVE_CXXABI_H if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) { if (info->demangled_name != nullptr) free(info->demangled_name); int status; info->demangled_name = abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status); if (info->demangled_name != nullptr) { *ReferenceName = info->demangled_name; *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name; } else *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } else #endif *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load) { *ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); if (*ReferenceName) method_reference(info, ReferenceType, ReferenceName); else *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; // If this is arm64 and the reference is an adrp instruction save the // instruction, passed in ReferenceValue and the address of the instruction // for use later if we see and add immediate instruction. } else if (info->O->getArch() == Triple::aarch64 && *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) { info->adrp_inst = ReferenceValue; info->adrp_addr = ReferencePC; SymbolName = nullptr; *ReferenceName = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; // If this is arm64 and reference is an add immediate instruction and we // have // seen an adrp instruction just before it and the adrp's Xd register // matches // this add's Xn register reconstruct the value being referenced and look to // see if it is a literal pointer. Note the add immediate instruction is // passed in ReferenceValue. } else if (info->O->getArch() == Triple::aarch64 && *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri && ReferencePC - 4 == info->adrp_addr && (info->adrp_inst & 0x9f000000) == 0x90000000 && (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) { uint32_t addxri_inst; uint64_t adrp_imm, addxri_imm; adrp_imm = ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3); if (info->adrp_inst & 0x0200000) adrp_imm |= 0xfffffffffc000000LL; addxri_inst = ReferenceValue; addxri_imm = (addxri_inst >> 10) & 0xfff; if (((addxri_inst >> 22) & 0x3) == 1) addxri_imm <<= 12; ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) + (adrp_imm << 12) + addxri_imm; *ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); if (*ReferenceName == nullptr) *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; // If this is arm64 and the reference is a load register instruction and we // have seen an adrp instruction just before it and the adrp's Xd register // matches this add's Xn register reconstruct the value being referenced and // look to see if it is a literal pointer. Note the load register // instruction is passed in ReferenceValue. } else if (info->O->getArch() == Triple::aarch64 && *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui && ReferencePC - 4 == info->adrp_addr && (info->adrp_inst & 0x9f000000) == 0x90000000 && (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) { uint32_t ldrxui_inst; uint64_t adrp_imm, ldrxui_imm; adrp_imm = ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3); if (info->adrp_inst & 0x0200000) adrp_imm |= 0xfffffffffc000000LL; ldrxui_inst = ReferenceValue; ldrxui_imm = (ldrxui_inst >> 10) & 0xfff; ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) + (adrp_imm << 12) + (ldrxui_imm << 3); *ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); if (*ReferenceName == nullptr) *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } // If this arm64 and is an load register (PC-relative) instruction the // ReferenceValue is the PC plus the immediate value. else if (info->O->getArch() == Triple::aarch64 && (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl || *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR)) { *ReferenceName = GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info); if (*ReferenceName == nullptr) *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } #if HAVE_CXXABI_H else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) { if (info->demangled_name != nullptr) free(info->demangled_name); int status; info->demangled_name = abi::__cxa_demangle(SymbolName + 1, nullptr, nullptr, &status); if (info->demangled_name != nullptr) { *ReferenceName = info->demangled_name; *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name; } } #endif else { *ReferenceName = nullptr; *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; } return SymbolName; } /// \brief Emits the comments that are stored in the CommentStream. /// Each comment in the CommentStream must end with a newline. static void emitComments(raw_svector_ostream &CommentStream, SmallString<128> &CommentsToEmit, formatted_raw_ostream &FormattedOS, const MCAsmInfo &MAI) { // Flush the stream before taking its content. CommentStream.flush(); StringRef Comments = CommentsToEmit.str(); // Get the default information for printing a comment. const char *CommentBegin = MAI.getCommentString(); unsigned CommentColumn = MAI.getCommentColumn(); bool IsFirst = true; while (!Comments.empty()) { if (!IsFirst) FormattedOS << '\n'; // Emit a line of comments. FormattedOS.PadToColumn(CommentColumn); size_t Position = Comments.find('\n'); FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position); // Move after the newline character. Comments = Comments.substr(Position + 1); IsFirst = false; } FormattedOS.flush(); // Tell the comment stream that the vector changed underneath it. CommentsToEmit.clear(); CommentStream.resync(); } static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF, StringRef DisSegName, StringRef DisSectName) { const char *McpuDefault = nullptr; const Target *ThumbTarget = nullptr; const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget); if (!TheTarget) { // GetTarget prints out stuff. return; } if (MCPU.empty() && McpuDefault) MCPU = McpuDefault; std::unique_ptr InstrInfo(TheTarget->createMCInstrInfo()); std::unique_ptr ThumbInstrInfo; if (ThumbTarget) ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo()); // Package up features to be passed to target/subtarget std::string FeaturesStr; if (MAttrs.size()) { SubtargetFeatures Features; for (unsigned i = 0; i != MAttrs.size(); ++i) Features.AddFeature(MAttrs[i]); FeaturesStr = Features.getString(); } // Set up disassembler. std::unique_ptr MRI( TheTarget->createMCRegInfo(TripleName)); std::unique_ptr AsmInfo( TheTarget->createMCAsmInfo(*MRI, TripleName)); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr)); MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr); std::unique_ptr DisAsm( TheTarget->createMCDisassembler(*STI, Ctx)); std::unique_ptr Symbolizer; struct DisassembleInfo SymbolizerInfo; std::unique_ptr RelInfo( TheTarget->createMCRelocationInfo(TripleName, Ctx)); if (RelInfo) { Symbolizer.reset(TheTarget->createMCSymbolizer( TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp, &SymbolizerInfo, &Ctx, std::move(RelInfo))); DisAsm->setSymbolizer(std::move(Symbolizer)); } int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); std::unique_ptr IP(TheTarget->createMCInstPrinter( AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI)); // Set the display preference for hex vs. decimal immediates. IP->setPrintImmHex(PrintImmHex); // Comment stream and backing vector. SmallString<128> CommentsToEmit; raw_svector_ostream CommentStream(CommentsToEmit); // FIXME: Setting the CommentStream in the InstPrinter is problematic in that // if it is done then arm64 comments for string literals don't get printed // and some constant get printed instead and not setting it causes intel // (32-bit and 64-bit) comments printed with different spacing before the // comment causing different diffs with the 'C' disassembler library API. // IP->setCommentStream(CommentStream); if (!AsmInfo || !STI || !DisAsm || !IP) { errs() << "error: couldn't initialize disassembler for target " << TripleName << '\n'; return; } // Set up thumb disassembler. std::unique_ptr ThumbMRI; std::unique_ptr ThumbAsmInfo; std::unique_ptr ThumbSTI; std::unique_ptr ThumbDisAsm; std::unique_ptr ThumbIP; std::unique_ptr ThumbCtx; std::unique_ptr ThumbSymbolizer; struct DisassembleInfo ThumbSymbolizerInfo; std::unique_ptr ThumbRelInfo; if (ThumbTarget) { ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName)); ThumbAsmInfo.reset( ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName)); ThumbSTI.reset( ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr)); ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr)); ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx)); MCContext *PtrThumbCtx = ThumbCtx.get(); ThumbRelInfo.reset( ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx)); if (ThumbRelInfo) { ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer( ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp, &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo))); ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer)); } int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect(); ThumbIP.reset(ThumbTarget->createMCInstPrinter( ThumbAsmPrinterVariant, *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI, *ThumbSTI)); // Set the display preference for hex vs. decimal immediates. ThumbIP->setPrintImmHex(PrintImmHex); } if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) { errs() << "error: couldn't initialize disassembler for target " << ThumbTripleName << '\n'; return; } MachO::mach_header Header = MachOOF->getHeader(); // FIXME: Using the -cfg command line option, this code used to be able to // annotate relocations with the referenced symbol's name, and if this was // inside a __[cf]string section, the data it points to. This is now replaced // by the upcoming MCSymbolizer, which needs the appropriate setup done above. std::vector Sections; std::vector Symbols; SmallVector FoundFns; uint64_t BaseSegmentAddress; getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns, BaseSegmentAddress); // Sort the symbols by address, just in case they didn't come in that way. std::sort(Symbols.begin(), Symbols.end(), SymbolSorter()); // Build a data in code table that is sorted on by the address of each entry. uint64_t BaseAddress = 0; if (Header.filetype == MachO::MH_OBJECT) BaseAddress = Sections[0].getAddress(); else BaseAddress = BaseSegmentAddress; DiceTable Dices; for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices(); DI != DE; ++DI) { uint32_t Offset; DI->getOffset(Offset); Dices.push_back(std::make_pair(BaseAddress + Offset, *DI)); } array_pod_sort(Dices.begin(), Dices.end()); #ifndef NDEBUG raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls(); #else raw_ostream &DebugOut = nulls(); #endif std::unique_ptr diContext; ObjectFile *DbgObj = MachOOF; // Try to find debug info and set up the DIContext for it. if (UseDbg) { // A separate DSym file path was specified, parse it as a macho file, // get the sections and supply it to the section name parsing machinery. if (!DSYMFile.empty()) { ErrorOr> BufOrErr = MemoryBuffer::getFileOrSTDIN(DSYMFile); if (std::error_code EC = BufOrErr.getError()) { errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n'; return; } DbgObj = ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef()) .get() .release(); } // Setup the DIContext diContext.reset(DIContext::getDWARFContext(*DbgObj)); } if (DumpSections.size() == 0) outs() << "(" << DisSegName << "," << DisSectName << ") section\n"; for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) { StringRef SectName; if (Sections[SectIdx].getName(SectName) || SectName != DisSectName) continue; DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl(); StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR); if (SegmentName != DisSegName) continue; StringRef BytesStr; Sections[SectIdx].getContents(BytesStr); ArrayRef Bytes(reinterpret_cast(BytesStr.data()), BytesStr.size()); uint64_t SectAddress = Sections[SectIdx].getAddress(); bool symbolTableWorked = false; // Parse relocations. std::vector> Relocs; for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) { uint64_t RelocOffset; Reloc.getOffset(RelocOffset); uint64_t SectionAddress = Sections[SectIdx].getAddress(); RelocOffset -= SectionAddress; symbol_iterator RelocSym = Reloc.getSymbol(); Relocs.push_back(std::make_pair(RelocOffset, *RelocSym)); } array_pod_sort(Relocs.begin(), Relocs.end()); // Create a map of symbol addresses to symbol names for use by // the SymbolizerSymbolLookUp() routine. SymbolAddressMap AddrMap; for (const SymbolRef &Symbol : MachOOF->symbols()) { SymbolRef::Type ST; Symbol.getType(ST); if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data || ST == SymbolRef::ST_Other) { uint64_t Address; Symbol.getAddress(Address); StringRef SymName; Symbol.getName(SymName); AddrMap[Address] = SymName; } } // Set up the block of info used by the Symbolizer call backs. SymbolizerInfo.verbose = true; SymbolizerInfo.O = MachOOF; SymbolizerInfo.S = Sections[SectIdx]; SymbolizerInfo.AddrMap = &AddrMap; SymbolizerInfo.Sections = &Sections; SymbolizerInfo.class_name = nullptr; SymbolizerInfo.selector_name = nullptr; SymbolizerInfo.method = nullptr; SymbolizerInfo.demangled_name = nullptr; SymbolizerInfo.bindtable = nullptr; SymbolizerInfo.adrp_addr = 0; SymbolizerInfo.adrp_inst = 0; // Same for the ThumbSymbolizer ThumbSymbolizerInfo.verbose = true; ThumbSymbolizerInfo.O = MachOOF; ThumbSymbolizerInfo.S = Sections[SectIdx]; ThumbSymbolizerInfo.AddrMap = &AddrMap; ThumbSymbolizerInfo.Sections = &Sections; ThumbSymbolizerInfo.class_name = nullptr; ThumbSymbolizerInfo.selector_name = nullptr; ThumbSymbolizerInfo.method = nullptr; ThumbSymbolizerInfo.demangled_name = nullptr; ThumbSymbolizerInfo.bindtable = nullptr; ThumbSymbolizerInfo.adrp_addr = 0; ThumbSymbolizerInfo.adrp_inst = 0; // Disassemble symbol by symbol. for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) { StringRef SymName; Symbols[SymIdx].getName(SymName); SymbolRef::Type ST; Symbols[SymIdx].getType(ST); if (ST != SymbolRef::ST_Function) continue; // Make sure the symbol is defined in this section. bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]); if (!containsSym) continue; // Start at the address of the symbol relative to the section's address. uint64_t Start = 0; uint64_t SectionAddress = Sections[SectIdx].getAddress(); Symbols[SymIdx].getAddress(Start); Start -= SectionAddress; // Stop disassembling either at the beginning of the next symbol or at // the end of the section. bool containsNextSym = false; uint64_t NextSym = 0; uint64_t NextSymIdx = SymIdx + 1; while (Symbols.size() > NextSymIdx) { SymbolRef::Type NextSymType; Symbols[NextSymIdx].getType(NextSymType); if (NextSymType == SymbolRef::ST_Function) { containsNextSym = Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]); Symbols[NextSymIdx].getAddress(NextSym); NextSym -= SectionAddress; break; } ++NextSymIdx; } uint64_t SectSize = Sections[SectIdx].getSize(); uint64_t End = containsNextSym ? NextSym : SectSize; uint64_t Size; symbolTableWorked = true; DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl(); bool isThumb = (MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb) && ThumbTarget; outs() << SymName << ":\n"; DILineInfo lastLine; for (uint64_t Index = Start; Index < End; Index += Size) { MCInst Inst; uint64_t PC = SectAddress + Index; if (FullLeadingAddr) { if (MachOOF->is64Bit()) outs() << format("%016" PRIx64, PC); else outs() << format("%08" PRIx64, PC); } else { outs() << format("%8" PRIx64 ":", PC); } if (!NoShowRawInsn) outs() << "\t"; // Check the data in code table here to see if this is data not an // instruction to be disassembled. DiceTable Dice; Dice.push_back(std::make_pair(PC, DiceRef())); dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(), compareDiceTableEntries); if (DTI != Dices.end()) { uint16_t Length; DTI->second.getLength(Length); uint16_t Kind; DTI->second.getKind(Kind); Size = DumpDataInCode(reinterpret_cast(Bytes.data()) + Index, Length, Kind); if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) && (PC == (DTI->first + Length - 1)) && (Length & 1)) Size++; continue; } SmallVector AnnotationsBytes; raw_svector_ostream Annotations(AnnotationsBytes); bool gotInst; if (isThumb) gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC, DebugOut, Annotations); else gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC, DebugOut, Annotations); if (gotInst) { if (!NoShowRawInsn) { DumpBytes(StringRef( reinterpret_cast(Bytes.data()) + Index, Size)); } formatted_raw_ostream FormattedOS(outs()); Annotations.flush(); StringRef AnnotationsStr = Annotations.str(); if (isThumb) ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr); else IP->printInst(&Inst, FormattedOS, AnnotationsStr); emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo); // Print debug info. if (diContext) { DILineInfo dli = diContext->getLineInfoForAddress(PC); // Print valid line info if it changed. if (dli != lastLine && dli.Line != 0) outs() << "\t## " << dli.FileName << ':' << dli.Line << ':' << dli.Column; lastLine = dli; } outs() << "\n"; } else { unsigned int Arch = MachOOF->getArch(); if (Arch == Triple::x86_64 || Arch == Triple::x86) { outs() << format("\t.byte 0x%02x #bad opcode\n", *(Bytes.data() + Index) & 0xff); Size = 1; // skip exactly one illegible byte and move on. } else if (Arch == Triple::aarch64) { uint32_t opcode = (*(Bytes.data() + Index) & 0xff) | (*(Bytes.data() + Index + 1) & 0xff) << 8 | (*(Bytes.data() + Index + 2) & 0xff) << 16 | (*(Bytes.data() + Index + 3) & 0xff) << 24; outs() << format("\t.long\t0x%08x\n", opcode); Size = 4; } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (Size == 0) Size = 1; // skip illegible bytes } } } } if (!symbolTableWorked) { // Reading the symbol table didn't work, disassemble the whole section. uint64_t SectAddress = Sections[SectIdx].getAddress(); uint64_t SectSize = Sections[SectIdx].getSize(); uint64_t InstSize; for (uint64_t Index = 0; Index < SectSize; Index += InstSize) { MCInst Inst; uint64_t PC = SectAddress + Index; if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC, DebugOut, nulls())) { if (FullLeadingAddr) { if (MachOOF->is64Bit()) outs() << format("%016" PRIx64, PC); else outs() << format("%08" PRIx64, PC); } else { outs() << format("%8" PRIx64 ":", PC); } if (!NoShowRawInsn) { outs() << "\t"; DumpBytes( StringRef(reinterpret_cast(Bytes.data()) + Index, InstSize)); } IP->printInst(&Inst, outs(), ""); outs() << "\n"; } else { unsigned int Arch = MachOOF->getArch(); if (Arch == Triple::x86_64 || Arch == Triple::x86) { outs() << format("\t.byte 0x%02x #bad opcode\n", *(Bytes.data() + Index) & 0xff); InstSize = 1; // skip exactly one illegible byte and move on. } else { errs() << "llvm-objdump: warning: invalid instruction encoding\n"; if (InstSize == 0) InstSize = 1; // skip illegible bytes } } } } // The TripleName's need to be reset if we are called again for a different // archtecture. TripleName = ""; ThumbTripleName = ""; if (SymbolizerInfo.method != nullptr) free(SymbolizerInfo.method); if (SymbolizerInfo.demangled_name != nullptr) free(SymbolizerInfo.demangled_name); if (SymbolizerInfo.bindtable != nullptr) delete SymbolizerInfo.bindtable; if (ThumbSymbolizerInfo.method != nullptr) free(ThumbSymbolizerInfo.method); if (ThumbSymbolizerInfo.demangled_name != nullptr) free(ThumbSymbolizerInfo.demangled_name); if (ThumbSymbolizerInfo.bindtable != nullptr) delete ThumbSymbolizerInfo.bindtable; } } //===----------------------------------------------------------------------===// // __compact_unwind section dumping //===----------------------------------------------------------------------===// namespace { template static uint64_t readNext(const char *&Buf) { using llvm::support::little; using llvm::support::unaligned; uint64_t Val = support::endian::read(Buf); Buf += sizeof(T); return Val; } struct CompactUnwindEntry { uint32_t OffsetInSection; uint64_t FunctionAddr; uint32_t Length; uint32_t CompactEncoding; uint64_t PersonalityAddr; uint64_t LSDAAddr; RelocationRef FunctionReloc; RelocationRef PersonalityReloc; RelocationRef LSDAReloc; CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64) : OffsetInSection(Offset) { if (Is64) read(Contents.data() + Offset); else read(Contents.data() + Offset); } private: template void read(const char *Buf) { FunctionAddr = readNext(Buf); Length = readNext(Buf); CompactEncoding = readNext(Buf); PersonalityAddr = readNext(Buf); LSDAAddr = readNext(Buf); } }; } /// Given a relocation from __compact_unwind, consisting of the RelocationRef /// and data being relocated, determine the best base Name and Addend to use for /// display purposes. /// /// 1. An Extern relocation will directly reference a symbol (and the data is /// then already an addend), so use that. /// 2. Otherwise the data is an offset in the object file's layout; try to find // a symbol before it in the same section, and use the offset from there. /// 3. Finally, if all that fails, fall back to an offset from the start of the /// referenced section. static void findUnwindRelocNameAddend(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr, StringRef &Name, uint64_t &Addend) { if (Reloc.getSymbol() != Obj->symbol_end()) { Reloc.getSymbol()->getName(Name); Addend = Addr; return; } auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl()); SectionRef RelocSection = Obj->getRelocationSection(RE); uint64_t SectionAddr = RelocSection.getAddress(); auto Sym = Symbols.upper_bound(Addr); if (Sym == Symbols.begin()) { // The first symbol in the object is after this reference, the best we can // do is section-relative notation. RelocSection.getName(Name); Addend = Addr - SectionAddr; return; } // Go back one so that SymbolAddress <= Addr. --Sym; section_iterator SymSection = Obj->section_end(); Sym->second.getSection(SymSection); if (RelocSection == *SymSection) { // There's a valid symbol in the same section before this reference. Sym->second.getName(Name); Addend = Addr - Sym->first; return; } // There is a symbol before this reference, but it's in a different // section. Probably not helpful to mention it, so use the section name. RelocSection.getName(Name); Addend = Addr - SectionAddr; } static void printUnwindRelocDest(const MachOObjectFile *Obj, std::map &Symbols, const RelocationRef &Reloc, uint64_t Addr) { StringRef Name; uint64_t Addend; if (!Reloc.getObjectFile()) return; findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend); outs() << Name; if (Addend) outs() << " + " << format("0x%" PRIx64, Addend); } static void printMachOCompactUnwindSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &CompactUnwind) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __compact_unwind"); bool Is64 = Obj->is64Bit(); uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t); uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t); StringRef Contents; CompactUnwind.getContents(Contents); SmallVector CompactUnwinds; // First populate the initial raw offsets, encodings and so on from the entry. for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) { CompactUnwindEntry Entry(Contents.data(), Offset, Is64); CompactUnwinds.push_back(Entry); } // Next we need to look at the relocations to find out what objects are // actually being referred to. for (const RelocationRef &Reloc : CompactUnwind.relocations()) { uint64_t RelocAddress; Reloc.getOffset(RelocAddress); uint32_t EntryIdx = RelocAddress / EntrySize; uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize; CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx]; if (OffsetInEntry == 0) Entry.FunctionReloc = Reloc; else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t)) Entry.PersonalityReloc = Reloc; else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t)) Entry.LSDAReloc = Reloc; else llvm_unreachable("Unexpected relocation in __compact_unwind section"); } // Finally, we're ready to print the data we've gathered. outs() << "Contents of __compact_unwind section:\n"; for (auto &Entry : CompactUnwinds) { outs() << " Entry at offset " << format("0x%" PRIx32, Entry.OffsetInSection) << ":\n"; // 1. Start of the region this entry applies to. outs() << " start: " << format("0x%" PRIx64, Entry.FunctionAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr); outs() << '\n'; // 2. Length of the region this entry applies to. outs() << " length: " << format("0x%" PRIx32, Entry.Length) << '\n'; // 3. The 32-bit compact encoding. outs() << " compact encoding: " << format("0x%08" PRIx32, Entry.CompactEncoding) << '\n'; // 4. The personality function, if present. if (Entry.PersonalityReloc.getObjectFile()) { outs() << " personality function: " << format("0x%" PRIx64, Entry.PersonalityAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc, Entry.PersonalityAddr); outs() << '\n'; } // 5. This entry's language-specific data area. if (Entry.LSDAReloc.getObjectFile()) { outs() << " LSDA: " << format("0x%" PRIx64, Entry.LSDAAddr) << ' '; printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr); outs() << '\n'; } } } //===----------------------------------------------------------------------===// // __unwind_info section dumping //===----------------------------------------------------------------------===// static void printRegularSecondLevelUnwindPage(const char *PageStart) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 2 && "kind for a regular 2nd level index should be 2"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t Encoding = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printCompressedSecondLevelUnwindPage( const char *PageStart, uint32_t FunctionBase, const SmallVectorImpl &CommonEncodings) { const char *Pos = PageStart; uint32_t Kind = readNext(Pos); (void)Kind; assert(Kind == 3 && "kind for a compressed 2nd level index should be 3"); uint16_t EntriesStart = readNext(Pos); uint16_t NumEntries = readNext(Pos); uint16_t EncodingsStart = readNext(Pos); readNext(Pos); const auto *PageEncodings = reinterpret_cast( PageStart + EncodingsStart); Pos = PageStart + EntriesStart; for (unsigned i = 0; i < NumEntries; ++i) { uint32_t Entry = readNext(Pos); uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff); uint32_t EncodingIdx = Entry >> 24; uint32_t Encoding; if (EncodingIdx < CommonEncodings.size()) Encoding = CommonEncodings[EncodingIdx]; else Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()]; outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "encoding[" << EncodingIdx << "]=" << format("0x%08" PRIx32, Encoding) << '\n'; } } static void printMachOUnwindInfoSection(const MachOObjectFile *Obj, std::map &Symbols, const SectionRef &UnwindInfo) { assert(Obj->isLittleEndian() && "There should not be a big-endian .o with __unwind_info"); outs() << "Contents of __unwind_info section:\n"; StringRef Contents; UnwindInfo.getContents(Contents); const char *Pos = Contents.data(); //===---------------------------------- // Section header //===---------------------------------- uint32_t Version = readNext(Pos); outs() << " Version: " << format("0x%" PRIx32, Version) << '\n'; assert(Version == 1 && "only understand version 1"); uint32_t CommonEncodingsStart = readNext(Pos); outs() << " Common encodings array section offset: " << format("0x%" PRIx32, CommonEncodingsStart) << '\n'; uint32_t NumCommonEncodings = readNext(Pos); outs() << " Number of common encodings in array: " << format("0x%" PRIx32, NumCommonEncodings) << '\n'; uint32_t PersonalitiesStart = readNext(Pos); outs() << " Personality function array section offset: " << format("0x%" PRIx32, PersonalitiesStart) << '\n'; uint32_t NumPersonalities = readNext(Pos); outs() << " Number of personality functions in array: " << format("0x%" PRIx32, NumPersonalities) << '\n'; uint32_t IndicesStart = readNext(Pos); outs() << " Index array section offset: " << format("0x%" PRIx32, IndicesStart) << '\n'; uint32_t NumIndices = readNext(Pos); outs() << " Number of indices in array: " << format("0x%" PRIx32, NumIndices) << '\n'; //===---------------------------------- // A shared list of common encodings //===---------------------------------- // These occupy indices in the range [0, N] whenever an encoding is referenced // from a compressed 2nd level index table. In practice the linker only // creates ~128 of these, so that indices are available to embed encodings in // the 2nd level index. SmallVector CommonEncodings; outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n"; Pos = Contents.data() + CommonEncodingsStart; for (unsigned i = 0; i < NumCommonEncodings; ++i) { uint32_t Encoding = readNext(Pos); CommonEncodings.push_back(Encoding); outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32, Encoding) << '\n'; } //===---------------------------------- // Personality functions used in this executable //===---------------------------------- // There should be only a handful of these (one per source language, // roughly). Particularly since they only get 2 bits in the compact encoding. outs() << " Personality functions: (count = " << NumPersonalities << ")\n"; Pos = Contents.data() + PersonalitiesStart; for (unsigned i = 0; i < NumPersonalities; ++i) { uint32_t PersonalityFn = readNext(Pos); outs() << " personality[" << i + 1 << "]: " << format("0x%08" PRIx32, PersonalityFn) << '\n'; } //===---------------------------------- // The level 1 index entries //===---------------------------------- // These specify an approximate place to start searching for the more detailed // information, sorted by PC. struct IndexEntry { uint32_t FunctionOffset; uint32_t SecondLevelPageStart; uint32_t LSDAStart; }; SmallVector IndexEntries; outs() << " Top level indices: (count = " << NumIndices << ")\n"; Pos = Contents.data() + IndicesStart; for (unsigned i = 0; i < NumIndices; ++i) { IndexEntry Entry; Entry.FunctionOffset = readNext(Pos); Entry.SecondLevelPageStart = readNext(Pos); Entry.LSDAStart = readNext(Pos); IndexEntries.push_back(Entry); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, Entry.FunctionOffset) << ", " << "2nd level page offset=" << format("0x%08" PRIx32, Entry.SecondLevelPageStart) << ", " << "LSDA offset=" << format("0x%08" PRIx32, Entry.LSDAStart) << '\n'; } //===---------------------------------- // Next come the LSDA tables //===---------------------------------- // The LSDA layout is rather implicit: it's a contiguous array of entries from // the first top-level index's LSDAOffset to the last (sentinel). outs() << " LSDA descriptors:\n"; Pos = Contents.data() + IndexEntries[0].LSDAStart; int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) / (2 * sizeof(uint32_t)); for (int i = 0; i < NumLSDAs; ++i) { uint32_t FunctionOffset = readNext(Pos); uint32_t LSDAOffset = readNext(Pos); outs() << " [" << i << "]: " << "function offset=" << format("0x%08" PRIx32, FunctionOffset) << ", " << "LSDA offset=" << format("0x%08" PRIx32, LSDAOffset) << '\n'; } //===---------------------------------- // Finally, the 2nd level indices //===---------------------------------- // Generally these are 4K in size, and have 2 possible forms: // + Regular stores up to 511 entries with disparate encodings // + Compressed stores up to 1021 entries if few enough compact encoding // values are used. outs() << " Second level indices:\n"; for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) { // The final sentinel top-level index has no associated 2nd level page if (IndexEntries[i].SecondLevelPageStart == 0) break; outs() << " Second level index[" << i << "]: " << "offset in section=" << format("0x%08" PRIx32, IndexEntries[i].SecondLevelPageStart) << ", " << "base function offset=" << format("0x%08" PRIx32, IndexEntries[i].FunctionOffset) << '\n'; Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart; uint32_t Kind = *reinterpret_cast(Pos); if (Kind == 2) printRegularSecondLevelUnwindPage(Pos); else if (Kind == 3) printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset, CommonEncodings); else llvm_unreachable("Do not know how to print this kind of 2nd level page"); } } void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) { std::map Symbols; for (const SymbolRef &SymRef : Obj->symbols()) { // Discard any undefined or absolute symbols. They're not going to take part // in the convenience lookup for unwind info and just take up resources. section_iterator Section = Obj->section_end(); SymRef.getSection(Section); if (Section == Obj->section_end()) continue; uint64_t Addr; SymRef.getAddress(Addr); Symbols.insert(std::make_pair(Addr, SymRef)); } for (const SectionRef &Section : Obj->sections()) { StringRef SectName; Section.getName(SectName); if (SectName == "__compact_unwind") printMachOCompactUnwindSection(Obj, Symbols, Section); else if (SectName == "__unwind_info") printMachOUnwindInfoSection(Obj, Symbols, Section); else if (SectName == "__eh_frame") outs() << "llvm-objdump: warning: unhandled __eh_frame section\n"; } } static void PrintMachHeader(uint32_t magic, uint32_t cputype, uint32_t cpusubtype, uint32_t filetype, uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags, bool verbose) { outs() << "Mach header\n"; outs() << " magic cputype cpusubtype caps filetype ncmds " "sizeofcmds flags\n"; if (verbose) { if (magic == MachO::MH_MAGIC) outs() << " MH_MAGIC"; else if (magic == MachO::MH_MAGIC_64) outs() << "MH_MAGIC_64"; else outs() << format(" 0x%08" PRIx32, magic); switch (cputype) { case MachO::CPU_TYPE_I386: outs() << " I386"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_I386_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_X86_64: outs() << " X86_64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_X86_64_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_X86_64_H: outs() << " Haswell"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_ARM: outs() << " ARM"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM_ALL: outs() << " ALL"; break; case MachO::CPU_SUBTYPE_ARM_V4T: outs() << " V4T"; break; case MachO::CPU_SUBTYPE_ARM_V5TEJ: outs() << " V5TEJ"; break; case MachO::CPU_SUBTYPE_ARM_XSCALE: outs() << " XSCALE"; break; case MachO::CPU_SUBTYPE_ARM_V6: outs() << " V6"; break; case MachO::CPU_SUBTYPE_ARM_V6M: outs() << " V6M"; break; case MachO::CPU_SUBTYPE_ARM_V7: outs() << " V7"; break; case MachO::CPU_SUBTYPE_ARM_V7EM: outs() << " V7EM"; break; case MachO::CPU_SUBTYPE_ARM_V7K: outs() << " V7K"; break; case MachO::CPU_SUBTYPE_ARM_V7M: outs() << " V7M"; break; case MachO::CPU_SUBTYPE_ARM_V7S: outs() << " V7S"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_ARM64: outs() << " ARM64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_ARM64_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC: outs() << " PPC"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; case MachO::CPU_TYPE_POWERPC64: outs() << " PPC64"; switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) { case MachO::CPU_SUBTYPE_POWERPC_ALL: outs() << " ALL"; break; default: outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); break; } break; } if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) { outs() << " LIB64"; } else { outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); } switch (filetype) { case MachO::MH_OBJECT: outs() << " OBJECT"; break; case MachO::MH_EXECUTE: outs() << " EXECUTE"; break; case MachO::MH_FVMLIB: outs() << " FVMLIB"; break; case MachO::MH_CORE: outs() << " CORE"; break; case MachO::MH_PRELOAD: outs() << " PRELOAD"; break; case MachO::MH_DYLIB: outs() << " DYLIB"; break; case MachO::MH_DYLIB_STUB: outs() << " DYLIB_STUB"; break; case MachO::MH_DYLINKER: outs() << " DYLINKER"; break; case MachO::MH_BUNDLE: outs() << " BUNDLE"; break; case MachO::MH_DSYM: outs() << " DSYM"; break; case MachO::MH_KEXT_BUNDLE: outs() << " KEXTBUNDLE"; break; default: outs() << format(" %10u", filetype); break; } outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); uint32_t f = flags; if (f & MachO::MH_NOUNDEFS) { outs() << " NOUNDEFS"; f &= ~MachO::MH_NOUNDEFS; } if (f & MachO::MH_INCRLINK) { outs() << " INCRLINK"; f &= ~MachO::MH_INCRLINK; } if (f & MachO::MH_DYLDLINK) { outs() << " DYLDLINK"; f &= ~MachO::MH_DYLDLINK; } if (f & MachO::MH_BINDATLOAD) { outs() << " BINDATLOAD"; f &= ~MachO::MH_BINDATLOAD; } if (f & MachO::MH_PREBOUND) { outs() << " PREBOUND"; f &= ~MachO::MH_PREBOUND; } if (f & MachO::MH_SPLIT_SEGS) { outs() << " SPLIT_SEGS"; f &= ~MachO::MH_SPLIT_SEGS; } if (f & MachO::MH_LAZY_INIT) { outs() << " LAZY_INIT"; f &= ~MachO::MH_LAZY_INIT; } if (f & MachO::MH_TWOLEVEL) { outs() << " TWOLEVEL"; f &= ~MachO::MH_TWOLEVEL; } if (f & MachO::MH_FORCE_FLAT) { outs() << " FORCE_FLAT"; f &= ~MachO::MH_FORCE_FLAT; } if (f & MachO::MH_NOMULTIDEFS) { outs() << " NOMULTIDEFS"; f &= ~MachO::MH_NOMULTIDEFS; } if (f & MachO::MH_NOFIXPREBINDING) { outs() << " NOFIXPREBINDING"; f &= ~MachO::MH_NOFIXPREBINDING; } if (f & MachO::MH_PREBINDABLE) { outs() << " PREBINDABLE"; f &= ~MachO::MH_PREBINDABLE; } if (f & MachO::MH_ALLMODSBOUND) { outs() << " ALLMODSBOUND"; f &= ~MachO::MH_ALLMODSBOUND; } if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) { outs() << " SUBSECTIONS_VIA_SYMBOLS"; f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS; } if (f & MachO::MH_CANONICAL) { outs() << " CANONICAL"; f &= ~MachO::MH_CANONICAL; } if (f & MachO::MH_WEAK_DEFINES) { outs() << " WEAK_DEFINES"; f &= ~MachO::MH_WEAK_DEFINES; } if (f & MachO::MH_BINDS_TO_WEAK) { outs() << " BINDS_TO_WEAK"; f &= ~MachO::MH_BINDS_TO_WEAK; } if (f & MachO::MH_ALLOW_STACK_EXECUTION) { outs() << " ALLOW_STACK_EXECUTION"; f &= ~MachO::MH_ALLOW_STACK_EXECUTION; } if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) { outs() << " DEAD_STRIPPABLE_DYLIB"; f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB; } if (f & MachO::MH_PIE) { outs() << " PIE"; f &= ~MachO::MH_PIE; } if (f & MachO::MH_NO_REEXPORTED_DYLIBS) { outs() << " NO_REEXPORTED_DYLIBS"; f &= ~MachO::MH_NO_REEXPORTED_DYLIBS; } if (f & MachO::MH_HAS_TLV_DESCRIPTORS) { outs() << " MH_HAS_TLV_DESCRIPTORS"; f &= ~MachO::MH_HAS_TLV_DESCRIPTORS; } if (f & MachO::MH_NO_HEAP_EXECUTION) { outs() << " MH_NO_HEAP_EXECUTION"; f &= ~MachO::MH_NO_HEAP_EXECUTION; } if (f & MachO::MH_APP_EXTENSION_SAFE) { outs() << " APP_EXTENSION_SAFE"; f &= ~MachO::MH_APP_EXTENSION_SAFE; } if (f != 0 || flags == 0) outs() << format(" 0x%08" PRIx32, f); } else { outs() << format(" 0x%08" PRIx32, magic); outs() << format(" %7d", cputype); outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK); outs() << format(" 0x%02" PRIx32, (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24); outs() << format(" %10u", filetype); outs() << format(" %5u", ncmds); outs() << format(" %10u", sizeofcmds); outs() << format(" 0x%08" PRIx32, flags); } outs() << "\n"; } static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize, StringRef SegName, uint64_t vmaddr, uint64_t vmsize, uint64_t fileoff, uint64_t filesize, uint32_t maxprot, uint32_t initprot, uint32_t nsects, uint32_t flags, uint32_t object_size, bool verbose) { uint64_t expected_cmdsize; if (cmd == MachO::LC_SEGMENT) { outs() << " cmd LC_SEGMENT\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section); expected_cmdsize += sizeof(struct MachO::segment_command); } else { outs() << " cmd LC_SEGMENT_64\n"; expected_cmdsize = nsects; expected_cmdsize *= sizeof(struct MachO::section_64); expected_cmdsize += sizeof(struct MachO::segment_command_64); } outs() << " cmdsize " << cmdsize; if (cmdsize != expected_cmdsize) outs() << " Inconsistent size\n"; else outs() << "\n"; outs() << " segname " << SegName << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " vmaddr " << format("0x%016" PRIx64, vmaddr) << "\n"; outs() << " vmsize " << format("0x%016" PRIx64, vmsize) << "\n"; } else { outs() << " vmaddr " << format("0x%08" PRIx64, vmaddr) << "\n"; outs() << " vmsize " << format("0x%08" PRIx64, vmsize) << "\n"; } outs() << " fileoff " << fileoff; if (fileoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " filesize " << filesize; if (fileoff + filesize > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; if (verbose) { if ((maxprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " maxprot ?" << format("0x%08" PRIx32, maxprot) << "\n"; else { if (maxprot & MachO::VM_PROT_READ) outs() << " maxprot r"; else outs() << " maxprot -"; if (maxprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (maxprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } if ((initprot & ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE)) != 0) outs() << " initprot ?" << format("0x%08" PRIx32, initprot) << "\n"; else { if (initprot & MachO::VM_PROT_READ) outs() << " initprot r"; else outs() << " initprot -"; if (initprot & MachO::VM_PROT_WRITE) outs() << "w"; else outs() << "-"; if (initprot & MachO::VM_PROT_EXECUTE) outs() << "x\n"; else outs() << "-\n"; } } else { outs() << " maxprot " << format("0x%08" PRIx32, maxprot) << "\n"; outs() << " initprot " << format("0x%08" PRIx32, initprot) << "\n"; } outs() << " nsects " << nsects << "\n"; if (verbose) { outs() << " flags"; if (flags == 0) outs() << " (none)\n"; else { if (flags & MachO::SG_HIGHVM) { outs() << " HIGHVM"; flags &= ~MachO::SG_HIGHVM; } if (flags & MachO::SG_FVMLIB) { outs() << " FVMLIB"; flags &= ~MachO::SG_FVMLIB; } if (flags & MachO::SG_NORELOC) { outs() << " NORELOC"; flags &= ~MachO::SG_NORELOC; } if (flags & MachO::SG_PROTECTED_VERSION_1) { outs() << " PROTECTED_VERSION_1"; flags &= ~MachO::SG_PROTECTED_VERSION_1; } if (flags) outs() << format(" 0x%08" PRIx32, flags) << " (unknown flags)\n"; else outs() << "\n"; } } else { outs() << " flags " << format("0x%" PRIx32, flags) << "\n"; } } static void PrintSection(const char *sectname, const char *segname, uint64_t addr, uint64_t size, uint32_t offset, uint32_t align, uint32_t reloff, uint32_t nreloc, uint32_t flags, uint32_t reserved1, uint32_t reserved2, uint32_t cmd, const char *sg_segname, uint32_t filetype, uint32_t object_size, bool verbose) { outs() << "Section\n"; outs() << " sectname " << format("%.16s\n", sectname); outs() << " segname " << format("%.16s", segname); if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0) outs() << " (does not match segment)\n"; else outs() << "\n"; if (cmd == MachO::LC_SEGMENT_64) { outs() << " addr " << format("0x%016" PRIx64, addr) << "\n"; outs() << " size " << format("0x%016" PRIx64, size); } else { outs() << " addr " << format("0x%08" PRIx64, addr) << "\n"; outs() << " size " << format("0x%08" PRIx64, size); } if ((flags & MachO::S_ZEROFILL) != 0 && offset + size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " offset " << offset; if (offset > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t align_shifted = 1 << align; outs() << " align 2^" << align << " (" << align_shifted << ")\n"; outs() << " reloff " << reloff; if (reloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nreloc " << nreloc; if (reloff + nreloc * sizeof(struct MachO::relocation_info) > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; uint32_t section_type = flags & MachO::SECTION_TYPE; if (verbose) { outs() << " type"; if (section_type == MachO::S_REGULAR) outs() << " S_REGULAR\n"; else if (section_type == MachO::S_ZEROFILL) outs() << " S_ZEROFILL\n"; else if (section_type == MachO::S_CSTRING_LITERALS) outs() << " S_CSTRING_LITERALS\n"; else if (section_type == MachO::S_4BYTE_LITERALS) outs() << " S_4BYTE_LITERALS\n"; else if (section_type == MachO::S_8BYTE_LITERALS) outs() << " S_8BYTE_LITERALS\n"; else if (section_type == MachO::S_16BYTE_LITERALS) outs() << " S_16BYTE_LITERALS\n"; else if (section_type == MachO::S_LITERAL_POINTERS) outs() << " S_LITERAL_POINTERS\n"; else if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS) outs() << " S_NON_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_LAZY_SYMBOL_POINTERS) outs() << " S_LAZY_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_SYMBOL_STUBS) outs() << " S_SYMBOL_STUBS\n"; else if (section_type == MachO::S_MOD_INIT_FUNC_POINTERS) outs() << " S_MOD_INIT_FUNC_POINTERS\n"; else if (section_type == MachO::S_MOD_TERM_FUNC_POINTERS) outs() << " S_MOD_TERM_FUNC_POINTERS\n"; else if (section_type == MachO::S_COALESCED) outs() << " S_COALESCED\n"; else if (section_type == MachO::S_INTERPOSING) outs() << " S_INTERPOSING\n"; else if (section_type == MachO::S_DTRACE_DOF) outs() << " S_DTRACE_DOF\n"; else if (section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS) outs() << " S_LAZY_DYLIB_SYMBOL_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_REGULAR) outs() << " S_THREAD_LOCAL_REGULAR\n"; else if (section_type == MachO::S_THREAD_LOCAL_ZEROFILL) outs() << " S_THREAD_LOCAL_ZEROFILL\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLES) outs() << " S_THREAD_LOCAL_VARIABLES\n"; else if (section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " S_THREAD_LOCAL_VARIABLE_POINTERS\n"; else if (section_type == MachO::S_THREAD_LOCAL_INIT_FUNCTION_POINTERS) outs() << " S_THREAD_LOCAL_INIT_FUNCTION_POINTERS\n"; else outs() << format("0x%08" PRIx32, section_type) << "\n"; outs() << "attributes"; uint32_t section_attributes = flags & MachO::SECTION_ATTRIBUTES; if (section_attributes & MachO::S_ATTR_PURE_INSTRUCTIONS) outs() << " PURE_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_NO_TOC) outs() << " NO_TOC"; if (section_attributes & MachO::S_ATTR_STRIP_STATIC_SYMS) outs() << " STRIP_STATIC_SYMS"; if (section_attributes & MachO::S_ATTR_NO_DEAD_STRIP) outs() << " NO_DEAD_STRIP"; if (section_attributes & MachO::S_ATTR_LIVE_SUPPORT) outs() << " LIVE_SUPPORT"; if (section_attributes & MachO::S_ATTR_SELF_MODIFYING_CODE) outs() << " SELF_MODIFYING_CODE"; if (section_attributes & MachO::S_ATTR_DEBUG) outs() << " DEBUG"; if (section_attributes & MachO::S_ATTR_SOME_INSTRUCTIONS) outs() << " SOME_INSTRUCTIONS"; if (section_attributes & MachO::S_ATTR_EXT_RELOC) outs() << " EXT_RELOC"; if (section_attributes & MachO::S_ATTR_LOC_RELOC) outs() << " LOC_RELOC"; if (section_attributes == 0) outs() << " (none)"; outs() << "\n"; } else outs() << " flags " << format("0x%08" PRIx32, flags) << "\n"; outs() << " reserved1 " << reserved1; if (section_type == MachO::S_SYMBOL_STUBS || section_type == MachO::S_LAZY_SYMBOL_POINTERS || section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS || section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS || section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) outs() << " (index into indirect symbol table)\n"; else outs() << "\n"; outs() << " reserved2 " << reserved2; if (section_type == MachO::S_SYMBOL_STUBS) outs() << " (size of stubs)\n"; else outs() << "\n"; } static void PrintSymtabLoadCommand(MachO::symtab_command st, bool Is64Bit, uint32_t object_size) { outs() << " cmd LC_SYMTAB\n"; outs() << " cmdsize " << st.cmdsize; if (st.cmdsize != sizeof(struct MachO::symtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " symoff " << st.symoff; if (st.symoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nsyms " << st.nsyms; uint64_t big_size; if (Is64Bit) { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist_64); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } else { big_size = st.nsyms; big_size *= sizeof(struct MachO::nlist); big_size += st.symoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } outs() << " stroff " << st.stroff; if (st.stroff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " strsize " << st.strsize; big_size = st.stroff; big_size += st.strsize; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDysymtabLoadCommand(MachO::dysymtab_command dyst, uint32_t nsyms, uint32_t object_size, bool Is64Bit) { outs() << " cmd LC_DYSYMTAB\n"; outs() << " cmdsize " << dyst.cmdsize; if (dyst.cmdsize != sizeof(struct MachO::dysymtab_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " ilocalsym " << dyst.ilocalsym; if (dyst.ilocalsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nlocalsym " << dyst.nlocalsym; uint64_t big_size; big_size = dyst.ilocalsym; big_size += dyst.nlocalsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iextdefsym " << dyst.iextdefsym; if (dyst.iextdefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nextdefsym " << dyst.nextdefsym; big_size = dyst.iextdefsym; big_size += dyst.nextdefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " iundefsym " << dyst.iundefsym; if (dyst.iundefsym > nsyms) outs() << " (greater than the number of symbols)\n"; else outs() << "\n"; outs() << " nundefsym " << dyst.nundefsym; big_size = dyst.iundefsym; big_size += dyst.nundefsym; if (big_size > nsyms) outs() << " (past the end of the symbol table)\n"; else outs() << "\n"; outs() << " tocoff " << dyst.tocoff; if (dyst.tocoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " ntoc " << dyst.ntoc; big_size = dyst.ntoc; big_size *= sizeof(struct MachO::dylib_table_of_contents); big_size += dyst.tocoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " modtaboff " << dyst.modtaboff; if (dyst.modtaboff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nmodtab " << dyst.nmodtab; uint64_t modtabend; if (Is64Bit) { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module_64); modtabend += dyst.modtaboff; } else { modtabend = dyst.nmodtab; modtabend *= sizeof(struct MachO::dylib_module); modtabend += dyst.modtaboff; } if (modtabend > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extrefsymoff " << dyst.extrefsymoff; if (dyst.extrefsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrefsyms " << dyst.nextrefsyms; big_size = dyst.nextrefsyms; big_size *= sizeof(struct MachO::dylib_reference); big_size += dyst.extrefsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " indirectsymoff " << dyst.indirectsymoff; if (dyst.indirectsymoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nindirectsyms " << dyst.nindirectsyms; big_size = dyst.nindirectsyms; big_size *= sizeof(uint32_t); big_size += dyst.indirectsymoff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " extreloff " << dyst.extreloff; if (dyst.extreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nextrel " << dyst.nextrel; big_size = dyst.nextrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.extreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " locreloff " << dyst.locreloff; if (dyst.locreloff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " nlocrel " << dyst.nlocrel; big_size = dyst.nlocrel; big_size *= sizeof(struct MachO::relocation_info); big_size += dyst.locreloff; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDyldInfoLoadCommand(MachO::dyld_info_command dc, uint32_t object_size) { if (dc.cmd == MachO::LC_DYLD_INFO) outs() << " cmd LC_DYLD_INFO\n"; else outs() << " cmd LC_DYLD_INFO_ONLY\n"; outs() << " cmdsize " << dc.cmdsize; if (dc.cmdsize != sizeof(struct MachO::dyld_info_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " rebase_off " << dc.rebase_off; if (dc.rebase_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " rebase_size " << dc.rebase_size; uint64_t big_size; big_size = dc.rebase_off; big_size += dc.rebase_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " bind_off " << dc.bind_off; if (dc.bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " bind_size " << dc.bind_size; big_size = dc.bind_off; big_size += dc.bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " weak_bind_off " << dc.weak_bind_off; if (dc.weak_bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " weak_bind_size " << dc.weak_bind_size; big_size = dc.weak_bind_off; big_size += dc.weak_bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " lazy_bind_off " << dc.lazy_bind_off; if (dc.lazy_bind_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " lazy_bind_size " << dc.lazy_bind_size; big_size = dc.lazy_bind_off; big_size += dc.lazy_bind_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " export_off " << dc.export_off; if (dc.export_off > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " export_size " << dc.export_size; big_size = dc.export_off; big_size += dc.export_size; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintDyldLoadCommand(MachO::dylinker_command dyld, const char *Ptr) { if (dyld.cmd == MachO::LC_ID_DYLINKER) outs() << " cmd LC_ID_DYLINKER\n"; else if (dyld.cmd == MachO::LC_LOAD_DYLINKER) outs() << " cmd LC_LOAD_DYLINKER\n"; else if (dyld.cmd == MachO::LC_DYLD_ENVIRONMENT) outs() << " cmd LC_DYLD_ENVIRONMENT\n"; else outs() << " cmd ?(" << dyld.cmd << ")\n"; outs() << " cmdsize " << dyld.cmdsize; if (dyld.cmdsize < sizeof(struct MachO::dylinker_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (dyld.name >= dyld.cmdsize) outs() << " name ?(bad offset " << dyld.name << ")\n"; else { const char *P = (const char *)(Ptr) + dyld.name; outs() << " name " << P << " (offset " << dyld.name << ")\n"; } } static void PrintUuidLoadCommand(MachO::uuid_command uuid) { outs() << " cmd LC_UUID\n"; outs() << " cmdsize " << uuid.cmdsize; if (uuid.cmdsize != sizeof(struct MachO::uuid_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " uuid "; outs() << format("%02" PRIX32, uuid.uuid[0]); outs() << format("%02" PRIX32, uuid.uuid[1]); outs() << format("%02" PRIX32, uuid.uuid[2]); outs() << format("%02" PRIX32, uuid.uuid[3]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[4]); outs() << format("%02" PRIX32, uuid.uuid[5]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[6]); outs() << format("%02" PRIX32, uuid.uuid[7]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[8]); outs() << format("%02" PRIX32, uuid.uuid[9]); outs() << "-"; outs() << format("%02" PRIX32, uuid.uuid[10]); outs() << format("%02" PRIX32, uuid.uuid[11]); outs() << format("%02" PRIX32, uuid.uuid[12]); outs() << format("%02" PRIX32, uuid.uuid[13]); outs() << format("%02" PRIX32, uuid.uuid[14]); outs() << format("%02" PRIX32, uuid.uuid[15]); outs() << "\n"; } static void PrintRpathLoadCommand(MachO::rpath_command rpath, const char *Ptr) { outs() << " cmd LC_RPATH\n"; outs() << " cmdsize " << rpath.cmdsize; if (rpath.cmdsize < sizeof(struct MachO::rpath_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (rpath.path >= rpath.cmdsize) outs() << " path ?(bad offset " << rpath.path << ")\n"; else { const char *P = (const char *)(Ptr) + rpath.path; outs() << " path " << P << " (offset " << rpath.path << ")\n"; } } static void PrintVersionMinLoadCommand(MachO::version_min_command vd) { if (vd.cmd == MachO::LC_VERSION_MIN_MACOSX) outs() << " cmd LC_VERSION_MIN_MACOSX\n"; else if (vd.cmd == MachO::LC_VERSION_MIN_IPHONEOS) outs() << " cmd LC_VERSION_MIN_IPHONEOS\n"; else outs() << " cmd " << vd.cmd << " (?)\n"; outs() << " cmdsize " << vd.cmdsize; if (vd.cmdsize != sizeof(struct MachO::version_min_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " version " << ((vd.version >> 16) & 0xffff) << "." << ((vd.version >> 8) & 0xff); if ((vd.version & 0xff) != 0) outs() << "." << (vd.version & 0xff); outs() << "\n"; if (vd.sdk == 0) outs() << " sdk n/a"; else { outs() << " sdk " << ((vd.sdk >> 16) & 0xffff) << "." << ((vd.sdk >> 8) & 0xff); } if ((vd.sdk & 0xff) != 0) outs() << "." << (vd.sdk & 0xff); outs() << "\n"; } static void PrintSourceVersionCommand(MachO::source_version_command sd) { outs() << " cmd LC_SOURCE_VERSION\n"; outs() << " cmdsize " << sd.cmdsize; if (sd.cmdsize != sizeof(struct MachO::source_version_command)) outs() << " Incorrect size\n"; else outs() << "\n"; uint64_t a = (sd.version >> 40) & 0xffffff; uint64_t b = (sd.version >> 30) & 0x3ff; uint64_t c = (sd.version >> 20) & 0x3ff; uint64_t d = (sd.version >> 10) & 0x3ff; uint64_t e = sd.version & 0x3ff; outs() << " version " << a << "." << b; if (e != 0) outs() << "." << c << "." << d << "." << e; else if (d != 0) outs() << "." << c << "." << d; else if (c != 0) outs() << "." << c; outs() << "\n"; } static void PrintEntryPointCommand(MachO::entry_point_command ep) { outs() << " cmd LC_MAIN\n"; outs() << " cmdsize " << ep.cmdsize; if (ep.cmdsize != sizeof(struct MachO::entry_point_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " entryoff " << ep.entryoff << "\n"; outs() << " stacksize " << ep.stacksize << "\n"; } static void PrintEncryptionInfoCommand(MachO::encryption_info_command ec, uint32_t object_size) { outs() << " cmd LC_ENCRYPTION_INFO\n"; outs() << " cmdsize " << ec.cmdsize; if (ec.cmdsize != sizeof(struct MachO::encryption_info_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " cryptoff " << ec.cryptoff; if (ec.cryptoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " cryptsize " << ec.cryptsize; if (ec.cryptsize > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " cryptid " << ec.cryptid << "\n"; } static void PrintEncryptionInfoCommand64(MachO::encryption_info_command_64 ec, uint32_t object_size) { outs() << " cmd LC_ENCRYPTION_INFO_64\n"; outs() << " cmdsize " << ec.cmdsize; if (ec.cmdsize != sizeof(struct MachO::encryption_info_command_64)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " cryptoff " << ec.cryptoff; if (ec.cryptoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " cryptsize " << ec.cryptsize; if (ec.cryptsize > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " cryptid " << ec.cryptid << "\n"; outs() << " pad " << ec.pad << "\n"; } static void PrintLinkerOptionCommand(MachO::linker_option_command lo, const char *Ptr) { outs() << " cmd LC_LINKER_OPTION\n"; outs() << " cmdsize " << lo.cmdsize; if (lo.cmdsize < sizeof(struct MachO::linker_option_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " count " << lo.count << "\n"; const char *string = Ptr + sizeof(struct MachO::linker_option_command); uint32_t left = lo.cmdsize - sizeof(struct MachO::linker_option_command); uint32_t i = 0; while (left > 0) { while (*string == '\0' && left > 0) { string++; left--; } if (left > 0) { i++; outs() << " string #" << i << " " << format("%.*s\n", left, string); uint32_t NullPos = StringRef(string, left).find('\0'); uint32_t len = std::min(NullPos, left) + 1; string += len; left -= len; } } if (lo.count != i) outs() << " count " << lo.count << " does not match number of strings " << i << "\n"; } static void PrintSubFrameworkCommand(MachO::sub_framework_command sub, const char *Ptr) { outs() << " cmd LC_SUB_FRAMEWORK\n"; outs() << " cmdsize " << sub.cmdsize; if (sub.cmdsize < sizeof(struct MachO::sub_framework_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (sub.umbrella < sub.cmdsize) { const char *P = Ptr + sub.umbrella; outs() << " umbrella " << P << " (offset " << sub.umbrella << ")\n"; } else { outs() << " umbrella ?(bad offset " << sub.umbrella << ")\n"; } } static void PrintSubUmbrellaCommand(MachO::sub_umbrella_command sub, const char *Ptr) { outs() << " cmd LC_SUB_UMBRELLA\n"; outs() << " cmdsize " << sub.cmdsize; if (sub.cmdsize < sizeof(struct MachO::sub_umbrella_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (sub.sub_umbrella < sub.cmdsize) { const char *P = Ptr + sub.sub_umbrella; outs() << " sub_umbrella " << P << " (offset " << sub.sub_umbrella << ")\n"; } else { outs() << " sub_umbrella ?(bad offset " << sub.sub_umbrella << ")\n"; } } static void PrintSubLibraryCommand(MachO::sub_library_command sub, const char *Ptr) { outs() << " cmd LC_SUB_LIBRARY\n"; outs() << " cmdsize " << sub.cmdsize; if (sub.cmdsize < sizeof(struct MachO::sub_library_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (sub.sub_library < sub.cmdsize) { const char *P = Ptr + sub.sub_library; outs() << " sub_library " << P << " (offset " << sub.sub_library << ")\n"; } else { outs() << " sub_library ?(bad offset " << sub.sub_library << ")\n"; } } static void PrintSubClientCommand(MachO::sub_client_command sub, const char *Ptr) { outs() << " cmd LC_SUB_CLIENT\n"; outs() << " cmdsize " << sub.cmdsize; if (sub.cmdsize < sizeof(struct MachO::sub_client_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (sub.client < sub.cmdsize) { const char *P = Ptr + sub.client; outs() << " client " << P << " (offset " << sub.client << ")\n"; } else { outs() << " client ?(bad offset " << sub.client << ")\n"; } } static void PrintRoutinesCommand(MachO::routines_command r) { outs() << " cmd LC_ROUTINES\n"; outs() << " cmdsize " << r.cmdsize; if (r.cmdsize != sizeof(struct MachO::routines_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " init_address " << format("0x%08" PRIx32, r.init_address) << "\n"; outs() << " init_module " << r.init_module << "\n"; outs() << " reserved1 " << r.reserved1 << "\n"; outs() << " reserved2 " << r.reserved2 << "\n"; outs() << " reserved3 " << r.reserved3 << "\n"; outs() << " reserved4 " << r.reserved4 << "\n"; outs() << " reserved5 " << r.reserved5 << "\n"; outs() << " reserved6 " << r.reserved6 << "\n"; } static void PrintRoutinesCommand64(MachO::routines_command_64 r) { outs() << " cmd LC_ROUTINES_64\n"; outs() << " cmdsize " << r.cmdsize; if (r.cmdsize != sizeof(struct MachO::routines_command_64)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " init_address " << format("0x%016" PRIx64, r.init_address) << "\n"; outs() << " init_module " << r.init_module << "\n"; outs() << " reserved1 " << r.reserved1 << "\n"; outs() << " reserved2 " << r.reserved2 << "\n"; outs() << " reserved3 " << r.reserved3 << "\n"; outs() << " reserved4 " << r.reserved4 << "\n"; outs() << " reserved5 " << r.reserved5 << "\n"; outs() << " reserved6 " << r.reserved6 << "\n"; } static void Print_x86_thread_state64_t(MachO::x86_thread_state64_t &cpu64) { outs() << " rax " << format("0x%016" PRIx64, cpu64.rax); outs() << " rbx " << format("0x%016" PRIx64, cpu64.rbx); outs() << " rcx " << format("0x%016" PRIx64, cpu64.rcx) << "\n"; outs() << " rdx " << format("0x%016" PRIx64, cpu64.rdx); outs() << " rdi " << format("0x%016" PRIx64, cpu64.rdi); outs() << " rsi " << format("0x%016" PRIx64, cpu64.rsi) << "\n"; outs() << " rbp " << format("0x%016" PRIx64, cpu64.rbp); outs() << " rsp " << format("0x%016" PRIx64, cpu64.rsp); outs() << " r8 " << format("0x%016" PRIx64, cpu64.r8) << "\n"; outs() << " r9 " << format("0x%016" PRIx64, cpu64.r9); outs() << " r10 " << format("0x%016" PRIx64, cpu64.r10); outs() << " r11 " << format("0x%016" PRIx64, cpu64.r11) << "\n"; outs() << " r12 " << format("0x%016" PRIx64, cpu64.r12); outs() << " r13 " << format("0x%016" PRIx64, cpu64.r13); outs() << " r14 " << format("0x%016" PRIx64, cpu64.r14) << "\n"; outs() << " r15 " << format("0x%016" PRIx64, cpu64.r15); outs() << " rip " << format("0x%016" PRIx64, cpu64.rip) << "\n"; outs() << "rflags " << format("0x%016" PRIx64, cpu64.rflags); outs() << " cs " << format("0x%016" PRIx64, cpu64.cs); outs() << " fs " << format("0x%016" PRIx64, cpu64.fs) << "\n"; outs() << " gs " << format("0x%016" PRIx64, cpu64.gs) << "\n"; } static void Print_mmst_reg(MachO::mmst_reg_t &r) { uint32_t f; outs() << "\t mmst_reg "; for (f = 0; f < 10; f++) outs() << format("%02" PRIx32, (r.mmst_reg[f] & 0xff)) << " "; outs() << "\n"; outs() << "\t mmst_rsrv "; for (f = 0; f < 6; f++) outs() << format("%02" PRIx32, (r.mmst_rsrv[f] & 0xff)) << " "; outs() << "\n"; } static void Print_xmm_reg(MachO::xmm_reg_t &r) { uint32_t f; outs() << "\t xmm_reg "; for (f = 0; f < 16; f++) outs() << format("%02" PRIx32, (r.xmm_reg[f] & 0xff)) << " "; outs() << "\n"; } static void Print_x86_float_state_t(MachO::x86_float_state64_t &fpu) { outs() << "\t fpu_reserved[0] " << fpu.fpu_reserved[0]; outs() << " fpu_reserved[1] " << fpu.fpu_reserved[1] << "\n"; outs() << "\t control: invalid " << fpu.fpu_fcw.invalid; outs() << " denorm " << fpu.fpu_fcw.denorm; outs() << " zdiv " << fpu.fpu_fcw.zdiv; outs() << " ovrfl " << fpu.fpu_fcw.ovrfl; outs() << " undfl " << fpu.fpu_fcw.undfl; outs() << " precis " << fpu.fpu_fcw.precis << "\n"; outs() << "\t\t pc "; if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_24B) outs() << "FP_PREC_24B "; else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_53B) outs() << "FP_PREC_53B "; else if (fpu.fpu_fcw.pc == MachO::x86_FP_PREC_64B) outs() << "FP_PREC_64B "; else outs() << fpu.fpu_fcw.pc << " "; outs() << "rc "; if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_NEAR) outs() << "FP_RND_NEAR "; else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_DOWN) outs() << "FP_RND_DOWN "; else if (fpu.fpu_fcw.rc == MachO::x86_FP_RND_UP) outs() << "FP_RND_UP "; else if (fpu.fpu_fcw.rc == MachO::x86_FP_CHOP) outs() << "FP_CHOP "; outs() << "\n"; outs() << "\t status: invalid " << fpu.fpu_fsw.invalid; outs() << " denorm " << fpu.fpu_fsw.denorm; outs() << " zdiv " << fpu.fpu_fsw.zdiv; outs() << " ovrfl " << fpu.fpu_fsw.ovrfl; outs() << " undfl " << fpu.fpu_fsw.undfl; outs() << " precis " << fpu.fpu_fsw.precis; outs() << " stkflt " << fpu.fpu_fsw.stkflt << "\n"; outs() << "\t errsumm " << fpu.fpu_fsw.errsumm; outs() << " c0 " << fpu.fpu_fsw.c0; outs() << " c1 " << fpu.fpu_fsw.c1; outs() << " c2 " << fpu.fpu_fsw.c2; outs() << " tos " << fpu.fpu_fsw.tos; outs() << " c3 " << fpu.fpu_fsw.c3; outs() << " busy " << fpu.fpu_fsw.busy << "\n"; outs() << "\t fpu_ftw " << format("0x%02" PRIx32, fpu.fpu_ftw); outs() << " fpu_rsrv1 " << format("0x%02" PRIx32, fpu.fpu_rsrv1); outs() << " fpu_fop " << format("0x%04" PRIx32, fpu.fpu_fop); outs() << " fpu_ip " << format("0x%08" PRIx32, fpu.fpu_ip) << "\n"; outs() << "\t fpu_cs " << format("0x%04" PRIx32, fpu.fpu_cs); outs() << " fpu_rsrv2 " << format("0x%04" PRIx32, fpu.fpu_rsrv2); outs() << " fpu_dp " << format("0x%08" PRIx32, fpu.fpu_dp); outs() << " fpu_ds " << format("0x%04" PRIx32, fpu.fpu_ds) << "\n"; outs() << "\t fpu_rsrv3 " << format("0x%04" PRIx32, fpu.fpu_rsrv3); outs() << " fpu_mxcsr " << format("0x%08" PRIx32, fpu.fpu_mxcsr); outs() << " fpu_mxcsrmask " << format("0x%08" PRIx32, fpu.fpu_mxcsrmask); outs() << "\n"; outs() << "\t fpu_stmm0:\n"; Print_mmst_reg(fpu.fpu_stmm0); outs() << "\t fpu_stmm1:\n"; Print_mmst_reg(fpu.fpu_stmm1); outs() << "\t fpu_stmm2:\n"; Print_mmst_reg(fpu.fpu_stmm2); outs() << "\t fpu_stmm3:\n"; Print_mmst_reg(fpu.fpu_stmm3); outs() << "\t fpu_stmm4:\n"; Print_mmst_reg(fpu.fpu_stmm4); outs() << "\t fpu_stmm5:\n"; Print_mmst_reg(fpu.fpu_stmm5); outs() << "\t fpu_stmm6:\n"; Print_mmst_reg(fpu.fpu_stmm6); outs() << "\t fpu_stmm7:\n"; Print_mmst_reg(fpu.fpu_stmm7); outs() << "\t fpu_xmm0:\n"; Print_xmm_reg(fpu.fpu_xmm0); outs() << "\t fpu_xmm1:\n"; Print_xmm_reg(fpu.fpu_xmm1); outs() << "\t fpu_xmm2:\n"; Print_xmm_reg(fpu.fpu_xmm2); outs() << "\t fpu_xmm3:\n"; Print_xmm_reg(fpu.fpu_xmm3); outs() << "\t fpu_xmm4:\n"; Print_xmm_reg(fpu.fpu_xmm4); outs() << "\t fpu_xmm5:\n"; Print_xmm_reg(fpu.fpu_xmm5); outs() << "\t fpu_xmm6:\n"; Print_xmm_reg(fpu.fpu_xmm6); outs() << "\t fpu_xmm7:\n"; Print_xmm_reg(fpu.fpu_xmm7); outs() << "\t fpu_xmm8:\n"; Print_xmm_reg(fpu.fpu_xmm8); outs() << "\t fpu_xmm9:\n"; Print_xmm_reg(fpu.fpu_xmm9); outs() << "\t fpu_xmm10:\n"; Print_xmm_reg(fpu.fpu_xmm10); outs() << "\t fpu_xmm11:\n"; Print_xmm_reg(fpu.fpu_xmm11); outs() << "\t fpu_xmm12:\n"; Print_xmm_reg(fpu.fpu_xmm12); outs() << "\t fpu_xmm13:\n"; Print_xmm_reg(fpu.fpu_xmm13); outs() << "\t fpu_xmm14:\n"; Print_xmm_reg(fpu.fpu_xmm14); outs() << "\t fpu_xmm15:\n"; Print_xmm_reg(fpu.fpu_xmm15); outs() << "\t fpu_rsrv4:\n"; for (uint32_t f = 0; f < 6; f++) { outs() << "\t "; for (uint32_t g = 0; g < 16; g++) outs() << format("%02" PRIx32, fpu.fpu_rsrv4[f * g]) << " "; outs() << "\n"; } outs() << "\t fpu_reserved1 " << format("0x%08" PRIx32, fpu.fpu_reserved1); outs() << "\n"; } static void Print_x86_exception_state_t(MachO::x86_exception_state64_t &exc64) { outs() << "\t trapno " << format("0x%08" PRIx32, exc64.trapno); outs() << " err " << format("0x%08" PRIx32, exc64.err); outs() << " faultvaddr " << format("0x%016" PRIx64, exc64.faultvaddr) << "\n"; } static void PrintThreadCommand(MachO::thread_command t, const char *Ptr, bool isLittleEndian, uint32_t cputype) { if (t.cmd == MachO::LC_THREAD) outs() << " cmd LC_THREAD\n"; else if (t.cmd == MachO::LC_UNIXTHREAD) outs() << " cmd LC_UNIXTHREAD\n"; else outs() << " cmd " << t.cmd << " (unknown)\n"; outs() << " cmdsize " << t.cmdsize; if (t.cmdsize < sizeof(struct MachO::thread_command) + 2 * sizeof(uint32_t)) outs() << " Incorrect size\n"; else outs() << "\n"; const char *begin = Ptr + sizeof(struct MachO::thread_command); const char *end = Ptr + t.cmdsize; uint32_t flavor, count, left; if (cputype == MachO::CPU_TYPE_X86_64) { while (begin < end) { if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { memcpy((char *)&flavor, begin, sizeof(uint32_t)); begin += sizeof(uint32_t); } else { flavor = 0; begin = end; } if (isLittleEndian != sys::IsLittleEndianHost) sys::swapByteOrder(flavor); if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { memcpy((char *)&count, begin, sizeof(uint32_t)); begin += sizeof(uint32_t); } else { count = 0; begin = end; } if (isLittleEndian != sys::IsLittleEndianHost) sys::swapByteOrder(count); if (flavor == MachO::x86_THREAD_STATE64) { outs() << " flavor x86_THREAD_STATE64\n"; if (count == MachO::x86_THREAD_STATE64_COUNT) outs() << " count x86_THREAD_STATE64_COUNT\n"; else outs() << " count " << count << " (not x86_THREAD_STATE64_COUNT)\n"; MachO::x86_thread_state64_t cpu64; left = end - begin; if (left >= sizeof(MachO::x86_thread_state64_t)) { memcpy(&cpu64, begin, sizeof(MachO::x86_thread_state64_t)); begin += sizeof(MachO::x86_thread_state64_t); } else { memset(&cpu64, '\0', sizeof(MachO::x86_thread_state64_t)); memcpy(&cpu64, begin, left); begin += left; } if (isLittleEndian != sys::IsLittleEndianHost) swapStruct(cpu64); Print_x86_thread_state64_t(cpu64); } else if (flavor == MachO::x86_THREAD_STATE) { outs() << " flavor x86_THREAD_STATE\n"; if (count == MachO::x86_THREAD_STATE_COUNT) outs() << " count x86_THREAD_STATE_COUNT\n"; else outs() << " count " << count << " (not x86_THREAD_STATE_COUNT)\n"; struct MachO::x86_thread_state_t ts; left = end - begin; if (left >= sizeof(MachO::x86_thread_state_t)) { memcpy(&ts, begin, sizeof(MachO::x86_thread_state_t)); begin += sizeof(MachO::x86_thread_state_t); } else { memset(&ts, '\0', sizeof(MachO::x86_thread_state_t)); memcpy(&ts, begin, left); begin += left; } if (isLittleEndian != sys::IsLittleEndianHost) swapStruct(ts); if (ts.tsh.flavor == MachO::x86_THREAD_STATE64) { outs() << "\t tsh.flavor x86_THREAD_STATE64 "; if (ts.tsh.count == MachO::x86_THREAD_STATE64_COUNT) outs() << "tsh.count x86_THREAD_STATE64_COUNT\n"; else outs() << "tsh.count " << ts.tsh.count << " (not x86_THREAD_STATE64_COUNT\n"; Print_x86_thread_state64_t(ts.uts.ts64); } else { outs() << "\t tsh.flavor " << ts.tsh.flavor << " tsh.count " << ts.tsh.count << "\n"; } } else if (flavor == MachO::x86_FLOAT_STATE) { outs() << " flavor x86_FLOAT_STATE\n"; if (count == MachO::x86_FLOAT_STATE_COUNT) outs() << " count x86_FLOAT_STATE_COUNT\n"; else outs() << " count " << count << " (not x86_FLOAT_STATE_COUNT)\n"; struct MachO::x86_float_state_t fs; left = end - begin; if (left >= sizeof(MachO::x86_float_state_t)) { memcpy(&fs, begin, sizeof(MachO::x86_float_state_t)); begin += sizeof(MachO::x86_float_state_t); } else { memset(&fs, '\0', sizeof(MachO::x86_float_state_t)); memcpy(&fs, begin, left); begin += left; } if (isLittleEndian != sys::IsLittleEndianHost) swapStruct(fs); if (fs.fsh.flavor == MachO::x86_FLOAT_STATE64) { outs() << "\t fsh.flavor x86_FLOAT_STATE64 "; if (fs.fsh.count == MachO::x86_FLOAT_STATE64_COUNT) outs() << "fsh.count x86_FLOAT_STATE64_COUNT\n"; else outs() << "fsh.count " << fs.fsh.count << " (not x86_FLOAT_STATE64_COUNT\n"; Print_x86_float_state_t(fs.ufs.fs64); } else { outs() << "\t fsh.flavor " << fs.fsh.flavor << " fsh.count " << fs.fsh.count << "\n"; } } else if (flavor == MachO::x86_EXCEPTION_STATE) { outs() << " flavor x86_EXCEPTION_STATE\n"; if (count == MachO::x86_EXCEPTION_STATE_COUNT) outs() << " count x86_EXCEPTION_STATE_COUNT\n"; else outs() << " count " << count << " (not x86_EXCEPTION_STATE_COUNT)\n"; struct MachO::x86_exception_state_t es; left = end - begin; if (left >= sizeof(MachO::x86_exception_state_t)) { memcpy(&es, begin, sizeof(MachO::x86_exception_state_t)); begin += sizeof(MachO::x86_exception_state_t); } else { memset(&es, '\0', sizeof(MachO::x86_exception_state_t)); memcpy(&es, begin, left); begin += left; } if (isLittleEndian != sys::IsLittleEndianHost) swapStruct(es); if (es.esh.flavor == MachO::x86_EXCEPTION_STATE64) { outs() << "\t esh.flavor x86_EXCEPTION_STATE64\n"; if (es.esh.count == MachO::x86_EXCEPTION_STATE64_COUNT) outs() << "\t esh.count x86_EXCEPTION_STATE64_COUNT\n"; else outs() << "\t esh.count " << es.esh.count << " (not x86_EXCEPTION_STATE64_COUNT\n"; Print_x86_exception_state_t(es.ues.es64); } else { outs() << "\t esh.flavor " << es.esh.flavor << " esh.count " << es.esh.count << "\n"; } } else { outs() << " flavor " << flavor << " (unknown)\n"; outs() << " count " << count << "\n"; outs() << " state (unknown)\n"; begin += count * sizeof(uint32_t); } } } else { while (begin < end) { if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { memcpy((char *)&flavor, begin, sizeof(uint32_t)); begin += sizeof(uint32_t); } else { flavor = 0; begin = end; } if (isLittleEndian != sys::IsLittleEndianHost) sys::swapByteOrder(flavor); if (end - begin > (ptrdiff_t)sizeof(uint32_t)) { memcpy((char *)&count, begin, sizeof(uint32_t)); begin += sizeof(uint32_t); } else { count = 0; begin = end; } if (isLittleEndian != sys::IsLittleEndianHost) sys::swapByteOrder(count); outs() << " flavor " << flavor << "\n"; outs() << " count " << count << "\n"; outs() << " state (Unknown cputype/cpusubtype)\n"; begin += count * sizeof(uint32_t); } } } static void PrintDylibCommand(MachO::dylib_command dl, const char *Ptr) { if (dl.cmd == MachO::LC_ID_DYLIB) outs() << " cmd LC_ID_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_DYLIB) outs() << " cmd LC_LOAD_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_WEAK_DYLIB) outs() << " cmd LC_LOAD_WEAK_DYLIB\n"; else if (dl.cmd == MachO::LC_REEXPORT_DYLIB) outs() << " cmd LC_REEXPORT_DYLIB\n"; else if (dl.cmd == MachO::LC_LAZY_LOAD_DYLIB) outs() << " cmd LC_LAZY_LOAD_DYLIB\n"; else if (dl.cmd == MachO::LC_LOAD_UPWARD_DYLIB) outs() << " cmd LC_LOAD_UPWARD_DYLIB\n"; else outs() << " cmd " << dl.cmd << " (unknown)\n"; outs() << " cmdsize " << dl.cmdsize; if (dl.cmdsize < sizeof(struct MachO::dylib_command)) outs() << " Incorrect size\n"; else outs() << "\n"; if (dl.dylib.name < dl.cmdsize) { const char *P = (const char *)(Ptr) + dl.dylib.name; outs() << " name " << P << " (offset " << dl.dylib.name << ")\n"; } else { outs() << " name ?(bad offset " << dl.dylib.name << ")\n"; } outs() << " time stamp " << dl.dylib.timestamp << " "; time_t t = dl.dylib.timestamp; outs() << ctime(&t); outs() << " current version "; if (dl.dylib.current_version == 0xffffffff) outs() << "n/a\n"; else outs() << ((dl.dylib.current_version >> 16) & 0xffff) << "." << ((dl.dylib.current_version >> 8) & 0xff) << "." << (dl.dylib.current_version & 0xff) << "\n"; outs() << "compatibility version "; if (dl.dylib.compatibility_version == 0xffffffff) outs() << "n/a\n"; else outs() << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "." << ((dl.dylib.compatibility_version >> 8) & 0xff) << "." << (dl.dylib.compatibility_version & 0xff) << "\n"; } static void PrintLinkEditDataCommand(MachO::linkedit_data_command ld, uint32_t object_size) { if (ld.cmd == MachO::LC_CODE_SIGNATURE) outs() << " cmd LC_FUNCTION_STARTS\n"; else if (ld.cmd == MachO::LC_SEGMENT_SPLIT_INFO) outs() << " cmd LC_SEGMENT_SPLIT_INFO\n"; else if (ld.cmd == MachO::LC_FUNCTION_STARTS) outs() << " cmd LC_FUNCTION_STARTS\n"; else if (ld.cmd == MachO::LC_DATA_IN_CODE) outs() << " cmd LC_DATA_IN_CODE\n"; else if (ld.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS) outs() << " cmd LC_DYLIB_CODE_SIGN_DRS\n"; else if (ld.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) outs() << " cmd LC_LINKER_OPTIMIZATION_HINT\n"; else outs() << " cmd " << ld.cmd << " (?)\n"; outs() << " cmdsize " << ld.cmdsize; if (ld.cmdsize != sizeof(struct MachO::linkedit_data_command)) outs() << " Incorrect size\n"; else outs() << "\n"; outs() << " dataoff " << ld.dataoff; if (ld.dataoff > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; outs() << " datasize " << ld.datasize; uint64_t big_size = ld.dataoff; big_size += ld.datasize; if (big_size > object_size) outs() << " (past end of file)\n"; else outs() << "\n"; } static void PrintLoadCommands(const MachOObjectFile *Obj, uint32_t ncmds, uint32_t filetype, uint32_t cputype, bool verbose) { if (ncmds == 0) return; StringRef Buf = Obj->getData(); MachOObjectFile::LoadCommandInfo Command = Obj->getFirstLoadCommandInfo(); for (unsigned i = 0;; ++i) { outs() << "Load command " << i << "\n"; if (Command.C.cmd == MachO::LC_SEGMENT) { MachO::segment_command SLC = Obj->getSegmentLoadCommand(Command); const char *sg_segname = SLC.segname; PrintSegmentCommand(SLC.cmd, SLC.cmdsize, SLC.segname, SLC.vmaddr, SLC.vmsize, SLC.fileoff, SLC.filesize, SLC.maxprot, SLC.initprot, SLC.nsects, SLC.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC.nsects; j++) { MachO::section S = Obj->getSection(Command, j); PrintSection(S.sectname, S.segname, S.addr, S.size, S.offset, S.align, S.reloff, S.nreloc, S.flags, S.reserved1, S.reserved2, SLC.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SEGMENT_64) { MachO::segment_command_64 SLC_64 = Obj->getSegment64LoadCommand(Command); const char *sg_segname = SLC_64.segname; PrintSegmentCommand(SLC_64.cmd, SLC_64.cmdsize, SLC_64.segname, SLC_64.vmaddr, SLC_64.vmsize, SLC_64.fileoff, SLC_64.filesize, SLC_64.maxprot, SLC_64.initprot, SLC_64.nsects, SLC_64.flags, Buf.size(), verbose); for (unsigned j = 0; j < SLC_64.nsects; j++) { MachO::section_64 S_64 = Obj->getSection64(Command, j); PrintSection(S_64.sectname, S_64.segname, S_64.addr, S_64.size, S_64.offset, S_64.align, S_64.reloff, S_64.nreloc, S_64.flags, S_64.reserved1, S_64.reserved2, SLC_64.cmd, sg_segname, filetype, Buf.size(), verbose); } } else if (Command.C.cmd == MachO::LC_SYMTAB) { MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintSymtabLoadCommand(Symtab, Obj->is64Bit(), Buf.size()); } else if (Command.C.cmd == MachO::LC_DYSYMTAB) { MachO::dysymtab_command Dysymtab = Obj->getDysymtabLoadCommand(); MachO::symtab_command Symtab = Obj->getSymtabLoadCommand(); PrintDysymtabLoadCommand(Dysymtab, Symtab.nsyms, Buf.size(), Obj->is64Bit()); } else if (Command.C.cmd == MachO::LC_DYLD_INFO || Command.C.cmd == MachO::LC_DYLD_INFO_ONLY) { MachO::dyld_info_command DyldInfo = Obj->getDyldInfoLoadCommand(Command); PrintDyldInfoLoadCommand(DyldInfo, Buf.size()); } else if (Command.C.cmd == MachO::LC_LOAD_DYLINKER || Command.C.cmd == MachO::LC_ID_DYLINKER || Command.C.cmd == MachO::LC_DYLD_ENVIRONMENT) { MachO::dylinker_command Dyld = Obj->getDylinkerCommand(Command); PrintDyldLoadCommand(Dyld, Command.Ptr); } else if (Command.C.cmd == MachO::LC_UUID) { MachO::uuid_command Uuid = Obj->getUuidCommand(Command); PrintUuidLoadCommand(Uuid); } else if (Command.C.cmd == MachO::LC_RPATH) { MachO::rpath_command Rpath = Obj->getRpathCommand(Command); PrintRpathLoadCommand(Rpath, Command.Ptr); } else if (Command.C.cmd == MachO::LC_VERSION_MIN_MACOSX || Command.C.cmd == MachO::LC_VERSION_MIN_IPHONEOS) { MachO::version_min_command Vd = Obj->getVersionMinLoadCommand(Command); PrintVersionMinLoadCommand(Vd); } else if (Command.C.cmd == MachO::LC_SOURCE_VERSION) { MachO::source_version_command Sd = Obj->getSourceVersionCommand(Command); PrintSourceVersionCommand(Sd); } else if (Command.C.cmd == MachO::LC_MAIN) { MachO::entry_point_command Ep = Obj->getEntryPointCommand(Command); PrintEntryPointCommand(Ep); } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO) { MachO::encryption_info_command Ei = Obj->getEncryptionInfoCommand(Command); PrintEncryptionInfoCommand(Ei, Buf.size()); } else if (Command.C.cmd == MachO::LC_ENCRYPTION_INFO_64) { MachO::encryption_info_command_64 Ei = Obj->getEncryptionInfoCommand64(Command); PrintEncryptionInfoCommand64(Ei, Buf.size()); } else if (Command.C.cmd == MachO::LC_LINKER_OPTION) { MachO::linker_option_command Lo = Obj->getLinkerOptionLoadCommand(Command); PrintLinkerOptionCommand(Lo, Command.Ptr); } else if (Command.C.cmd == MachO::LC_SUB_FRAMEWORK) { MachO::sub_framework_command Sf = Obj->getSubFrameworkCommand(Command); PrintSubFrameworkCommand(Sf, Command.Ptr); } else if (Command.C.cmd == MachO::LC_SUB_UMBRELLA) { MachO::sub_umbrella_command Sf = Obj->getSubUmbrellaCommand(Command); PrintSubUmbrellaCommand(Sf, Command.Ptr); } else if (Command.C.cmd == MachO::LC_SUB_LIBRARY) { MachO::sub_library_command Sl = Obj->getSubLibraryCommand(Command); PrintSubLibraryCommand(Sl, Command.Ptr); } else if (Command.C.cmd == MachO::LC_SUB_CLIENT) { MachO::sub_client_command Sc = Obj->getSubClientCommand(Command); PrintSubClientCommand(Sc, Command.Ptr); } else if (Command.C.cmd == MachO::LC_ROUTINES) { MachO::routines_command Rc = Obj->getRoutinesCommand(Command); PrintRoutinesCommand(Rc); } else if (Command.C.cmd == MachO::LC_ROUTINES_64) { MachO::routines_command_64 Rc = Obj->getRoutinesCommand64(Command); PrintRoutinesCommand64(Rc); } else if (Command.C.cmd == MachO::LC_THREAD || Command.C.cmd == MachO::LC_UNIXTHREAD) { MachO::thread_command Tc = Obj->getThreadCommand(Command); PrintThreadCommand(Tc, Command.Ptr, Obj->isLittleEndian(), cputype); } else if (Command.C.cmd == MachO::LC_LOAD_DYLIB || Command.C.cmd == MachO::LC_ID_DYLIB || Command.C.cmd == MachO::LC_LOAD_WEAK_DYLIB || Command.C.cmd == MachO::LC_REEXPORT_DYLIB || Command.C.cmd == MachO::LC_LAZY_LOAD_DYLIB || Command.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB) { MachO::dylib_command Dl = Obj->getDylibIDLoadCommand(Command); PrintDylibCommand(Dl, Command.Ptr); } else if (Command.C.cmd == MachO::LC_CODE_SIGNATURE || Command.C.cmd == MachO::LC_SEGMENT_SPLIT_INFO || Command.C.cmd == MachO::LC_FUNCTION_STARTS || Command.C.cmd == MachO::LC_DATA_IN_CODE || Command.C.cmd == MachO::LC_DYLIB_CODE_SIGN_DRS || Command.C.cmd == MachO::LC_LINKER_OPTIMIZATION_HINT) { MachO::linkedit_data_command Ld = Obj->getLinkeditDataLoadCommand(Command); PrintLinkEditDataCommand(Ld, Buf.size()); } else { outs() << " cmd ?(" << format("0x%08" PRIx32, Command.C.cmd) << ")\n"; outs() << " cmdsize " << Command.C.cmdsize << "\n"; // TODO: get and print the raw bytes of the load command. } // TODO: print all the other kinds of load commands. if (i == ncmds - 1) break; else Command = Obj->getNextLoadCommandInfo(Command); } } static void getAndPrintMachHeader(const MachOObjectFile *Obj, uint32_t &ncmds, uint32_t &filetype, uint32_t &cputype, bool verbose) { if (Obj->is64Bit()) { MachO::mach_header_64 H_64; H_64 = Obj->getHeader64(); PrintMachHeader(H_64.magic, H_64.cputype, H_64.cpusubtype, H_64.filetype, H_64.ncmds, H_64.sizeofcmds, H_64.flags, verbose); ncmds = H_64.ncmds; filetype = H_64.filetype; cputype = H_64.cputype; } else { MachO::mach_header H; H = Obj->getHeader(); PrintMachHeader(H.magic, H.cputype, H.cpusubtype, H.filetype, H.ncmds, H.sizeofcmds, H.flags, verbose); ncmds = H.ncmds; filetype = H.filetype; cputype = H.cputype; } } void llvm::printMachOFileHeader(const object::ObjectFile *Obj) { const MachOObjectFile *file = dyn_cast(Obj); uint32_t ncmds = 0; uint32_t filetype = 0; uint32_t cputype = 0; getAndPrintMachHeader(file, ncmds, filetype, cputype, true); PrintLoadCommands(file, ncmds, filetype, cputype, true); } //===----------------------------------------------------------------------===// // export trie dumping //===----------------------------------------------------------------------===// void llvm::printMachOExportsTrie(const object::MachOObjectFile *Obj) { for (const llvm::object::ExportEntry &Entry : Obj->exports()) { uint64_t Flags = Entry.flags(); bool ReExport = (Flags & MachO::EXPORT_SYMBOL_FLAGS_REEXPORT); bool WeakDef = (Flags & MachO::EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION); bool ThreadLocal = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL); bool Abs = ((Flags & MachO::EXPORT_SYMBOL_FLAGS_KIND_MASK) == MachO::EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE); bool Resolver = (Flags & MachO::EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER); if (ReExport) outs() << "[re-export] "; else outs() << format("0x%08llX ", Entry.address()); // FIXME:add in base address outs() << Entry.name(); if (WeakDef || ThreadLocal || Resolver || Abs) { bool NeedsComma = false; outs() << " ["; if (WeakDef) { outs() << "weak_def"; NeedsComma = true; } if (ThreadLocal) { if (NeedsComma) outs() << ", "; outs() << "per-thread"; NeedsComma = true; } if (Abs) { if (NeedsComma) outs() << ", "; outs() << "absolute"; NeedsComma = true; } if (Resolver) { if (NeedsComma) outs() << ", "; outs() << format("resolver=0x%08llX", Entry.other()); NeedsComma = true; } outs() << "]"; } if (ReExport) { StringRef DylibName = "unknown"; int Ordinal = Entry.other() - 1; Obj->getLibraryShortNameByIndex(Ordinal, DylibName); if (Entry.otherName().empty()) outs() << " (from " << DylibName << ")"; else outs() << " (" << Entry.otherName() << " from " << DylibName << ")"; } outs() << "\n"; } } //===----------------------------------------------------------------------===// // rebase table dumping //===----------------------------------------------------------------------===// namespace { class SegInfo { public: SegInfo(const object::MachOObjectFile *Obj); StringRef segmentName(uint32_t SegIndex); StringRef sectionName(uint32_t SegIndex, uint64_t SegOffset); uint64_t address(uint32_t SegIndex, uint64_t SegOffset); private: struct SectionInfo { uint64_t Address; uint64_t Size; StringRef SectionName; StringRef SegmentName; uint64_t OffsetInSegment; uint64_t SegmentStartAddress; uint32_t SegmentIndex; }; const SectionInfo &findSection(uint32_t SegIndex, uint64_t SegOffset); SmallVector Sections; }; } SegInfo::SegInfo(const object::MachOObjectFile *Obj) { // Build table of sections so segIndex/offset pairs can be translated. uint32_t CurSegIndex = Obj->hasPageZeroSegment() ? 1 : 0; StringRef CurSegName; uint64_t CurSegAddress; for (const SectionRef &Section : Obj->sections()) { SectionInfo Info; if (error(Section.getName(Info.SectionName))) return; Info.Address = Section.getAddress(); Info.Size = Section.getSize(); Info.SegmentName = Obj->getSectionFinalSegmentName(Section.getRawDataRefImpl()); if (!Info.SegmentName.equals(CurSegName)) { ++CurSegIndex; CurSegName = Info.SegmentName; CurSegAddress = Info.Address; } Info.SegmentIndex = CurSegIndex - 1; Info.OffsetInSegment = Info.Address - CurSegAddress; Info.SegmentStartAddress = CurSegAddress; Sections.push_back(Info); } } StringRef SegInfo::segmentName(uint32_t SegIndex) { for (const SectionInfo &SI : Sections) { if (SI.SegmentIndex == SegIndex) return SI.SegmentName; } llvm_unreachable("invalid segIndex"); } const SegInfo::SectionInfo &SegInfo::findSection(uint32_t SegIndex, uint64_t OffsetInSeg) { for (const SectionInfo &SI : Sections) { if (SI.SegmentIndex != SegIndex) continue; if (SI.OffsetInSegment > OffsetInSeg) continue; if (OffsetInSeg >= (SI.OffsetInSegment + SI.Size)) continue; return SI; } llvm_unreachable("segIndex and offset not in any section"); } StringRef SegInfo::sectionName(uint32_t SegIndex, uint64_t OffsetInSeg) { return findSection(SegIndex, OffsetInSeg).SectionName; } uint64_t SegInfo::address(uint32_t SegIndex, uint64_t OffsetInSeg) { const SectionInfo &SI = findSection(SegIndex, OffsetInSeg); return SI.SegmentStartAddress + OffsetInSeg; } void llvm::printMachORebaseTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address type\n"; for (const llvm::object::MachORebaseEntry &Entry : Obj->rebaseTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: __DATA __nl_symbol_ptr 0x0000F00C pointer outs() << format("%-8s %-18s 0x%08" PRIX64 " %s\n", SegmentName.str().c_str(), SectionName.str().c_str(), Address, Entry.typeName().str().c_str()); } } static StringRef ordinalName(const object::MachOObjectFile *Obj, int Ordinal) { StringRef DylibName; switch (Ordinal) { case MachO::BIND_SPECIAL_DYLIB_SELF: return "this-image"; case MachO::BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE: return "main-executable"; case MachO::BIND_SPECIAL_DYLIB_FLAT_LOOKUP: return "flat-namespace"; default: if (Ordinal > 0) { std::error_code EC = Obj->getLibraryShortNameByIndex(Ordinal - 1, DylibName); if (EC) return "<>"; return DylibName; } } return "<>"; } //===----------------------------------------------------------------------===// // bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address type " "addend dylib symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->bindTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __got 0x00012010 pointer 0 libSystem ___stack_chk_guard StringRef Attr; if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_WEAK_IMPORT) Attr = " (weak_import)"; outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(Entry.typeName(), 8) << " " << format_decimal(Entry.addend(), 8) << " " << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " << Entry.symbolName() << Attr << "\n"; } } //===----------------------------------------------------------------------===// // lazy bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOLazyBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address " "dylib symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->lazyBindTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __got 0x00012010 libSystem ___stack_chk_guard outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(ordinalName(Obj, Entry.ordinal()), 16) << " " << Entry.symbolName() << "\n"; } } //===----------------------------------------------------------------------===// // weak bind table dumping //===----------------------------------------------------------------------===// void llvm::printMachOWeakBindTable(const object::MachOObjectFile *Obj) { // Build table of sections so names can used in final output. SegInfo sectionTable(Obj); outs() << "segment section address " "type addend symbol\n"; for (const llvm::object::MachOBindEntry &Entry : Obj->weakBindTable()) { // Strong symbols don't have a location to update. if (Entry.flags() & MachO::BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) { outs() << " strong " << Entry.symbolName() << "\n"; continue; } uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); StringRef SegmentName = sectionTable.segmentName(SegIndex); StringRef SectionName = sectionTable.sectionName(SegIndex, OffsetInSeg); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); // Table lines look like: // __DATA __data 0x00001000 pointer 0 _foo outs() << left_justify(SegmentName, 8) << " " << left_justify(SectionName, 18) << " " << format_hex(Address, 10, true) << " " << left_justify(Entry.typeName(), 8) << " " << format_decimal(Entry.addend(), 8) << " " << Entry.symbolName() << "\n"; } } // get_dyld_bind_info_symbolname() is used for disassembly and passed an // address, ReferenceValue, in the Mach-O file and looks in the dyld bind // information for that address. If the address is found its binding symbol // name is returned. If not nullptr is returned. static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue, struct DisassembleInfo *info) { if (info->bindtable == nullptr) { info->bindtable = new (BindTable); SegInfo sectionTable(info->O); for (const llvm::object::MachOBindEntry &Entry : info->O->bindTable()) { uint32_t SegIndex = Entry.segmentIndex(); uint64_t OffsetInSeg = Entry.segmentOffset(); uint64_t Address = sectionTable.address(SegIndex, OffsetInSeg); const char *SymbolName = nullptr; StringRef name = Entry.symbolName(); if (!name.empty()) SymbolName = name.data(); info->bindtable->push_back(std::make_pair(Address, SymbolName)); } } for (bind_table_iterator BI = info->bindtable->begin(), BE = info->bindtable->end(); BI != BE; ++BI) { uint64_t Address = BI->first; if (ReferenceValue == Address) { const char *SymbolName = BI->second; return SymbolName; } } return nullptr; }