//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a testing tool for use with the MC-JIT LLVM components. // //===----------------------------------------------------------------------===// #include "llvm/ADT/StringMap.h" #include "llvm/DebugInfo/DWARF/DIContext.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/ExecutionEngine/RuntimeDyldChecker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDisassembler.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Object/MachO.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Memory.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace llvm::object; static cl::list InputFileList(cl::Positional, cl::ZeroOrMore, cl::desc("")); enum ActionType { AC_Execute, AC_PrintLineInfo, AC_Verify }; static cl::opt Action(cl::desc("Action to perform:"), cl::init(AC_Execute), cl::values(clEnumValN(AC_Execute, "execute", "Load, link, and execute the inputs."), clEnumValN(AC_PrintLineInfo, "printline", "Load, link, and print line information for each function."), clEnumValN(AC_Verify, "verify", "Load, link and verify the resulting memory image."), clEnumValEnd)); static cl::opt EntryPoint("entry", cl::desc("Function to call as entry point."), cl::init("_main")); static cl::list Dylibs("dylib", cl::desc("Add library."), cl::ZeroOrMore); static cl::opt TripleName("triple", cl::desc("Target triple for disassembler")); static cl::list CheckFiles("check", cl::desc("File containing RuntimeDyld verifier checks."), cl::ZeroOrMore); static cl::opt TargetAddrStart("target-addr-start", cl::desc("For -verify only: start of phony target address " "range."), cl::init(4096), // Start at "page 1" - no allocating at "null". cl::Hidden); static cl::opt TargetAddrEnd("target-addr-end", cl::desc("For -verify only: end of phony target address range."), cl::init(~0ULL), cl::Hidden); static cl::opt TargetSectionSep("target-section-sep", cl::desc("For -verify only: Separation between sections in " "phony target address space."), cl::init(0), cl::Hidden); static cl::list SpecificSectionMappings("map-section", cl::desc("Map a section to a specific address."), cl::ZeroOrMore); /* *** */ // A trivial memory manager that doesn't do anything fancy, just uses the // support library allocation routines directly. class TrivialMemoryManager : public RTDyldMemoryManager { public: SmallVector FunctionMemory; SmallVector DataMemory; uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) override; uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) override; void *getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure = true) override { return nullptr; } bool finalizeMemory(std::string *ErrMsg) override { return false; } // Invalidate instruction cache for sections with execute permissions. // Some platforms with separate data cache and instruction cache require // explicit cache flush, otherwise JIT code manipulations (like resolved // relocations) will get to the data cache but not to the instruction cache. virtual void invalidateInstructionCache(); }; uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) { sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr); FunctionMemory.push_back(MB); return (uint8_t*)MB.base(); } uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) { sys::MemoryBlock MB = sys::Memory::AllocateRWX(Size, nullptr, nullptr); DataMemory.push_back(MB); return (uint8_t*)MB.base(); } void TrivialMemoryManager::invalidateInstructionCache() { for (int i = 0, e = FunctionMemory.size(); i != e; ++i) sys::Memory::InvalidateInstructionCache(FunctionMemory[i].base(), FunctionMemory[i].size()); for (int i = 0, e = DataMemory.size(); i != e; ++i) sys::Memory::InvalidateInstructionCache(DataMemory[i].base(), DataMemory[i].size()); } static const char *ProgramName; static void Message(const char *Type, const Twine &Msg) { errs() << ProgramName << ": " << Type << ": " << Msg << "\n"; } static int Error(const Twine &Msg) { Message("error", Msg); return 1; } static void loadDylibs() { for (const std::string &Dylib : Dylibs) { if (sys::fs::is_regular_file(Dylib)) { std::string ErrMsg; if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg)) llvm::errs() << "Error loading '" << Dylib << "': " << ErrMsg << "\n"; } else llvm::errs() << "Dylib not found: '" << Dylib << "'.\n"; } } /* *** */ static int printLineInfoForInput() { // Load any dylibs requested on the command line. loadDylibs(); // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) { // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; RuntimeDyld Dyld(MemMgr, MemMgr); // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(InputFileList[i]); if (std::error_code EC = InputBuffer.getError()) return Error("unable to read input: '" + EC.message() + "'"); ErrorOr> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (std::error_code EC = MaybeObj.getError()) return Error("unable to create object file: '" + EC.message() + "'"); ObjectFile &Obj = **MaybeObj; // Load the object file std::unique_ptr LoadedObjInfo = Dyld.loadObject(Obj); if (Dyld.hasError()) return Error(Dyld.getErrorString()); // Resolve all the relocations we can. Dyld.resolveRelocations(); OwningBinary DebugObj = LoadedObjInfo->getObjectForDebug(Obj); std::unique_ptr Context( DIContext::getDWARFContext(*DebugObj.getBinary())); // Use symbol info to iterate functions in the object. for (object::symbol_iterator I = DebugObj.getBinary()->symbol_begin(), E = DebugObj.getBinary()->symbol_end(); I != E; ++I) { object::SymbolRef::Type SymType; if (I->getType(SymType)) continue; if (SymType == object::SymbolRef::ST_Function) { StringRef Name; uint64_t Addr; uint64_t Size; if (I->getName(Name)) continue; if (I->getAddress(Addr)) continue; if (I->getSize(Size)) continue; outs() << "Function: " << Name << ", Size = " << Size << "\n"; DILineInfoTable Lines = Context->getLineInfoForAddressRange(Addr, Size); DILineInfoTable::iterator Begin = Lines.begin(); DILineInfoTable::iterator End = Lines.end(); for (DILineInfoTable::iterator It = Begin; It != End; ++It) { outs() << " Line info @ " << It->first - Addr << ": " << It->second.FileName << ", line:" << It->second.Line << "\n"; } } } } return 0; } static int executeInput() { // Load any dylibs requested on the command line. loadDylibs(); // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; RuntimeDyld Dyld(MemMgr, MemMgr); // FIXME: Preserve buffers until resolveRelocations time to work around a bug // in RuntimeDyldELF. // This fixme should be fixed ASAP. This is a very brittle workaround. std::vector> InputBuffers; // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) { // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(InputFileList[i]); if (std::error_code EC = InputBuffer.getError()) return Error("unable to read input: '" + EC.message() + "'"); ErrorOr> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (std::error_code EC = MaybeObj.getError()) return Error("unable to create object file: '" + EC.message() + "'"); ObjectFile &Obj = **MaybeObj; InputBuffers.push_back(std::move(*InputBuffer)); // Load the object file Dyld.loadObject(Obj); if (Dyld.hasError()) { return Error(Dyld.getErrorString()); } } // Resolve all the relocations we can. Dyld.resolveRelocations(); // Clear instruction cache before code will be executed. MemMgr.invalidateInstructionCache(); // FIXME: Error out if there are unresolved relocations. // Get the address of the entry point (_main by default). void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint); if (!MainAddress) return Error("no definition for '" + EntryPoint + "'"); // Invalidate the instruction cache for each loaded function. for (unsigned i = 0, e = MemMgr.FunctionMemory.size(); i != e; ++i) { sys::MemoryBlock &Data = MemMgr.FunctionMemory[i]; // Make sure the memory is executable. std::string ErrorStr; sys::Memory::InvalidateInstructionCache(Data.base(), Data.size()); if (!sys::Memory::setExecutable(Data, &ErrorStr)) return Error("unable to mark function executable: '" + ErrorStr + "'"); } // Dispatch to _main(). errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n"; int (*Main)(int, const char**) = (int(*)(int,const char**)) uintptr_t(MainAddress); const char **Argv = new const char*[2]; // Use the name of the first input object module as argv[0] for the target. Argv[0] = InputFileList[0].c_str(); Argv[1] = nullptr; return Main(1, Argv); } static int checkAllExpressions(RuntimeDyldChecker &Checker) { for (const auto& CheckerFileName : CheckFiles) { ErrorOr> CheckerFileBuf = MemoryBuffer::getFileOrSTDIN(CheckerFileName); if (std::error_code EC = CheckerFileBuf.getError()) return Error("unable to read input '" + CheckerFileName + "': " + EC.message()); if (!Checker.checkAllRulesInBuffer("# rtdyld-check:", CheckerFileBuf.get().get())) return Error("some checks in '" + CheckerFileName + "' failed"); } return 0; } static std::map applySpecificSectionMappings(RuntimeDyldChecker &Checker) { std::map SpecificMappings; for (StringRef Mapping : SpecificSectionMappings) { size_t EqualsIdx = Mapping.find_first_of("="); StringRef SectionIDStr = Mapping.substr(0, EqualsIdx); size_t ComaIdx = Mapping.find_first_of(","); if (ComaIdx == StringRef::npos) { errs() << "Invalid section specification '" << Mapping << "'. Should be ',
='\n"; exit(1); } StringRef FileName = SectionIDStr.substr(0, ComaIdx); StringRef SectionName = SectionIDStr.substr(ComaIdx + 1); uint64_t OldAddrInt; std::string ErrorMsg; std::tie(OldAddrInt, ErrorMsg) = Checker.getSectionAddr(FileName, SectionName, true); if (ErrorMsg != "") { errs() << ErrorMsg; exit(1); } void* OldAddr = reinterpret_cast(static_cast(OldAddrInt)); StringRef NewAddrStr = Mapping.substr(EqualsIdx + 1); uint64_t NewAddr; if (NewAddrStr.getAsInteger(0, NewAddr)) { errs() << "Invalid section address in mapping: " << Mapping << "\n"; exit(1); } Checker.getRTDyld().mapSectionAddress(OldAddr, NewAddr); SpecificMappings[OldAddr] = NewAddr; } return SpecificMappings; } // Scatter sections in all directions! // Remaps section addresses for -verify mode. The following command line options // can be used to customize the layout of the memory within the phony target's // address space: // -target-addr-start -- Specify where the phony target addres range starts. // -target-addr-end -- Specify where the phony target address range ends. // -target-section-sep -- Specify how big a gap should be left between the // end of one section and the start of the next. // Defaults to zero. Set to something big // (e.g. 1 << 32) to stress-test stubs, GOTs, etc. // static void remapSections(const llvm::Triple &TargetTriple, const TrivialMemoryManager &MemMgr, RuntimeDyldChecker &Checker) { // Set up a work list (section addr/size pairs). typedef std::list> WorklistT; WorklistT Worklist; for (const auto& CodeSection : MemMgr.FunctionMemory) Worklist.push_back(std::make_pair(CodeSection.base(), CodeSection.size())); for (const auto& DataSection : MemMgr.DataMemory) Worklist.push_back(std::make_pair(DataSection.base(), DataSection.size())); // Apply any section-specific mappings that were requested on the command // line. typedef std::map AppliedMappingsT; AppliedMappingsT AppliedMappings = applySpecificSectionMappings(Checker); // Keep an "already allocated" mapping of section target addresses to sizes. // Sections whose address mappings aren't specified on the command line will // allocated around the explicitly mapped sections while maintaining the // minimum separation. std::map AlreadyAllocated; // Move the previously applied mappings into the already-allocated map. for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end(); I != E;) { WorklistT::iterator Tmp = I; ++I; AppliedMappingsT::iterator AI = AppliedMappings.find(Tmp->first); if (AI != AppliedMappings.end()) { AlreadyAllocated[AI->second] = Tmp->second; Worklist.erase(Tmp); } } // If the -target-addr-end option wasn't explicitly passed, then set it to a // sensible default based on the target triple. if (TargetAddrEnd.getNumOccurrences() == 0) { if (TargetTriple.isArch16Bit()) TargetAddrEnd = (1ULL << 16) - 1; else if (TargetTriple.isArch32Bit()) TargetAddrEnd = (1ULL << 32) - 1; // TargetAddrEnd already has a sensible default for 64-bit systems, so // there's nothing to do in the 64-bit case. } // Process any elements remaining in the worklist. while (!Worklist.empty()) { std::pair CurEntry = Worklist.front(); Worklist.pop_front(); uint64_t NextSectionAddr = TargetAddrStart; for (const auto &Alloc : AlreadyAllocated) if (NextSectionAddr + CurEntry.second + TargetSectionSep <= Alloc.first) break; else NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep; AlreadyAllocated[NextSectionAddr] = CurEntry.second; Checker.getRTDyld().mapSectionAddress(CurEntry.first, NextSectionAddr); } } // Load and link the objects specified on the command line, but do not execute // anything. Instead, attach a RuntimeDyldChecker instance and call it to // verify the correctness of the linked memory. static int linkAndVerify() { // Check for missing triple. if (TripleName == "") { llvm::errs() << "Error: -triple required when running in -verify mode.\n"; return 1; } // Look up the target and build the disassembler. Triple TheTriple(Triple::normalize(TripleName)); std::string ErrorStr; const Target *TheTarget = TargetRegistry::lookupTarget("", TheTriple, ErrorStr); if (!TheTarget) { llvm::errs() << "Error accessing target '" << TripleName << "': " << ErrorStr << "\n"; return 1; } TripleName = TheTriple.getTriple(); std::unique_ptr STI( TheTarget->createMCSubtargetInfo(TripleName, "", "")); assert(STI && "Unable to create subtarget info!"); std::unique_ptr MRI(TheTarget->createMCRegInfo(TripleName)); assert(MRI && "Unable to create target register info!"); std::unique_ptr MAI(TheTarget->createMCAsmInfo(*MRI, TripleName)); assert(MAI && "Unable to create target asm info!"); MCContext Ctx(MAI.get(), MRI.get(), nullptr); std::unique_ptr Disassembler( TheTarget->createMCDisassembler(*STI, Ctx)); assert(Disassembler && "Unable to create disassembler!"); std::unique_ptr MII(TheTarget->createMCInstrInfo()); std::unique_ptr InstPrinter( TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI)); // Load any dylibs requested on the command line. loadDylibs(); // Instantiate a dynamic linker. TrivialMemoryManager MemMgr; RuntimeDyld Dyld(MemMgr, MemMgr); Dyld.setProcessAllSections(true); RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(), llvm::dbgs()); // FIXME: Preserve buffers until resolveRelocations time to work around a bug // in RuntimeDyldELF. // This fixme should be fixed ASAP. This is a very brittle workaround. std::vector> InputBuffers; // If we don't have any input files, read from stdin. if (!InputFileList.size()) InputFileList.push_back("-"); for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) { // Load the input memory buffer. ErrorOr> InputBuffer = MemoryBuffer::getFileOrSTDIN(InputFileList[i]); if (std::error_code EC = InputBuffer.getError()) return Error("unable to read input: '" + EC.message() + "'"); ErrorOr> MaybeObj( ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef())); if (std::error_code EC = MaybeObj.getError()) return Error("unable to create object file: '" + EC.message() + "'"); ObjectFile &Obj = **MaybeObj; InputBuffers.push_back(std::move(*InputBuffer)); // Load the object file Dyld.loadObject(Obj); if (Dyld.hasError()) { return Error(Dyld.getErrorString()); } } // Re-map the section addresses into the phony target address space. remapSections(TheTriple, MemMgr, Checker); // Resolve all the relocations we can. Dyld.resolveRelocations(); // Register EH frames. Dyld.registerEHFrames(); int ErrorCode = checkAllExpressions(Checker); if (Dyld.hasError()) { errs() << "RTDyld reported an error applying relocations:\n " << Dyld.getErrorString() << "\n"; ErrorCode = 1; } return ErrorCode; } int main(int argc, char **argv) { sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); ProgramName = argv[0]; llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. llvm::InitializeAllTargetInfos(); llvm::InitializeAllTargetMCs(); llvm::InitializeAllDisassemblers(); cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n"); switch (Action) { case AC_Execute: return executeInput(); case AC_PrintLineInfo: return printLineInfoForInput(); case AC_Verify: return linkAndVerify(); } }