//===- yaml2obj - Convert YAML to a binary object file --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This program takes a YAML description of an object file and outputs the // binary equivalent. // // This is used for writing tests that require binary files. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Object/COFFYAML.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/PrettyStackTrace.h" #include "llvm/Support/Signals.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include using namespace llvm; static cl::opt Input(cl::Positional, cl::desc(""), cl::init("-")); // TODO: The "right" way to tell what kind of object file a given YAML file // corresponds to is to look at YAML "tags" (e.g. `!Foo`). Then, different // tags (`!ELF`, `!COFF`, etc.) would be used to discriminate between them. // Interpreting the tags is needed eventually for when writing test cases, // so that we can e.g. have `!Archive` contain a sequence of `!ELF`, and // just Do The Right Thing. However, interpreting these tags and acting on // them appropriately requires some work in the YAML parser and the YAMLIO // library. enum YAMLObjectFormat { YOF_COFF }; cl::opt Format( "format", cl::desc("Interpret input as this type of object file"), cl::values( clEnumValN(YOF_COFF, "coff", "COFF object file format"), clEnumValEnd)); /// This parses a yaml stream that represents a COFF object file. /// See docs/yaml2obj for the yaml scheema. struct COFFParser { COFFParser(COFFYAML::Object &Obj) : Obj(Obj) { // A COFF string table always starts with a 4 byte size field. Offsets into // it include this size, so allocate it now. StringTable.append(4, 0); } bool parseSections() { for (std::vector::iterator i = Obj.Sections.begin(), e = Obj.Sections.end(); i != e; ++i) { COFFYAML::Section &Sec = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sec.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sec.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); std::string str = utostr(Index); if (str.size() > 7) { errs() << "String table got too large"; return false; } Sec.Header.Name[0] = '/'; std::copy(str.begin(), str.end(), Sec.Header.Name + 1); } Sec.Header.Characteristics |= (Log2_32(Sec.Alignment) + 1) << 20; } return true; } bool parseSymbols() { for (std::vector::iterator i = Obj.Symbols.begin(), e = Obj.Symbols.end(); i != e; ++i) { COFFYAML::Symbol &Sym = *i; // If the name is less than 8 bytes, store it in place, otherwise // store it in the string table. StringRef Name = Sym.Name; if (Name.size() <= COFF::NameSize) { std::copy(Name.begin(), Name.end(), Sym.Header.Name); } else { // Add string to the string table and format the index for output. unsigned Index = getStringIndex(Name); *reinterpret_cast( Sym.Header.Name + 4) = Index; } Sym.Header.Type = Sym.SimpleType; Sym.Header.Type |= Sym.ComplexType << COFF::SCT_COMPLEX_TYPE_SHIFT; } return true; } bool parse() { if (!parseSections()) return false; if (!parseSymbols()) return false; return true; } unsigned getStringIndex(StringRef Str) { StringMap::iterator i = StringTableMap.find(Str); if (i == StringTableMap.end()) { unsigned Index = StringTable.size(); StringTable.append(Str.begin(), Str.end()); StringTable.push_back(0); StringTableMap[Str] = Index; return Index; } return i->second; } COFFYAML::Object &Obj; StringMap StringTableMap; std::string StringTable; }; // Take a CP and assign addresses and sizes to everything. Returns false if the // layout is not valid to do. static bool layoutCOFF(COFFParser &CP) { uint32_t SectionTableStart = 0; uint32_t SectionTableSize = 0; // The section table starts immediately after the header, including the // optional header. SectionTableStart = sizeof(COFF::header) + CP.Obj.Header.SizeOfOptionalHeader; SectionTableSize = sizeof(COFF::section) * CP.Obj.Sections.size(); uint32_t CurrentSectionDataOffset = SectionTableStart + SectionTableSize; // Assign each section data address consecutively. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { StringRef SecData = i->SectionData.getHex(); if (!SecData.empty()) { i->Header.SizeOfRawData = SecData.size()/2; i->Header.PointerToRawData = CurrentSectionDataOffset; CurrentSectionDataOffset += i->Header.SizeOfRawData; if (!i->Relocations.empty()) { i->Header.PointerToRelocations = CurrentSectionDataOffset; i->Header.NumberOfRelocations = i->Relocations.size(); CurrentSectionDataOffset += i->Header.NumberOfRelocations * COFF::RelocationSize; } // TODO: Handle alignment. } else { i->Header.SizeOfRawData = 0; i->Header.PointerToRawData = 0; } } uint32_t SymbolTableStart = CurrentSectionDataOffset; // Calculate number of symbols. uint32_t NumberOfSymbols = 0; for (std::vector::iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { unsigned AuxBytes = i->AuxiliaryData.getHex().size() / 2; if (AuxBytes % COFF::SymbolSize != 0) { errs() << "AuxiliaryData size not a multiple of symbol size!\n"; return false; } i->Header.NumberOfAuxSymbols = AuxBytes / COFF::SymbolSize; NumberOfSymbols += 1 + i->Header.NumberOfAuxSymbols; } // Store all the allocated start addresses in the header. CP.Obj.Header.NumberOfSections = CP.Obj.Sections.size(); CP.Obj.Header.NumberOfSymbols = NumberOfSymbols; CP.Obj.Header.PointerToSymbolTable = SymbolTableStart; *reinterpret_cast(&CP.StringTable[0]) = CP.StringTable.size(); return true; } template struct binary_le_impl { value_type Value; binary_le_impl(value_type V) : Value(V) {} }; template raw_ostream &operator <<( raw_ostream &OS , const binary_le_impl &BLE) { char Buffer[sizeof(BLE.Value)]; support::endian::write( Buffer, BLE.Value); OS.write(Buffer, sizeof(BLE.Value)); return OS; } template binary_le_impl binary_le(value_type V) { return binary_le_impl(V); } static bool writeHexData(StringRef Data, raw_ostream &OS) { unsigned Size = Data.size(); if (Size % 2) return false; for (unsigned I = 0; I != Size; I += 2) { uint8_t Byte; if (Data.substr(I, 2).getAsInteger(16, Byte)) return false; OS.write(Byte); } return true; } bool writeCOFF(COFFParser &CP, raw_ostream &OS) { OS << binary_le(CP.Obj.Header.Machine) << binary_le(CP.Obj.Header.NumberOfSections) << binary_le(CP.Obj.Header.TimeDateStamp) << binary_le(CP.Obj.Header.PointerToSymbolTable) << binary_le(CP.Obj.Header.NumberOfSymbols) << binary_le(CP.Obj.Header.SizeOfOptionalHeader) << binary_le(CP.Obj.Header.Characteristics); // Output section table. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.VirtualSize) << binary_le(i->Header.VirtualAddress) << binary_le(i->Header.SizeOfRawData) << binary_le(i->Header.PointerToRawData) << binary_le(i->Header.PointerToRelocations) << binary_le(i->Header.PointerToLineNumbers) << binary_le(i->Header.NumberOfRelocations) << binary_le(i->Header.NumberOfLineNumbers) << binary_le(i->Header.Characteristics); } // Output section data. for (std::vector::iterator i = CP.Obj.Sections.begin(), e = CP.Obj.Sections.end(); i != e; ++i) { StringRef SecData = i->SectionData.getHex(); if (!SecData.empty()) { if (!writeHexData(SecData, OS)) { errs() << "SectionData must be a collection of pairs of hex bytes"; return false; } } for (unsigned I2 = 0, E2 = i->Relocations.size(); I2 != E2; ++I2) { const COFF::relocation &R = i->Relocations[I2]; OS << binary_le(R.VirtualAddress) << binary_le(R.SymbolTableIndex) << binary_le(R.Type); } } // Output symbol table. for (std::vector::const_iterator i = CP.Obj.Symbols.begin(), e = CP.Obj.Symbols.end(); i != e; ++i) { OS.write(i->Header.Name, COFF::NameSize); OS << binary_le(i->Header.Value) << binary_le(i->Header.SectionNumber) << binary_le(i->Header.Type) << binary_le(i->Header.StorageClass) << binary_le(i->Header.NumberOfAuxSymbols); StringRef Data = i->AuxiliaryData.getHex(); if (!Data.empty()) { if (!writeHexData(Data, OS)) { errs() << "AuxiliaryData must be a collection of pairs of hex bytes"; return false; } } } // Output string table. OS.write(&CP.StringTable[0], CP.StringTable.size()); return true; } static int yaml2coff(llvm::raw_ostream &Out, llvm::MemoryBuffer *Buf) { yaml::Input YIn(Buf->getBuffer()); COFFYAML::Object Doc; YIn >> Doc; if (YIn.error()) { errs() << "yaml2obj: Failed to parse YAML file!\n"; return 1; } COFFParser CP(Doc); if (!CP.parse()) { errs() << "yaml2obj: Failed to parse YAML file!\n"; return 1; } if (!layoutCOFF(CP)) { errs() << "yaml2obj: Failed to layout COFF file!\n"; return 1; } if (!writeCOFF(CP, Out)) { errs() << "yaml2obj: Failed to write COFF file!\n"; return 1; } return 0; } int main(int argc, char **argv) { cl::ParseCommandLineOptions(argc, argv); sys::PrintStackTraceOnErrorSignal(); PrettyStackTraceProgram X(argc, argv); llvm_shutdown_obj Y; // Call llvm_shutdown() on exit. OwningPtr Buf; if (MemoryBuffer::getFileOrSTDIN(Input, Buf)) return 1; if (Format == YOF_COFF) { return yaml2coff(outs(), Buf.get()); } else { errs() << "Not yet implemented\n"; return 1; } }