//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate the machine model as described in // the target description. // //===----------------------------------------------------------------------===// #include "CodeGenSchedule.h" #include "CodeGenTarget.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Regex.h" #include "llvm/TableGen/Error.h" using namespace llvm; #define DEBUG_TYPE "subtarget-emitter" #ifndef NDEBUG static void dumpIdxVec(const IdxVec &V) { for (unsigned i = 0, e = V.size(); i < e; ++i) { dbgs() << V[i] << ", "; } } static void dumpIdxVec(const SmallVectorImpl<unsigned> &V) { for (unsigned i = 0, e = V.size(); i < e; ++i) { dbgs() << V[i] << ", "; } } #endif namespace { // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp. struct InstrsOp : public SetTheory::Operator { void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc); } }; // (instregex "OpcPat",...) Find all instructions matching an opcode pattern. // // TODO: Since this is a prefix match, perform a binary search over the // instruction names using lower_bound. Note that the predefined instrs must be // scanned linearly first. However, this is only safe if the regex pattern has // no top-level bars. The DAG already has a list of patterns, so there's no // reason to use top-level bars, but we need a way to verify they don't exist // before implementing the optimization. struct InstRegexOp : public SetTheory::Operator { const CodeGenTarget &Target; InstRegexOp(const CodeGenTarget &t): Target(t) {} void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts, ArrayRef<SMLoc> Loc) override { SmallVector<Regex, 4> RegexList; for (DagInit::const_arg_iterator AI = Expr->arg_begin(), AE = Expr->arg_end(); AI != AE; ++AI) { StringInit *SI = dyn_cast<StringInit>(*AI); if (!SI) PrintFatalError(Loc, "instregex requires pattern string: " + Expr->getAsString()); std::string pat = SI->getValue(); // Implement a python-style prefix match. if (pat[0] != '^') { pat.insert(0, "^("); pat.insert(pat.end(), ')'); } RegexList.push_back(Regex(pat)); } for (const CodeGenInstruction *Inst : Target.instructions()) { for (auto &R : RegexList) { if (R.match(Inst->TheDef->getName())) Elts.insert(Inst->TheDef); } } } }; } // end anonymous namespace /// CodeGenModels ctor interprets machine model records and populates maps. CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK, const CodeGenTarget &TGT): Records(RK), Target(TGT) { Sets.addFieldExpander("InstRW", "Instrs"); // Allow Set evaluation to recognize the dags used in InstRW records: // (instrs Op1, Op1...) Sets.addOperator("instrs", new InstrsOp); Sets.addOperator("instregex", new InstRegexOp(Target)); // Instantiate a CodeGenProcModel for each SchedMachineModel with the values // that are explicitly referenced in tablegen records. Resources associated // with each processor will be derived later. Populate ProcModelMap with the // CodeGenProcModel instances. collectProcModels(); // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly // defined, and populate SchedReads and SchedWrites vectors. Implicit // SchedReadWrites that represent sequences derived from expanded variant will // be inferred later. collectSchedRW(); // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly // required by an instruction definition, and populate SchedClassIdxMap. Set // NumItineraryClasses to the number of explicit itinerary classes referenced // by instructions. Set NumInstrSchedClasses to the number of itinerary // classes plus any classes implied by instructions that derive from class // Sched and provide SchedRW list. This does not infer any new classes from // SchedVariant. collectSchedClasses(); // Find instruction itineraries for each processor. Sort and populate // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires // all itinerary classes to be discovered. collectProcItins(); // Find ItinRW records for each processor and itinerary class. // (For per-operand resources mapped to itinerary classes). collectProcItinRW(); // Infer new SchedClasses from SchedVariant. inferSchedClasses(); // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and // ProcResourceDefs. collectProcResources(); } /// Gather all processor models. void CodeGenSchedModels::collectProcModels() { RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor"); std::sort(ProcRecords.begin(), ProcRecords.end(), LessRecordFieldName()); // Reserve space because we can. Reallocation would be ok. ProcModels.reserve(ProcRecords.size()+1); // Use idx=0 for NoModel/NoItineraries. Record *NoModelDef = Records.getDef("NoSchedModel"); Record *NoItinsDef = Records.getDef("NoItineraries"); ProcModels.push_back(CodeGenProcModel(0, "NoSchedModel", NoModelDef, NoItinsDef)); ProcModelMap[NoModelDef] = 0; // For each processor, find a unique machine model. for (unsigned i = 0, N = ProcRecords.size(); i < N; ++i) addProcModel(ProcRecords[i]); } /// Get a unique processor model based on the defined MachineModel and /// ProcessorItineraries. void CodeGenSchedModels::addProcModel(Record *ProcDef) { Record *ModelKey = getModelOrItinDef(ProcDef); if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second) return; std::string Name = ModelKey->getName(); if (ModelKey->isSubClassOf("SchedMachineModel")) { Record *ItinsDef = ModelKey->getValueAsDef("Itineraries"); ProcModels.push_back( CodeGenProcModel(ProcModels.size(), Name, ModelKey, ItinsDef)); } else { // An itinerary is defined without a machine model. Infer a new model. if (!ModelKey->getValueAsListOfDefs("IID").empty()) Name = Name + "Model"; ProcModels.push_back( CodeGenProcModel(ProcModels.size(), Name, ProcDef->getValueAsDef("SchedModel"), ModelKey)); } DEBUG(ProcModels.back().dump()); } // Recursively find all reachable SchedReadWrite records. static void scanSchedRW(Record *RWDef, RecVec &RWDefs, SmallPtrSet<Record*, 16> &RWSet) { if (!RWSet.insert(RWDef).second) return; RWDefs.push_back(RWDef); // Reads don't current have sequence records, but it can be added later. if (RWDef->isSubClassOf("WriteSequence")) { RecVec Seq = RWDef->getValueAsListOfDefs("Writes"); for (RecIter I = Seq.begin(), E = Seq.end(); I != E; ++I) scanSchedRW(*I, RWDefs, RWSet); } else if (RWDef->isSubClassOf("SchedVariant")) { // Visit each variant (guarded by a different predicate). RecVec Vars = RWDef->getValueAsListOfDefs("Variants"); for (RecIter VI = Vars.begin(), VE = Vars.end(); VI != VE; ++VI) { // Visit each RW in the sequence selected by the current variant. RecVec Selected = (*VI)->getValueAsListOfDefs("Selected"); for (RecIter I = Selected.begin(), E = Selected.end(); I != E; ++I) scanSchedRW(*I, RWDefs, RWSet); } } } // Collect and sort all SchedReadWrites reachable via tablegen records. // More may be inferred later when inferring new SchedClasses from variants. void CodeGenSchedModels::collectSchedRW() { // Reserve idx=0 for invalid writes/reads. SchedWrites.resize(1); SchedReads.resize(1); SmallPtrSet<Record*, 16> RWSet; // Find all SchedReadWrites referenced by instruction defs. RecVec SWDefs, SRDefs; for (const CodeGenInstruction *Inst : Target.instructions()) { Record *SchedDef = Inst->TheDef; if (SchedDef->isValueUnset("SchedRW")) continue; RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW"); for (RecIter RWI = RWs.begin(), RWE = RWs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by InstRW. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) { // For all OperandReadWrites. RecVec RWDefs = (*OI)->getValueAsListOfDefs("OperandReadWrites"); for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by ItinRW. RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { // For all OperandReadWrites. RecVec RWDefs = (*II)->getValueAsListOfDefs("OperandReadWrites"); for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) scanSchedRW(*RWI, SWDefs, RWSet); else { assert((*RWI)->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); scanSchedRW(*RWI, SRDefs, RWSet); } } } // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted // for the loop below that initializes Alias vectors. RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias"); std::sort(AliasDefs.begin(), AliasDefs.end(), LessRecord()); for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); if (MatchDef->isSubClassOf("SchedWrite")) { if (!AliasDef->isSubClassOf("SchedWrite")) PrintFatalError((*AI)->getLoc(), "SchedWrite Alias must be SchedWrite"); scanSchedRW(AliasDef, SWDefs, RWSet); } else { assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite"); if (!AliasDef->isSubClassOf("SchedRead")) PrintFatalError((*AI)->getLoc(), "SchedRead Alias must be SchedRead"); scanSchedRW(AliasDef, SRDefs, RWSet); } } // Sort and add the SchedReadWrites directly referenced by instructions or // itinerary resources. Index reads and writes in separate domains. std::sort(SWDefs.begin(), SWDefs.end(), LessRecord()); for (RecIter SWI = SWDefs.begin(), SWE = SWDefs.end(); SWI != SWE; ++SWI) { assert(!getSchedRWIdx(*SWI, /*IsRead=*/false) && "duplicate SchedWrite"); SchedWrites.push_back(CodeGenSchedRW(SchedWrites.size(), *SWI)); } std::sort(SRDefs.begin(), SRDefs.end(), LessRecord()); for (RecIter SRI = SRDefs.begin(), SRE = SRDefs.end(); SRI != SRE; ++SRI) { assert(!getSchedRWIdx(*SRI, /*IsRead-*/true) && "duplicate SchedWrite"); SchedReads.push_back(CodeGenSchedRW(SchedReads.size(), *SRI)); } // Initialize WriteSequence vectors. for (std::vector<CodeGenSchedRW>::iterator WI = SchedWrites.begin(), WE = SchedWrites.end(); WI != WE; ++WI) { if (!WI->IsSequence) continue; findRWs(WI->TheDef->getValueAsListOfDefs("Writes"), WI->Sequence, /*IsRead=*/false); } // Initialize Aliases vectors. for (RecIter AI = AliasDefs.begin(), AE = AliasDefs.end(); AI != AE; ++AI) { Record *AliasDef = (*AI)->getValueAsDef("AliasRW"); getSchedRW(AliasDef).IsAlias = true; Record *MatchDef = (*AI)->getValueAsDef("MatchRW"); CodeGenSchedRW &RW = getSchedRW(MatchDef); if (RW.IsAlias) PrintFatalError((*AI)->getLoc(), "Cannot Alias an Alias"); RW.Aliases.push_back(*AI); } DEBUG( for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) { dbgs() << WIdx << ": "; SchedWrites[WIdx].dump(); dbgs() << '\n'; } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd; ++RIdx) { dbgs() << RIdx << ": "; SchedReads[RIdx].dump(); dbgs() << '\n'; } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite"); for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { if (!getSchedRWIdx(*RI, (*RI)->isSubClassOf("SchedRead"))) { const std::string &Name = (*RI)->getName(); if (Name != "NoWrite" && Name != "ReadDefault") dbgs() << "Unused SchedReadWrite " << (*RI)->getName() << '\n'; } }); } /// Compute a SchedWrite name from a sequence of writes. std::string CodeGenSchedModels::genRWName(const IdxVec& Seq, bool IsRead) { std::string Name("("); for (IdxIter I = Seq.begin(), E = Seq.end(); I != E; ++I) { if (I != Seq.begin()) Name += '_'; Name += getSchedRW(*I, IsRead).Name; } Name += ')'; return Name; } unsigned CodeGenSchedModels::getSchedRWIdx(Record *Def, bool IsRead, unsigned After) const { const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; assert(After < RWVec.size() && "start position out of bounds"); for (std::vector<CodeGenSchedRW>::const_iterator I = RWVec.begin() + After, E = RWVec.end(); I != E; ++I) { if (I->TheDef == Def) return I - RWVec.begin(); } return 0; } bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const { for (unsigned i = 0, e = SchedReads.size(); i < e; ++i) { Record *ReadDef = SchedReads[i].TheDef; if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance")) continue; RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites"); if (std::find(ValidWrites.begin(), ValidWrites.end(), WriteDef) != ValidWrites.end()) { return true; } } return false; } namespace llvm { void splitSchedReadWrites(const RecVec &RWDefs, RecVec &WriteDefs, RecVec &ReadDefs) { for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { if ((*RWI)->isSubClassOf("SchedWrite")) WriteDefs.push_back(*RWI); else { assert((*RWI)->isSubClassOf("SchedRead") && "unknown SchedReadWrite"); ReadDefs.push_back(*RWI); } } } } // namespace llvm // Split the SchedReadWrites defs and call findRWs for each list. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &Writes, IdxVec &Reads) const { RecVec WriteDefs; RecVec ReadDefs; splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs); findRWs(WriteDefs, Writes, false); findRWs(ReadDefs, Reads, true); } // Call getSchedRWIdx for all elements in a sequence of SchedRW defs. void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs, bool IsRead) const { for (RecIter RI = RWDefs.begin(), RE = RWDefs.end(); RI != RE; ++RI) { unsigned Idx = getSchedRWIdx(*RI, IsRead); assert(Idx && "failed to collect SchedReadWrite"); RWs.push_back(Idx); } } void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq, bool IsRead) const { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (!SchedRW.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1; for (int i = 0; i < Repeat; ++i) { for (IdxIter I = SchedRW.Sequence.begin(), E = SchedRW.Sequence.end(); I != E; ++I) { expandRWSequence(*I, RWSeq, IsRead); } } } // Expand a SchedWrite as a sequence following any aliases that coincide with // the given processor model. void CodeGenSchedModels::expandRWSeqForProc( unsigned RWIdx, IdxVec &RWSeq, bool IsRead, const CodeGenProcModel &ProcModel) const { const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead); Record *AliasDef = nullptr; for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); AI != AE; ++AI) { const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); if ((*AI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); if (&getProcModel(ModelDef) != &ProcModel) continue; } if (AliasDef) PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " "defined for processor " + ProcModel.ModelName + " Ensure only one SchedAlias exists per RW."); AliasDef = AliasRW.TheDef; } if (AliasDef) { expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), RWSeq, IsRead,ProcModel); return; } if (!SchedWrite.IsSequence) { RWSeq.push_back(RWIdx); return; } int Repeat = SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1; for (int i = 0; i < Repeat; ++i) { for (IdxIter I = SchedWrite.Sequence.begin(), E = SchedWrite.Sequence.end(); I != E; ++I) { expandRWSeqForProc(*I, RWSeq, IsRead, ProcModel); } } } // Find the existing SchedWrite that models this sequence of writes. unsigned CodeGenSchedModels::findRWForSequence(const IdxVec &Seq, bool IsRead) { std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites; for (std::vector<CodeGenSchedRW>::iterator I = RWVec.begin(), E = RWVec.end(); I != E; ++I) { if (I->Sequence == Seq) return I - RWVec.begin(); } // Index zero reserved for invalid RW. return 0; } /// Add this ReadWrite if it doesn't already exist. unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq, bool IsRead) { assert(!Seq.empty() && "cannot insert empty sequence"); if (Seq.size() == 1) return Seq.back(); unsigned Idx = findRWForSequence(Seq, IsRead); if (Idx) return Idx; unsigned RWIdx = IsRead ? SchedReads.size() : SchedWrites.size(); CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead)); if (IsRead) SchedReads.push_back(SchedRW); else SchedWrites.push_back(SchedRW); return RWIdx; } /// Visit all the instruction definitions for this target to gather and /// enumerate the itinerary classes. These are the explicitly specified /// SchedClasses. More SchedClasses may be inferred. void CodeGenSchedModels::collectSchedClasses() { // NoItinerary is always the first class at Idx=0 SchedClasses.resize(1); SchedClasses.back().Index = 0; SchedClasses.back().Name = "NoInstrModel"; SchedClasses.back().ItinClassDef = Records.getDef("NoItinerary"); SchedClasses.back().ProcIndices.push_back(0); // Create a SchedClass for each unique combination of itinerary class and // SchedRW list. for (const CodeGenInstruction *Inst : Target.instructions()) { Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary"); IdxVec Writes, Reads; if (!Inst->TheDef->isValueUnset("SchedRW")) findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads); // ProcIdx == 0 indicates the class applies to all processors. IdxVec ProcIndices(1, 0); unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, ProcIndices); InstrClassMap[Inst->TheDef] = SCIdx; } // Create classes for InstRW defs. RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW"); std::sort(InstRWDefs.begin(), InstRWDefs.end(), LessRecord()); for (RecIter OI = InstRWDefs.begin(), OE = InstRWDefs.end(); OI != OE; ++OI) createInstRWClass(*OI); NumInstrSchedClasses = SchedClasses.size(); bool EnableDump = false; DEBUG(EnableDump = true); if (!EnableDump) return; for (const CodeGenInstruction *Inst : Target.instructions()) { std::string InstName = Inst->TheDef->getName(); unsigned SCIdx = InstrClassMap.lookup(Inst->TheDef); if (!SCIdx) { dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n'; continue; } CodeGenSchedClass &SC = getSchedClass(SCIdx); if (SC.ProcIndices[0] != 0) PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class " "must not be subtarget specific."); IdxVec ProcIndices; if (SC.ItinClassDef->getName() != "NoItinerary") { ProcIndices.push_back(0); dbgs() << "Itinerary for " << InstName << ": " << SC.ItinClassDef->getName() << '\n'; } if (!SC.Writes.empty()) { ProcIndices.push_back(0); dbgs() << "SchedRW machine model for " << InstName; for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE; ++WI) dbgs() << " " << SchedWrites[*WI].Name; for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI) dbgs() << " " << SchedReads[*RI].Name; dbgs() << '\n'; } const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs; for (RecIter RWI = RWDefs.begin(), RWE = RWDefs.end(); RWI != RWE; ++RWI) { const CodeGenProcModel &ProcModel = getProcModel((*RWI)->getValueAsDef("SchedModel")); ProcIndices.push_back(ProcModel.Index); dbgs() << "InstRW on " << ProcModel.ModelName << " for " << InstName; IdxVec Writes; IdxVec Reads; findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) dbgs() << " " << SchedWrites[*WI].Name; for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) dbgs() << " " << SchedReads[*RI].Name; dbgs() << '\n'; } for (std::vector<CodeGenProcModel>::iterator PI = ProcModels.begin(), PE = ProcModels.end(); PI != PE; ++PI) { if (!std::count(ProcIndices.begin(), ProcIndices.end(), PI->Index)) dbgs() << "No machine model for " << Inst->TheDef->getName() << " on processor " << PI->ModelName << '\n'; } } } /// Find an SchedClass that has been inferred from a per-operand list of /// SchedWrites and SchedReads. unsigned CodeGenSchedModels::findSchedClassIdx(Record *ItinClassDef, const IdxVec &Writes, const IdxVec &Reads) const { for (SchedClassIter I = schedClassBegin(), E = schedClassEnd(); I != E; ++I) { if (I->ItinClassDef == ItinClassDef && I->Writes == Writes && I->Reads == Reads) { return I - schedClassBegin(); } } return 0; } // Get the SchedClass index for an instruction. unsigned CodeGenSchedModels::getSchedClassIdx( const CodeGenInstruction &Inst) const { return InstrClassMap.lookup(Inst.TheDef); } std::string CodeGenSchedModels::createSchedClassName( Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads) { std::string Name; if (ItinClassDef && ItinClassDef->getName() != "NoItinerary") Name = ItinClassDef->getName(); for (IdxIter WI = OperWrites.begin(), WE = OperWrites.end(); WI != WE; ++WI) { if (!Name.empty()) Name += '_'; Name += SchedWrites[*WI].Name; } for (IdxIter RI = OperReads.begin(), RE = OperReads.end(); RI != RE; ++RI) { Name += '_'; Name += SchedReads[*RI].Name; } return Name; } std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) { std::string Name; for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) { if (I != InstDefs.begin()) Name += '_'; Name += (*I)->getName(); } return Name; } /// Add an inferred sched class from an itinerary class and per-operand list of /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of /// processors that may utilize this class. unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef, const IdxVec &OperWrites, const IdxVec &OperReads, const IdxVec &ProcIndices) { assert(!ProcIndices.empty() && "expect at least one ProcIdx"); unsigned Idx = findSchedClassIdx(ItinClassDef, OperWrites, OperReads); if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) { IdxVec PI; std::set_union(SchedClasses[Idx].ProcIndices.begin(), SchedClasses[Idx].ProcIndices.end(), ProcIndices.begin(), ProcIndices.end(), std::back_inserter(PI)); SchedClasses[Idx].ProcIndices.swap(PI); return Idx; } Idx = SchedClasses.size(); SchedClasses.resize(Idx+1); CodeGenSchedClass &SC = SchedClasses.back(); SC.Index = Idx; SC.Name = createSchedClassName(ItinClassDef, OperWrites, OperReads); SC.ItinClassDef = ItinClassDef; SC.Writes = OperWrites; SC.Reads = OperReads; SC.ProcIndices = ProcIndices; return Idx; } // Create classes for each set of opcodes that are in the same InstReadWrite // definition across all processors. void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) { // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that // intersects with an existing class via a previous InstRWDef. Instrs that do // not intersect with an existing class refer back to their former class as // determined from ItinDef or SchedRW. SmallVector<std::pair<unsigned, SmallVector<Record *, 8> >, 4> ClassInstrs; // Sort Instrs into sets. const RecVec *InstDefs = Sets.expand(InstRWDef); if (InstDefs->empty()) PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes"); for (RecIter I = InstDefs->begin(), E = InstDefs->end(); I != E; ++I) { InstClassMapTy::const_iterator Pos = InstrClassMap.find(*I); if (Pos == InstrClassMap.end()) PrintFatalError((*I)->getLoc(), "No sched class for instruction."); unsigned SCIdx = Pos->second; unsigned CIdx = 0, CEnd = ClassInstrs.size(); for (; CIdx != CEnd; ++CIdx) { if (ClassInstrs[CIdx].first == SCIdx) break; } if (CIdx == CEnd) { ClassInstrs.resize(CEnd + 1); ClassInstrs[CIdx].first = SCIdx; } ClassInstrs[CIdx].second.push_back(*I); } // For each set of Instrs, create a new class if necessary, and map or remap // the Instrs to it. unsigned CIdx = 0, CEnd = ClassInstrs.size(); for (; CIdx != CEnd; ++CIdx) { unsigned OldSCIdx = ClassInstrs[CIdx].first; ArrayRef<Record*> InstDefs = ClassInstrs[CIdx].second; // If the all instrs in the current class are accounted for, then leave // them mapped to their old class. if (OldSCIdx) { const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs; if (!RWDefs.empty()) { const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]); unsigned OrigNumInstrs = 0; for (RecIter I = OrigInstDefs->begin(), E = OrigInstDefs->end(); I != E; ++I) { if (InstrClassMap[*I] == OldSCIdx) ++OrigNumInstrs; } if (OrigNumInstrs == InstDefs.size()) { assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 && "expected a generic SchedClass"); DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":" << SchedClasses[OldSCIdx].Name << " on " << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef); continue; } } } unsigned SCIdx = SchedClasses.size(); SchedClasses.resize(SCIdx+1); CodeGenSchedClass &SC = SchedClasses.back(); SC.Index = SCIdx; SC.Name = createSchedClassName(InstDefs); DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on " << InstRWDef->getValueAsDef("SchedModel")->getName() << "\n"); // Preserve ItinDef and Writes/Reads for processors without an InstRW entry. SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef; SC.Writes = SchedClasses[OldSCIdx].Writes; SC.Reads = SchedClasses[OldSCIdx].Reads; SC.ProcIndices.push_back(0); // Map each Instr to this new class. // Note that InstDefs may be a smaller list than InstRWDef's "Instrs". Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel"); SmallSet<unsigned, 4> RemappedClassIDs; for (ArrayRef<Record*>::const_iterator II = InstDefs.begin(), IE = InstDefs.end(); II != IE; ++II) { unsigned OldSCIdx = InstrClassMap[*II]; if (OldSCIdx && RemappedClassIDs.insert(OldSCIdx).second) { for (RecIter RI = SchedClasses[OldSCIdx].InstRWs.begin(), RE = SchedClasses[OldSCIdx].InstRWs.end(); RI != RE; ++RI) { if ((*RI)->getValueAsDef("SchedModel") == RWModelDef) { PrintFatalError(InstRWDef->getLoc(), "Overlapping InstRW def " + (*II)->getName() + " also matches " + (*RI)->getValue("Instrs")->getValue()->getAsString()); } assert(*RI != InstRWDef && "SchedClass has duplicate InstRW def"); SC.InstRWs.push_back(*RI); } } InstrClassMap[*II] = SCIdx; } SC.InstRWs.push_back(InstRWDef); } } // True if collectProcItins found anything. bool CodeGenSchedModels::hasItineraries() const { for (CodeGenSchedModels::ProcIter PI = procModelBegin(), PE = procModelEnd(); PI != PE; ++PI) { if (PI->hasItineraries()) return true; } return false; } // Gather the processor itineraries. void CodeGenSchedModels::collectProcItins() { for (CodeGenProcModel &ProcModel : ProcModels) { if (!ProcModel.hasItineraries()) continue; RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID"); assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect"); // Populate ItinDefList with Itinerary records. ProcModel.ItinDefList.resize(NumInstrSchedClasses); // Insert each itinerary data record in the correct position within // the processor model's ItinDefList. for (unsigned i = 0, N = ItinRecords.size(); i < N; i++) { Record *ItinData = ItinRecords[i]; Record *ItinDef = ItinData->getValueAsDef("TheClass"); bool FoundClass = false; for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); SCI != SCE; ++SCI) { // Multiple SchedClasses may share an itinerary. Update all of them. if (SCI->ItinClassDef == ItinDef) { ProcModel.ItinDefList[SCI->Index] = ItinData; FoundClass = true; } } if (!FoundClass) { DEBUG(dbgs() << ProcModel.ItinsDef->getName() << " missing class for itinerary " << ItinDef->getName() << '\n'); } } // Check for missing itinerary entries. assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec"); DEBUG( for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) { if (!ProcModel.ItinDefList[i]) dbgs() << ProcModel.ItinsDef->getName() << " missing itinerary for class " << SchedClasses[i].Name << '\n'; }); } } // Gather the read/write types for each itinerary class. void CodeGenSchedModels::collectProcItinRW() { RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW"); std::sort(ItinRWDefs.begin(), ItinRWDefs.end(), LessRecord()); for (RecIter II = ItinRWDefs.begin(), IE = ItinRWDefs.end(); II != IE; ++II) { if (!(*II)->getValueInit("SchedModel")->isComplete()) PrintFatalError((*II)->getLoc(), "SchedModel is undefined"); Record *ModelDef = (*II)->getValueAsDef("SchedModel"); ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef); if (I == ProcModelMap.end()) { PrintFatalError((*II)->getLoc(), "Undefined SchedMachineModel " + ModelDef->getName()); } ProcModels[I->second].ItinRWDefs.push_back(*II); } } /// Infer new classes from existing classes. In the process, this may create new /// SchedWrites from sequences of existing SchedWrites. void CodeGenSchedModels::inferSchedClasses() { DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n"); // Visit all existing classes and newly created classes. for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) { assert(SchedClasses[Idx].Index == Idx && "bad SCIdx"); if (SchedClasses[Idx].ItinClassDef) inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx); if (!SchedClasses[Idx].InstRWs.empty()) inferFromInstRWs(Idx); if (!SchedClasses[Idx].Writes.empty()) { inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, Idx, SchedClasses[Idx].ProcIndices); } assert(SchedClasses.size() < (NumInstrSchedClasses*6) && "too many SchedVariants"); } } /// Infer classes from per-processor itinerary resources. void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef, unsigned FromClassIdx) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) continue; if (HasMatch) PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); IdxVec ProcIndices(1, PIdx); inferFromRW(Writes, Reads, FromClassIdx, ProcIndices); } } } /// Infer classes from per-processor InstReadWrite definitions. void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) { for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) { assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!"); Record *Rec = SchedClasses[SCIdx].InstRWs[I]; const RecVec *InstDefs = Sets.expand(Rec); RecIter II = InstDefs->begin(), IE = InstDefs->end(); for (; II != IE; ++II) { if (InstrClassMap[*II] == SCIdx) break; } // If this class no longer has any instructions mapped to it, it has become // irrelevant. if (II == IE) continue; IdxVec Writes, Reads; findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index; IdxVec ProcIndices(1, PIdx); inferFromRW(Writes, Reads, SCIdx, ProcIndices); // May mutate SchedClasses. } } namespace { // Helper for substituteVariantOperand. struct TransVariant { Record *VarOrSeqDef; // Variant or sequence. unsigned RWIdx; // Index of this variant or sequence's matched type. unsigned ProcIdx; // Processor model index or zero for any. unsigned TransVecIdx; // Index into PredTransitions::TransVec. TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti): VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {} }; // Associate a predicate with the SchedReadWrite that it guards. // RWIdx is the index of the read/write variant. struct PredCheck { bool IsRead; unsigned RWIdx; Record *Predicate; PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {} }; // A Predicate transition is a list of RW sequences guarded by a PredTerm. struct PredTransition { // A predicate term is a conjunction of PredChecks. SmallVector<PredCheck, 4> PredTerm; SmallVector<SmallVector<unsigned,4>, 16> WriteSequences; SmallVector<SmallVector<unsigned,4>, 16> ReadSequences; SmallVector<unsigned, 4> ProcIndices; }; // Encapsulate a set of partially constructed transitions. // The results are built by repeated calls to substituteVariants. class PredTransitions { CodeGenSchedModels &SchedModels; public: std::vector<PredTransition> TransVec; PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {} void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx); void substituteVariants(const PredTransition &Trans); #ifndef NDEBUG void dump() const; #endif private: bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term); void getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector<TransVariant> &IntersectingVariants); void pushVariant(const TransVariant &VInfo, bool IsRead); }; } // anonymous // Return true if this predicate is mutually exclusive with a PredTerm. This // degenerates into checking if the predicate is mutually exclusive with any // predicate in the Term's conjunction. // // All predicates associated with a given SchedRW are considered mutually // exclusive. This should work even if the conditions expressed by the // predicates are not exclusive because the predicates for a given SchedWrite // are always checked in the order they are defined in the .td file. Later // conditions implicitly negate any prior condition. bool PredTransitions::mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term) { for (ArrayRef<PredCheck>::iterator I = Term.begin(), E = Term.end(); I != E; ++I) { if (I->Predicate == PredDef) return false; const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(I->RWIdx, I->IsRead); assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant"); RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter VI = Variants.begin(), VE = Variants.end(); VI != VE; ++VI) { if ((*VI)->getValueAsDef("Predicate") == PredDef) return true; } } return false; } static bool hasAliasedVariants(const CodeGenSchedRW &RW, CodeGenSchedModels &SchedModels) { if (RW.HasVariants) return true; for (RecIter I = RW.Aliases.begin(), E = RW.Aliases.end(); I != E; ++I) { const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*I)->getValueAsDef("AliasRW")); if (AliasRW.HasVariants) return true; if (AliasRW.IsSequence) { IdxVec ExpandedRWs; SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead); for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); SI != SE; ++SI) { if (hasAliasedVariants(SchedModels.getSchedRW(*SI, AliasRW.IsRead), SchedModels)) { return true; } } } } return false; } static bool hasVariant(ArrayRef<PredTransition> Transitions, CodeGenSchedModels &SchedModels) { for (ArrayRef<PredTransition>::iterator PTI = Transitions.begin(), PTE = Transitions.end(); PTI != PTE; ++PTI) { for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = PTI->WriteSequences.begin(), WSE = PTI->WriteSequences.end(); WSI != WSE; ++WSI) { for (SmallVectorImpl<unsigned>::const_iterator WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { if (hasAliasedVariants(SchedModels.getSchedWrite(*WI), SchedModels)) return true; } } for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = PTI->ReadSequences.begin(), RSE = PTI->ReadSequences.end(); RSI != RSE; ++RSI) { for (SmallVectorImpl<unsigned>::const_iterator RI = RSI->begin(), RE = RSI->end(); RI != RE; ++RI) { if (hasAliasedVariants(SchedModels.getSchedRead(*RI), SchedModels)) return true; } } } return false; } // Populate IntersectingVariants with any variants or aliased sequences of the // given SchedRW whose processor indices and predicates are not mutually // exclusive with the given transition. void PredTransitions::getIntersectingVariants( const CodeGenSchedRW &SchedRW, unsigned TransIdx, std::vector<TransVariant> &IntersectingVariants) { bool GenericRW = false; std::vector<TransVariant> Variants; if (SchedRW.HasVariants) { unsigned VarProcIdx = 0; if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel"); VarProcIdx = SchedModels.getProcModel(ModelDef).Index; } // Push each variant. Assign TransVecIdx later. const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) Variants.push_back(TransVariant(*RI, SchedRW.Index, VarProcIdx, 0)); if (VarProcIdx == 0) GenericRW = true; } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { // If either the SchedAlias itself or the SchedReadWrite that it aliases // to is defined within a processor model, constrain all variants to // that processor. unsigned AliasProcIdx = 0; if ((*AI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*AI)->getValueAsDef("SchedModel"); AliasProcIdx = SchedModels.getProcModel(ModelDef).Index; } const CodeGenSchedRW &AliasRW = SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); if (AliasRW.HasVariants) { const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants"); for (RecIter RI = VarDefs.begin(), RE = VarDefs.end(); RI != RE; ++RI) Variants.push_back(TransVariant(*RI, AliasRW.Index, AliasProcIdx, 0)); } if (AliasRW.IsSequence) { Variants.push_back( TransVariant(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0)); } if (AliasProcIdx == 0) GenericRW = true; } for (unsigned VIdx = 0, VEnd = Variants.size(); VIdx != VEnd; ++VIdx) { TransVariant &Variant = Variants[VIdx]; // Don't expand variants if the processor models don't intersect. // A zero processor index means any processor. SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices; if (ProcIndices[0] && Variants[VIdx].ProcIdx) { unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(), Variant.ProcIdx); if (!Cnt) continue; if (Cnt > 1) { const CodeGenProcModel &PM = *(SchedModels.procModelBegin() + Variant.ProcIdx); PrintFatalError(Variant.VarOrSeqDef->getLoc(), "Multiple variants defined for processor " + PM.ModelName + " Ensure only one SchedAlias exists per RW."); } } if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate"); if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm)) continue; } if (IntersectingVariants.empty()) { // The first variant builds on the existing transition. Variant.TransVecIdx = TransIdx; IntersectingVariants.push_back(Variant); } else { // Push another copy of the current transition for more variants. Variant.TransVecIdx = TransVec.size(); IntersectingVariants.push_back(Variant); TransVec.push_back(TransVec[TransIdx]); } } if (GenericRW && IntersectingVariants.empty()) { PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has " "a matching predicate on any processor"); } } // Push the Reads/Writes selected by this variant onto the PredTransition // specified by VInfo. void PredTransitions:: pushVariant(const TransVariant &VInfo, bool IsRead) { PredTransition &Trans = TransVec[VInfo.TransVecIdx]; // If this operand transition is reached through a processor-specific alias, // then the whole transition is specific to this processor. if (VInfo.ProcIdx != 0) Trans.ProcIndices.assign(1, VInfo.ProcIdx); IdxVec SelectedRWs; if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) { Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate"); Trans.PredTerm.push_back(PredCheck(IsRead, VInfo.RWIdx,PredDef)); RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected"); SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead); } else { assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") && "variant must be a SchedVariant or aliased WriteSequence"); SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead)); } const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead); SmallVectorImpl<SmallVector<unsigned,4> > &RWSequences = IsRead ? Trans.ReadSequences : Trans.WriteSequences; if (SchedRW.IsVariadic) { unsigned OperIdx = RWSequences.size()-1; // Make N-1 copies of this transition's last sequence. for (unsigned i = 1, e = SelectedRWs.size(); i != e; ++i) { // Create a temporary copy the vector could reallocate. RWSequences.reserve(RWSequences.size() + 1); RWSequences.push_back(RWSequences[OperIdx]); } // Push each of the N elements of the SelectedRWs onto a copy of the last // sequence (split the current operand into N operands). // Note that write sequences should be expanded within this loop--the entire // sequence belongs to a single operand. for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI, ++OperIdx) { IdxVec ExpandedRWs; if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); RWSequences[OperIdx].insert(RWSequences[OperIdx].end(), ExpandedRWs.begin(), ExpandedRWs.end()); } assert(OperIdx == RWSequences.size() && "missed a sequence"); } else { // Push this transition's expanded sequence onto this transition's last // sequence (add to the current operand's sequence). SmallVectorImpl<unsigned> &Seq = RWSequences.back(); IdxVec ExpandedRWs; for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE; ++RWI) { if (IsRead) ExpandedRWs.push_back(*RWI); else SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead); } Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end()); } } // RWSeq is a sequence of all Reads or all Writes for the next read or write // operand. StartIdx is an index into TransVec where partial results // starts. RWSeq must be applied to all transitions between StartIdx and the end // of TransVec. void PredTransitions::substituteVariantOperand( const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) { // Visit each original RW within the current sequence. for (SmallVectorImpl<unsigned>::const_iterator RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) { const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead); // Push this RW on all partial PredTransitions or distribute variants. // New PredTransitions may be pushed within this loop which should not be // revisited (TransEnd must be loop invariant). for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size(); TransIdx != TransEnd; ++TransIdx) { // In the common case, push RW onto the current operand's sequence. if (!hasAliasedVariants(SchedRW, SchedModels)) { if (IsRead) TransVec[TransIdx].ReadSequences.back().push_back(*RWI); else TransVec[TransIdx].WriteSequences.back().push_back(*RWI); continue; } // Distribute this partial PredTransition across intersecting variants. // This will push a copies of TransVec[TransIdx] on the back of TransVec. std::vector<TransVariant> IntersectingVariants; getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants); // Now expand each variant on top of its copy of the transition. for (std::vector<TransVariant>::const_iterator IVI = IntersectingVariants.begin(), IVE = IntersectingVariants.end(); IVI != IVE; ++IVI) { pushVariant(*IVI, IsRead); } } } } // For each variant of a Read/Write in Trans, substitute the sequence of // Read/Writes guarded by the variant. This is exponential in the number of // variant Read/Writes, but in practice detection of mutually exclusive // predicates should result in linear growth in the total number variants. // // This is one step in a breadth-first search of nested variants. void PredTransitions::substituteVariants(const PredTransition &Trans) { // Build up a set of partial results starting at the back of // PredTransitions. Remember the first new transition. unsigned StartIdx = TransVec.size(); TransVec.resize(TransVec.size() + 1); TransVec.back().PredTerm = Trans.PredTerm; TransVec.back().ProcIndices = Trans.ProcIndices; // Visit each original write sequence. for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end(); WSI != WSE; ++WSI) { // Push a new (empty) write sequence onto all partial Transitions. for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->WriteSequences.resize(I->WriteSequences.size() + 1); } substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx); } // Visit each original read sequence. for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end(); RSI != RSE; ++RSI) { // Push a new (empty) read sequence onto all partial Transitions. for (std::vector<PredTransition>::iterator I = TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) { I->ReadSequences.resize(I->ReadSequences.size() + 1); } substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx); } } // Create a new SchedClass for each variant found by inferFromRW. Pass static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions, unsigned FromClassIdx, CodeGenSchedModels &SchedModels) { // For each PredTransition, create a new CodeGenSchedTransition, which usually // requires creating a new SchedClass. for (ArrayRef<PredTransition>::iterator I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { IdxVec OperWritesVariant; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = I->WriteSequences.begin(), WSE = I->WriteSequences.end(); WSI != WSE; ++WSI) { // Create a new write representing the expanded sequence. OperWritesVariant.push_back( SchedModels.findOrInsertRW(*WSI, /*IsRead=*/false)); } IdxVec OperReadsVariant; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator RSI = I->ReadSequences.begin(), RSE = I->ReadSequences.end(); RSI != RSE; ++RSI) { // Create a new read representing the expanded sequence. OperReadsVariant.push_back( SchedModels.findOrInsertRW(*RSI, /*IsRead=*/true)); } IdxVec ProcIndices(I->ProcIndices.begin(), I->ProcIndices.end()); CodeGenSchedTransition SCTrans; SCTrans.ToClassIdx = SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant, OperReadsVariant, ProcIndices); SCTrans.ProcIndices = ProcIndices; // The final PredTerm is unique set of predicates guarding the transition. RecVec Preds; for (SmallVectorImpl<PredCheck>::const_iterator PI = I->PredTerm.begin(), PE = I->PredTerm.end(); PI != PE; ++PI) { Preds.push_back(PI->Predicate); } RecIter PredsEnd = std::unique(Preds.begin(), Preds.end()); Preds.resize(PredsEnd - Preds.begin()); SCTrans.PredTerm = Preds; SchedModels.getSchedClass(FromClassIdx).Transitions.push_back(SCTrans); } } // Create new SchedClasses for the given ReadWrite list. If any of the // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant // of the ReadWrite list, following Aliases if necessary. void CodeGenSchedModels::inferFromRW(const IdxVec &OperWrites, const IdxVec &OperReads, unsigned FromClassIdx, const IdxVec &ProcIndices) { DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices); dbgs() << ") "); // Create a seed transition with an empty PredTerm and the expanded sequences // of SchedWrites for the current SchedClass. std::vector<PredTransition> LastTransitions; LastTransitions.resize(1); LastTransitions.back().ProcIndices.append(ProcIndices.begin(), ProcIndices.end()); for (IdxIter I = OperWrites.begin(), E = OperWrites.end(); I != E; ++I) { IdxVec WriteSeq; expandRWSequence(*I, WriteSeq, /*IsRead=*/false); unsigned Idx = LastTransitions[0].WriteSequences.size(); LastTransitions[0].WriteSequences.resize(Idx + 1); SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences[Idx]; for (IdxIter WI = WriteSeq.begin(), WE = WriteSeq.end(); WI != WE; ++WI) Seq.push_back(*WI); DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } DEBUG(dbgs() << " Reads: "); for (IdxIter I = OperReads.begin(), E = OperReads.end(); I != E; ++I) { IdxVec ReadSeq; expandRWSequence(*I, ReadSeq, /*IsRead=*/true); unsigned Idx = LastTransitions[0].ReadSequences.size(); LastTransitions[0].ReadSequences.resize(Idx + 1); SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences[Idx]; for (IdxIter RI = ReadSeq.begin(), RE = ReadSeq.end(); RI != RE; ++RI) Seq.push_back(*RI); DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") "); } DEBUG(dbgs() << '\n'); // Collect all PredTransitions for individual operands. // Iterate until no variant writes remain. while (hasVariant(LastTransitions, *this)) { PredTransitions Transitions(*this); for (std::vector<PredTransition>::const_iterator I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) { Transitions.substituteVariants(*I); } DEBUG(Transitions.dump()); LastTransitions.swap(Transitions.TransVec); } // If the first transition has no variants, nothing to do. if (LastTransitions[0].PredTerm.empty()) return; // WARNING: We are about to mutate the SchedClasses vector. Do not refer to // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions. inferFromTransitions(LastTransitions, FromClassIdx, *this); } // Check if any processor resource group contains all resource records in // SubUnits. bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec SuperUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); RecIter RI = SubUnits.begin(), RE = SubUnits.end(); for ( ; RI != RE; ++RI) { if (std::find(SuperUnits.begin(), SuperUnits.end(), *RI) == SuperUnits.end()) { break; } } if (RI == RE) return true; } return false; } // Verify that overlapping groups have a common supergroup. void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) { for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) { if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup")) continue; RecVec CheckUnits = PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources"); for (unsigned j = i+1; j < e; ++j) { if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup")) continue; RecVec OtherUnits = PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources"); if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(), OtherUnits.begin(), OtherUnits.end()) != CheckUnits.end()) { // CheckUnits and OtherUnits overlap OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(), CheckUnits.end()); if (!hasSuperGroup(OtherUnits, PM)) { PrintFatalError((PM.ProcResourceDefs[i])->getLoc(), "proc resource group overlaps with " + PM.ProcResourceDefs[j]->getName() + " but no supergroup contains both."); } } } } } // Collect and sort WriteRes, ReadAdvance, and ProcResources. void CodeGenSchedModels::collectProcResources() { // Add any subtarget-specific SchedReadWrites that are directly associated // with processor resources. Refer to the parent SchedClass's ProcIndices to // determine which processors they apply to. for (SchedClassIter SCI = schedClassBegin(), SCE = schedClassEnd(); SCI != SCE; ++SCI) { if (SCI->ItinClassDef) collectItinProcResources(SCI->ItinClassDef); else { // This class may have a default ReadWrite list which can be overriden by // InstRW definitions. if (!SCI->InstRWs.empty()) { for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); RWI != RWE; ++RWI) { Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); IdxVec ProcIndices(1, getProcModel(RWModelDef).Index); IdxVec Writes, Reads; findRWs((*RWI)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); collectRWResources(Writes, Reads, ProcIndices); } } collectRWResources(SCI->Writes, SCI->Reads, SCI->ProcIndices); } } // Add resources separately defined by each subtarget. RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes"); for (RecIter WRI = WRDefs.begin(), WRE = WRDefs.end(); WRI != WRE; ++WRI) { Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); addWriteRes(*WRI, getProcModel(ModelDef).Index); } RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes"); for (RecIter WRI = SWRDefs.begin(), WRE = SWRDefs.end(); WRI != WRE; ++WRI) { Record *ModelDef = (*WRI)->getValueAsDef("SchedModel"); addWriteRes(*WRI, getProcModel(ModelDef).Index); } RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance"); for (RecIter RAI = RADefs.begin(), RAE = RADefs.end(); RAI != RAE; ++RAI) { Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); addReadAdvance(*RAI, getProcModel(ModelDef).Index); } RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance"); for (RecIter RAI = SRADefs.begin(), RAE = SRADefs.end(); RAI != RAE; ++RAI) { if ((*RAI)->getValueInit("SchedModel")->isComplete()) { Record *ModelDef = (*RAI)->getValueAsDef("SchedModel"); addReadAdvance(*RAI, getProcModel(ModelDef).Index); } } // Add ProcResGroups that are defined within this processor model, which may // not be directly referenced but may directly specify a buffer size. RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); RI != RE; ++RI) { if (!(*RI)->getValueInit("SchedModel")->isComplete()) continue; CodeGenProcModel &PM = getProcModel((*RI)->getValueAsDef("SchedModel")); RecIter I = std::find(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), *RI); if (I == PM.ProcResourceDefs.end()) PM.ProcResourceDefs.push_back(*RI); } // Finalize each ProcModel by sorting the record arrays. for (CodeGenProcModel &PM : ProcModels) { std::sort(PM.WriteResDefs.begin(), PM.WriteResDefs.end(), LessRecord()); std::sort(PM.ReadAdvanceDefs.begin(), PM.ReadAdvanceDefs.end(), LessRecord()); std::sort(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), LessRecord()); DEBUG( PM.dump(); dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(), RE = PM.WriteResDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("WriteRes")) dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nReadAdvanceDefs: "; for (RecIter RI = PM.ReadAdvanceDefs.begin(), RE = PM.ReadAdvanceDefs.end(); RI != RE; ++RI) { if ((*RI)->isSubClassOf("ReadAdvance")) dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " "; else dbgs() << (*RI)->getName() << " "; } dbgs() << "\nProcResourceDefs: "; for (RecIter RI = PM.ProcResourceDefs.begin(), RE = PM.ProcResourceDefs.end(); RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs() << '\n'); verifyProcResourceGroups(PM); } } // Collect itinerary class resources for each processor. void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) { for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) { const CodeGenProcModel &PM = ProcModels[PIdx]; // For all ItinRW entries. bool HasMatch = false; for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end(); II != IE; ++II) { RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); if (!std::count(Matched.begin(), Matched.end(), ItinClassDef)) continue; if (HasMatch) PrintFatalError((*II)->getLoc(), "Duplicate itinerary class " + ItinClassDef->getName() + " in ItinResources for " + PM.ModelName); HasMatch = true; IdxVec Writes, Reads; findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads); IdxVec ProcIndices(1, PIdx); collectRWResources(Writes, Reads, ProcIndices); } } } void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead, const IdxVec &ProcIndices) { const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead); if (SchedRW.TheDef) { if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) { for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { addWriteRes(SchedRW.TheDef, *PI); } } else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) { for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); PI != PE; ++PI) { addReadAdvance(SchedRW.TheDef, *PI); } } } for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end(); AI != AE; ++AI) { IdxVec AliasProcIndices; if ((*AI)->getValueInit("SchedModel")->isComplete()) { AliasProcIndices.push_back( getProcModel((*AI)->getValueAsDef("SchedModel")).Index); } else AliasProcIndices = ProcIndices; const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW")); assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes"); IdxVec ExpandedRWs; expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead); for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end(); SI != SE; ++SI) { collectRWResources(*SI, IsRead, AliasProcIndices); } } } // Collect resources for a set of read/write types and processor indices. void CodeGenSchedModels::collectRWResources(const IdxVec &Writes, const IdxVec &Reads, const IdxVec &ProcIndices) { for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) collectRWResources(*WI, /*IsRead=*/false, ProcIndices); for (IdxIter RI = Reads.begin(), RE = Reads.end(); RI != RE; ++RI) collectRWResources(*RI, /*IsRead=*/true, ProcIndices); } // Find the processor's resource units for this kind of resource. Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind, const CodeGenProcModel &PM) const { if (ProcResKind->isSubClassOf("ProcResourceUnits")) return ProcResKind; Record *ProcUnitDef = nullptr; RecVec ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits"); for (RecIter RI = ProcResourceDefs.begin(), RE = ProcResourceDefs.end(); RI != RE; ++RI) { if ((*RI)->getValueAsDef("Kind") == ProcResKind && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError((*RI)->getLoc(), "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = *RI; } } RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup"); for (RecIter RI = ProcResGroups.begin(), RE = ProcResGroups.end(); RI != RE; ++RI) { if (*RI == ProcResKind && (*RI)->getValueAsDef("SchedModel") == PM.ModelDef) { if (ProcUnitDef) { PrintFatalError((*RI)->getLoc(), "Multiple ProcessorResourceUnits associated with " + ProcResKind->getName()); } ProcUnitDef = *RI; } } if (!ProcUnitDef) { PrintFatalError(ProcResKind->getLoc(), "No ProcessorResources associated with " + ProcResKind->getName()); } return ProcUnitDef; } // Iteratively add a resource and its super resources. void CodeGenSchedModels::addProcResource(Record *ProcResKind, CodeGenProcModel &PM) { for (;;) { Record *ProcResUnits = findProcResUnits(ProcResKind, PM); // See if this ProcResource is already associated with this processor. RecIter I = std::find(PM.ProcResourceDefs.begin(), PM.ProcResourceDefs.end(), ProcResUnits); if (I != PM.ProcResourceDefs.end()) return; PM.ProcResourceDefs.push_back(ProcResUnits); if (ProcResUnits->isSubClassOf("ProcResGroup")) return; if (!ProcResUnits->getValueInit("Super")->isComplete()) return; ProcResKind = ProcResUnits->getValueAsDef("Super"); } } // Add resources for a SchedWrite to this processor if they don't exist. void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) { assert(PIdx && "don't add resources to an invalid Processor model"); RecVec &WRDefs = ProcModels[PIdx].WriteResDefs; RecIter WRI = std::find(WRDefs.begin(), WRDefs.end(), ProcWriteResDef); if (WRI != WRDefs.end()) return; WRDefs.push_back(ProcWriteResDef); // Visit ProcResourceKinds referenced by the newly discovered WriteRes. RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources"); for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end(); WritePRI != WritePRE; ++WritePRI) { addProcResource(*WritePRI, ProcModels[PIdx]); } } // Add resources for a ReadAdvance to this processor if they don't exist. void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef, unsigned PIdx) { RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs; RecIter I = std::find(RADefs.begin(), RADefs.end(), ProcReadAdvanceDef); if (I != RADefs.end()) return; RADefs.push_back(ProcReadAdvanceDef); } unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const { RecIter PRPos = std::find(ProcResourceDefs.begin(), ProcResourceDefs.end(), PRDef); if (PRPos == ProcResourceDefs.end()) PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in " "the ProcResources list for " + ModelName); // Idx=0 is reserved for invalid. return 1 + (PRPos - ProcResourceDefs.begin()); } #ifndef NDEBUG void CodeGenProcModel::dump() const { dbgs() << Index << ": " << ModelName << " " << (ModelDef ? ModelDef->getName() : "inferred") << " " << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n'; } void CodeGenSchedRW::dump() const { dbgs() << Name << (IsVariadic ? " (V) " : " "); if (IsSequence) { dbgs() << "("; dumpIdxVec(Sequence); dbgs() << ")"; } } void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const { dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << " Writes: "; for (unsigned i = 0, N = Writes.size(); i < N; ++i) { SchedModels->getSchedWrite(Writes[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n Reads: "; for (unsigned i = 0, N = Reads.size(); i < N; ++i) { SchedModels->getSchedRead(Reads[i]).dump(); if (i < N-1) { dbgs() << '\n'; dbgs().indent(10); } } dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n'; if (!Transitions.empty()) { dbgs() << "\n Transitions for Proc "; for (std::vector<CodeGenSchedTransition>::const_iterator TI = Transitions.begin(), TE = Transitions.end(); TI != TE; ++TI) { dumpIdxVec(TI->ProcIndices); } } } void PredTransitions::dump() const { dbgs() << "Expanded Variants:\n"; for (std::vector<PredTransition>::const_iterator TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) { dbgs() << "{"; for (SmallVectorImpl<PredCheck>::const_iterator PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end(); PCI != PCE; ++PCI) { if (PCI != TI->PredTerm.begin()) dbgs() << ", "; dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name << ":" << PCI->Predicate->getName(); } dbgs() << "},\n => {"; for (SmallVectorImpl<SmallVector<unsigned,4> >::const_iterator WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end(); WSI != WSE; ++WSI) { dbgs() << "("; for (SmallVectorImpl<unsigned>::const_iterator WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) { if (WI != WSI->begin()) dbgs() << ", "; dbgs() << SchedModels.getSchedWrite(*WI).Name; } dbgs() << "),"; } dbgs() << "}\n"; } } #endif // NDEBUG