//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a DAG instruction selector. // //===----------------------------------------------------------------------===// #include "DAGISelEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Debug.h" #include #include #include using namespace llvm; static cl::opt GenDebug("gen-debug", cl::desc("Generate debug code"), cl::init(false)); //===----------------------------------------------------------------------===// // DAGISelEmitter Helper methods // /// NodeIsComplexPattern - return true if N is a leaf node and a subclass of /// ComplexPattern. static bool NodeIsComplexPattern(TreePatternNode *N) { return (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")); } /// NodeGetComplexPattern - return the pointer to the ComplexPattern if N /// is a leaf node and a subclass of ComplexPattern, else it returns NULL. static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, CodeGenDAGPatterns &CGP) { if (N->isLeaf() && dynamic_cast(N->getLeafValue()) && static_cast(N->getLeafValue())->getDef()-> isSubClassOf("ComplexPattern")) { return &CGP.getComplexPattern(static_cast(N->getLeafValue()) ->getDef()); } return NULL; } /// getPatternSize - Return the 'size' of this pattern. We want to match large /// patterns before small ones. This is used to determine the size of a /// pattern. static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { assert((EEVT::isExtIntegerInVTs(P->getExtTypes()) || EEVT::isExtFloatingPointInVTs(P->getExtTypes()) || P->getExtTypeNum(0) == MVT::isVoid || P->getExtTypeNum(0) == MVT::Flag || P->getExtTypeNum(0) == MVT::iPTR || P->getExtTypeNum(0) == MVT::iPTRAny) && "Not a valid pattern node to size!"); unsigned Size = 3; // The node itself. // If the root node is a ConstantSDNode, increases its size. // e.g. (set R32:$dst, 0). if (P->isLeaf() && dynamic_cast(P->getLeafValue())) Size += 2; // FIXME: This is a hack to statically increase the priority of patterns // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. // Later we can allow complexity / cost for each pattern to be (optionally) // specified. To get best possible pattern match we'll need to dynamically // calculate the complexity of all patterns a dag can potentially map to. const ComplexPattern *AM = NodeGetComplexPattern(P, CGP); if (AM) Size += AM->getNumOperands() * 3; // If this node has some predicate function that must match, it adds to the // complexity of this node. if (!P->getPredicateFns().empty()) ++Size; // Count children in the count if they are also nodes. for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { TreePatternNode *Child = P->getChild(i); if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) Size += getPatternSize(Child, CGP); else if (Child->isLeaf()) { if (dynamic_cast(Child->getLeafValue())) Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). else if (NodeIsComplexPattern(Child)) Size += getPatternSize(Child, CGP); else if (!Child->getPredicateFns().empty()) ++Size; } } return Size; } /// getResultPatternCost - Compute the number of instructions for this pattern. /// This is a temporary hack. We should really include the instruction /// latencies in this calculation. static unsigned getResultPatternCost(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost++; CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); if (II.usesCustomInserter) Cost += 10; } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternCost(P->getChild(i), CGP); return Cost; } /// getResultPatternCodeSize - Compute the code size of instructions for this /// pattern. static unsigned getResultPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { if (P->isLeaf()) return 0; unsigned Cost = 0; Record *Op = P->getOperator(); if (Op->isSubClassOf("Instruction")) { Cost += Op->getValueAsInt("CodeSize"); } for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) Cost += getResultPatternSize(P->getChild(i), CGP); return Cost; } // PatternSortingPredicate - return true if we prefer to match LHS before RHS. // In particular, we want to match maximal patterns first and lowest cost within // a particular complexity first. struct PatternSortingPredicate { PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} CodeGenDAGPatterns &CGP; typedef std::pair CodeLine; typedef std::vector CodeList; typedef std::vector > PatternList; bool operator()(const std::pair &LHSPair, const std::pair &RHSPair) { const PatternToMatch *LHS = LHSPair.first; const PatternToMatch *RHS = RHSPair.first; unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP); unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP); LHSSize += LHS->getAddedComplexity(); RHSSize += RHS->getAddedComplexity(); if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost if (LHSSize < RHSSize) return false; // If the patterns have equal complexity, compare generated instruction cost unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); if (LHSCost < RHSCost) return true; if (LHSCost > RHSCost) return false; return getResultPatternSize(LHS->getDstPattern(), CGP) < getResultPatternSize(RHS->getDstPattern(), CGP); } }; /// getRegisterValueType - Look up and return the ValueType of the specified /// register. If the register is a member of multiple register classes which /// have different associated types, return MVT::Other. static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { bool FoundRC = false; MVT::SimpleValueType VT = MVT::Other; const std::vector &RCs = T.getRegisterClasses(); std::vector::const_iterator RC; std::vector::const_iterator Element; for (RC = RCs.begin() ; RC != RCs.end() ; RC++) { Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R); if (Element != (*RC).Elements.end()) { if (!FoundRC) { FoundRC = true; VT = (*RC).getValueTypeNum(0); } else { // In multiple RC's if (VT != (*RC).getValueTypeNum(0)) { // Types of the RC's do not agree. Return MVT::Other. The // target is responsible for handling this. return MVT::Other; } } } } return VT; } /// RemoveAllTypes - A quick recursive walk over a pattern which removes all /// type information from it. static void RemoveAllTypes(TreePatternNode *N) { N->removeTypes(); if (!N->isLeaf()) for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) RemoveAllTypes(N->getChild(i)); } /// NodeHasProperty - return true if TreePatternNode has the specified /// property. static bool NodeHasProperty(TreePatternNode *N, SDNP Property, CodeGenDAGPatterns &CGP) { if (N->isLeaf()) { const ComplexPattern *CP = NodeGetComplexPattern(N, CGP); if (CP) return CP->hasProperty(Property); return false; } Record *Operator = N->getOperator(); if (!Operator->isSubClassOf("SDNode")) return false; return CGP.getSDNodeInfo(Operator).hasProperty(Property); } static bool PatternHasProperty(TreePatternNode *N, SDNP Property, CodeGenDAGPatterns &CGP) { if (NodeHasProperty(N, Property, CGP)) return true; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (PatternHasProperty(Child, Property, CGP)) return true; } return false; } static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { return CGP.getSDNodeInfo(Op).getEnumName(); } static bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) { bool isStore = !N->isLeaf() && getOpcodeName(N->getOperator(), CGP) == "ISD::STORE"; if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP)) return false; bool HasChain = false; for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { TreePatternNode *Child = N->getChild(i); if (PatternHasProperty(Child, SDNPHasChain, CGP)) { HasChain = true; break; } } return HasChain; } //===----------------------------------------------------------------------===// // Node Transformation emitter implementation. // void DAGISelEmitter::EmitNodeTransforms(raw_ostream &OS) { // Walk the pattern fragments, adding them to a map, which sorts them by // name. typedef std::map NXsByNameTy; NXsByNameTy NXsByName; for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end(); I != E; ++I) NXsByName.insert(std::make_pair(I->first->getName(), I->second)); OS << "\n// Node transformations.\n"; for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end(); I != E; ++I) { Record *SDNode = I->second.first; std::string Code = I->second.second; if (Code.empty()) continue; // Empty code? Skip it. std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; OS << Code << "\n}\n"; } } //===----------------------------------------------------------------------===// // Predicate emitter implementation. // void DAGISelEmitter::EmitPredicateFunctions(raw_ostream &OS) { OS << "\n// Predicate functions.\n"; // Walk the pattern fragments, adding them to a map, which sorts them by // name. typedef std::map > PFsByNameTy; PFsByNameTy PFsByName; for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); I != E; ++I) PFsByName.insert(std::make_pair(I->first->getName(), *I)); for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end(); I != E; ++I) { Record *PatFragRecord = I->second.first;// Record that derives from PatFrag. TreePattern *P = I->second.second; // If there is a code init for this fragment, emit the predicate code. std::string Code = PatFragRecord->getValueAsCode("Predicate"); if (Code.empty()) continue; if (P->getOnlyTree()->isLeaf()) OS << "inline bool Predicate_" << PatFragRecord->getName() << "(SDNode *N) {\n"; else { std::string ClassName = CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); const char *C2 = ClassName == "SDNode" ? "N" : "inN"; OS << "inline bool Predicate_" << PatFragRecord->getName() << "(SDNode *" << C2 << ") {\n"; if (ClassName != "SDNode") OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; } OS << Code << "\n}\n"; } OS << "\n\n"; } //===----------------------------------------------------------------------===// // PatternCodeEmitter implementation. // class PatternCodeEmitter { private: CodeGenDAGPatterns &CGP; // Predicates. std::string PredicateCheck; // Pattern cost. unsigned Cost; // Instruction selector pattern. TreePatternNode *Pattern; // Matched instruction. TreePatternNode *Instruction; // Node to name mapping std::map VariableMap; // Node to operator mapping std::map OperatorMap; // Name of the folded node which produces a flag. std::pair FoldedFlag; // Names of all the folded nodes which produce chains. std::vector > FoldedChains; // Original input chain(s). std::vector > OrigChains; std::set Duplicates; /// LSI - Load/Store information. /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode /// for each memory access. This facilitates the use of AliasAnalysis in /// the backend. std::vector LSI; /// GeneratedCode - This is the buffer that we emit code to. The first int /// indicates whether this is an exit predicate (something that should be /// tested, and if true, the match fails) [when 1], or normal code to emit /// [when 0], or initialization code to emit [when 2]. std::vector > &GeneratedCode; /// GeneratedDecl - This is the set of all SDValue declarations needed for /// the set of patterns for each top-level opcode. std::set &GeneratedDecl; /// TargetOpcodes - The target specific opcodes used by the resulting /// instructions. std::vector &TargetOpcodes; std::vector &TargetVTs; /// OutputIsVariadic - Records whether the instruction output pattern uses /// variable_ops. This requires that the Emit function be passed an /// additional argument to indicate where the input varargs operands /// begin. bool &OutputIsVariadic; /// NumInputRootOps - Records the number of operands the root node of the /// input pattern has. This information is used in the generated code to /// pass to Emit functions when variable_ops processing is needed. unsigned &NumInputRootOps; std::string ChainName; unsigned TmpNo; unsigned OpcNo; unsigned VTNo; void emitCheck(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(1, S)); } void emitCode(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(0, S)); } void emitInit(const std::string &S) { if (!S.empty()) GeneratedCode.push_back(std::make_pair(2, S)); } void emitDecl(const std::string &S) { assert(!S.empty() && "Invalid declaration"); GeneratedDecl.insert(S); } void emitOpcode(const std::string &Opc) { TargetOpcodes.push_back(Opc); OpcNo++; } void emitVT(const std::string &VT) { TargetVTs.push_back(VT); VTNo++; } public: PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck, TreePatternNode *pattern, TreePatternNode *instr, std::vector > &gc, std::set &gd, std::vector &to, std::vector &tv, bool &oiv, unsigned &niro) : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr), GeneratedCode(gc), GeneratedDecl(gd), TargetOpcodes(to), TargetVTs(tv), OutputIsVariadic(oiv), NumInputRootOps(niro), TmpNo(0), OpcNo(0), VTNo(0) {} /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo /// if the match fails. At this point, we already know that the opcode for N /// matches, and the SDNode for the result has the RootName specified name. void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, const std::string &RootName, const std::string &ChainSuffix, bool &FoundChain) { // Save loads/stores matched by a pattern. if (!N->isLeaf() && N->getName().empty()) { if (NodeHasProperty(N, SDNPMemOperand, CGP)) LSI.push_back(RootName); } bool isRoot = (P == NULL); // Emit instruction predicates. Each predicate is just a string for now. if (isRoot) { // Record input varargs info. NumInputRootOps = N->getNumChildren(); if (DisablePatternForFastISel(N, CGP)) emitCheck("OptLevel != CodeGenOpt::None"); emitCheck(PredicateCheck); } if (N->isLeaf()) { if (IntInit *II = dynamic_cast(N->getLeafValue())) { emitCheck("cast(" + RootName + ")->getSExtValue() == INT64_C(" + itostr(II->getValue()) + ")"); return; } else if (!NodeIsComplexPattern(N)) { assert(0 && "Cannot match this as a leaf value!"); abort(); } } // If this node has a name associated with it, capture it in VariableMap. If // we already saw this in the pattern, emit code to verify dagness. if (!N->getName().empty()) { std::string &VarMapEntry = VariableMap[N->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName; } else { // If we get here, this is a second reference to a specific name. Since // we already have checked that the first reference is valid, we don't // have to recursively match it, just check that it's the same as the // previously named thing. emitCheck(VarMapEntry + " == " + RootName); return; } if (!N->isLeaf()) OperatorMap[N->getName()] = N->getOperator(); } // Emit code to load the child nodes and match their contents recursively. unsigned OpNo = 0; bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP); bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP); bool EmittedUseCheck = false; if (HasChain) { if (NodeHasChain) OpNo = 1; if (!isRoot) { // Multiple uses of actual result? emitCheck(RootName + ".hasOneUse()"); EmittedUseCheck = true; if (NodeHasChain) { // If the immediate use can somehow reach this node through another // path, then can't fold it either or it will create a cycle. // e.g. In the following diagram, XX can reach ld through YY. If // ld is folded into XX, then YY is both a predecessor and a successor // of XX. // // [ld] // ^ ^ // | | // / \--- // / [YY] // | ^ // [XX]-------| bool NeedCheck = P != Pattern; if (!NeedCheck) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator()); NeedCheck = P->getOperator() == CGP.get_intrinsic_void_sdnode() || P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || PInfo.getNumOperands() > 1 || PInfo.hasProperty(SDNPHasChain) || PInfo.hasProperty(SDNPInFlag) || PInfo.hasProperty(SDNPOptInFlag); } if (NeedCheck) { std::string ParentName(RootName.begin(), RootName.end()-1); emitCheck("IsLegalAndProfitableToFold(" + RootName + ".getNode(), " + ParentName + ".getNode(), N.getNode())"); } } } if (NodeHasChain) { if (FoundChain) { emitCheck("(" + ChainName + ".getNode() == " + RootName + ".getNode() || " "IsChainCompatible(" + ChainName + ".getNode(), " + RootName + ".getNode()))"); OrigChains.push_back(std::make_pair(ChainName, RootName)); } else FoundChain = true; ChainName = "Chain" + ChainSuffix; emitInit("SDValue " + ChainName + " = " + RootName + ".getOperand(0);"); } } // Don't fold any node which reads or writes a flag and has multiple uses. // FIXME: We really need to separate the concepts of flag and "glue". Those // real flag results, e.g. X86CMP output, can have multiple uses. // FIXME: If the optional incoming flag does not exist. Then it is ok to // fold it. if (!isRoot && (PatternHasProperty(N, SDNPInFlag, CGP) || PatternHasProperty(N, SDNPOptInFlag, CGP) || PatternHasProperty(N, SDNPOutFlag, CGP))) { if (!EmittedUseCheck) { // Multiple uses of actual result? emitCheck(RootName + ".hasOneUse()"); } } // If there are node predicates for this, emit the calls. for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) emitCheck(N->getPredicateFns()[i] + "(" + RootName + ".getNode())"); // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is // a constant without a predicate fn that has more that one bit set, handle // this as a special case. This is usually for targets that have special // handling of certain large constants (e.g. alpha with it's 8/16/32-bit // handling stuff). Using these instructions is often far more efficient // than materializing the constant. Unfortunately, both the instcombiner // and the dag combiner can often infer that bits are dead, and thus drop // them from the mask in the dag. For example, it might turn 'AND X, 255' // into 'AND X, 254' if it knows the low bit is set. Emit code that checks // to handle this. if (!N->isLeaf() && (N->getOperator()->getName() == "and" || N->getOperator()->getName() == "or") && N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty()) { if (IntInit *II = dynamic_cast(N->getChild(1)->getLeafValue())) { if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. emitInit("SDValue " + RootName + "0" + " = " + RootName + ".getOperand(" + utostr(0) + ");"); emitInit("SDValue " + RootName + "1" + " = " + RootName + ".getOperand(" + utostr(1) + ");"); unsigned NTmp = TmpNo++; emitCode("ConstantSDNode *Tmp" + utostr(NTmp) + " = dyn_cast(" + RootName + "1);"); emitCheck("Tmp" + utostr(NTmp)); const char *MaskPredicate = N->getOperator()->getName() == "or" ? "CheckOrMask(" : "CheckAndMask("; emitCheck(MaskPredicate + RootName + "0, Tmp" + utostr(NTmp) + ", INT64_C(" + itostr(II->getValue()) + "))"); EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName, ChainSuffix + utostr(0), FoundChain); return; } } } for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { emitInit("SDValue " + RootName + utostr(OpNo) + " = " + RootName + ".getOperand(" +utostr(OpNo) + ");"); EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName, ChainSuffix + utostr(OpNo), FoundChain); } // Handle cases when root is a complex pattern. const ComplexPattern *CP; if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { std::string Fn = CP->getSelectFunc(); unsigned NumOps = CP->getNumOperands(); for (unsigned i = 0; i < NumOps; ++i) { emitDecl("CPTmp" + RootName + "_" + utostr(i)); emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); } if (CP->hasProperty(SDNPHasChain)) { emitDecl("CPInChain"); emitDecl("Chain" + ChainSuffix); emitCode("SDValue CPInChain;"); emitCode("SDValue Chain" + ChainSuffix + ";"); } std::string Code = Fn + "(" + RootName + ", " + RootName; for (unsigned i = 0; i < NumOps; i++) Code += ", CPTmp" + RootName + "_" + utostr(i); if (CP->hasProperty(SDNPHasChain)) { ChainName = "Chain" + ChainSuffix; Code += ", CPInChain, Chain" + ChainSuffix; } emitCheck(Code + ")"); } } void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, const std::string &RootName, const std::string &ParentRootName, const std::string &ChainSuffix, bool &FoundChain) { if (!Child->isLeaf()) { // If it's not a leaf, recursively match. const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator()); emitCheck(RootName + ".getOpcode() == " + CInfo.getEnumName()); EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); bool HasChain = false; if (NodeHasProperty(Child, SDNPHasChain, CGP)) { HasChain = true; FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); } if (NodeHasProperty(Child, SDNPOutFlag, CGP)) { assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && "Pattern folded multiple nodes which produce flags?"); FoldedFlag = std::make_pair(RootName, CInfo.getNumResults() + (unsigned)HasChain); } } else { // If this child has a name associated with it, capture it in VarMap. If // we already saw this in the pattern, emit code to verify dagness. if (!Child->getName().empty()) { std::string &VarMapEntry = VariableMap[Child->getName()]; if (VarMapEntry.empty()) { VarMapEntry = RootName; } else { // If we get here, this is a second reference to a specific name. // Since we already have checked that the first reference is valid, // we don't have to recursively match it, just check that it's the // same as the previously named thing. emitCheck(VarMapEntry + " == " + RootName); Duplicates.insert(RootName); return; } } // Handle leaves of various types. if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { Record *LeafRec = DI->getDef(); if (LeafRec->isSubClassOf("RegisterClass") || LeafRec->isSubClassOf("PointerLikeRegClass")) { // Handle register references. Nothing to do here. } else if (LeafRec->isSubClassOf("Register")) { // Handle register references. } else if (LeafRec->isSubClassOf("ComplexPattern")) { // Handle complex pattern. const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP); std::string Fn = CP->getSelectFunc(); unsigned NumOps = CP->getNumOperands(); for (unsigned i = 0; i < NumOps; ++i) { emitDecl("CPTmp" + RootName + "_" + utostr(i)); emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); } if (CP->hasProperty(SDNPHasChain)) { const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator()); FoldedChains.push_back(std::make_pair("CPInChain", PInfo.getNumResults())); ChainName = "Chain" + ChainSuffix; emitDecl("CPInChain"); emitDecl(ChainName); emitCode("SDValue CPInChain;"); emitCode("SDValue " + ChainName + ";"); } std::string Code = Fn + "("; if (CP->hasAttribute(CPAttrParentAsRoot)) { Code += ParentRootName + ", "; } else { Code += "N, "; } if (CP->hasProperty(SDNPHasChain)) { std::string ParentName(RootName.begin(), RootName.end()-1); Code += ParentName + ", "; } Code += RootName; for (unsigned i = 0; i < NumOps; i++) Code += ", CPTmp" + RootName + "_" + utostr(i); if (CP->hasProperty(SDNPHasChain)) Code += ", CPInChain, Chain" + ChainSuffix; emitCheck(Code + ")"); } else if (LeafRec->getName() == "srcvalue") { // Place holder for SRCVALUE nodes. Nothing to do here. } else if (LeafRec->isSubClassOf("ValueType")) { // Make sure this is the specified value type. emitCheck("cast(" + RootName + ")->getVT() == MVT::" + LeafRec->getName()); } else if (LeafRec->isSubClassOf("CondCode")) { // Make sure this is the specified cond code. emitCheck("cast(" + RootName + ")->get() == ISD::" + LeafRec->getName()); } else { #ifndef NDEBUG Child->dump(); errs() << " "; #endif assert(0 && "Unknown leaf type!"); } // If there are node predicates for this, emit the calls. for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i) emitCheck(Child->getPredicateFns()[i] + "(" + RootName + ".getNode())"); } else if (IntInit *II = dynamic_cast(Child->getLeafValue())) { unsigned NTmp = TmpNo++; emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) + " = dyn_cast("+ RootName + ");"); emitCheck("Tmp" + utostr(NTmp)); unsigned CTmp = TmpNo++; emitCode("int64_t CN"+ utostr(CTmp) + " = Tmp" + utostr(NTmp) + "->getSExtValue();"); emitCheck("CN" + utostr(CTmp) + " == " "INT64_C(" +itostr(II->getValue()) + ")"); } else { #ifndef NDEBUG Child->dump(); #endif assert(0 && "Unknown leaf type!"); } } } /// EmitResultCode - Emit the action for a pattern. Now that it has matched /// we actually have to build a DAG! std::vector EmitResultCode(TreePatternNode *N, std::vector DstRegs, bool InFlagDecled, bool ResNodeDecled, bool LikeLeaf = false, bool isRoot = false) { // List of arguments of getMachineNode() or SelectNodeTo(). std::vector NodeOps; // This is something selected from the pattern we matched. if (!N->getName().empty()) { const std::string &VarName = N->getName(); std::string Val = VariableMap[VarName]; bool ModifiedVal = false; if (Val.empty()) { errs() << "Variable '" << VarName << " referenced but not defined " << "and not caught earlier!\n"; abort(); } if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { // Already selected this operand, just return the tmpval. NodeOps.push_back(Val); return NodeOps; } const ComplexPattern *CP; unsigned ResNo = TmpNo++; if (!N->isLeaf() && N->getOperator()->getName() == "imm") { assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); std::string CastType; std::string TmpVar = "Tmp" + utostr(ResNo); switch (N->getTypeNum(0)) { default: errs() << "Cannot handle " << getEnumName(N->getTypeNum(0)) << " type as an immediate constant. Aborting\n"; abort(); case MVT::i1: CastType = "bool"; break; case MVT::i8: CastType = "unsigned char"; break; case MVT::i16: CastType = "unsigned short"; break; case MVT::i32: CastType = "unsigned"; break; case MVT::i64: CastType = "uint64_t"; break; } emitCode("SDValue " + TmpVar + " = CurDAG->getTargetConstant(((" + CastType + ") cast(" + Val + ")->getZExtValue()), " + getEnumName(N->getTypeNum(0)) + ");"); // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = TmpVar; ModifiedVal = true; NodeOps.push_back(Val); } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") { assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); std::string TmpVar = "Tmp" + utostr(ResNo); emitCode("SDValue " + TmpVar + " = CurDAG->getTargetConstantFP(*cast(" + Val + ")->getConstantFPValue(), cast(" + Val + ")->getValueType(0));"); // Add Tmp to VariableMap, so that we don't multiply select this // value if used multiple times by this pattern result. Val = TmpVar; ModifiedVal = true; NodeOps.push_back(Val); } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ Record *Op = OperatorMap[N->getName()]; // Transform ExternalSymbol to TargetExternalSymbol if (Op && Op->getName() == "externalsym") { std::string TmpVar = "Tmp"+utostr(ResNo); emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" "ExternalSymbol(cast(" + Val + ")->getSymbol(), " + getEnumName(N->getTypeNum(0)) + ");"); // Add Tmp to VariableMap, so that we don't multiply select // this value if used multiple times by this pattern result. Val = TmpVar; ModifiedVal = true; } NodeOps.push_back(Val); } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" || N->getOperator()->getName() == "tglobaltlsaddr")) { Record *Op = OperatorMap[N->getName()]; // Transform GlobalAddress to TargetGlobalAddress if (Op && (Op->getName() == "globaladdr" || Op->getName() == "globaltlsaddr")) { std::string TmpVar = "Tmp" + utostr(ResNo); emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" "GlobalAddress(cast(" + Val + ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + ");"); // Add Tmp to VariableMap, so that we don't multiply select // this value if used multiple times by this pattern result. Val = TmpVar; ModifiedVal = true; } NodeOps.push_back(Val); } else if (!N->isLeaf() && (N->getOperator()->getName() == "texternalsym" || N->getOperator()->getName() == "tconstpool")) { // Do not rewrite the variable name, since we don't generate a new // temporary. NodeOps.push_back(Val); } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { for (unsigned i = 0; i < CP->getNumOperands(); ++i) { NodeOps.push_back("CPTmp" + Val + "_" + utostr(i)); } } else { // This node, probably wrapped in a SDNodeXForm, behaves like a leaf // node even if it isn't one. Don't select it. if (!LikeLeaf) { if (isRoot && N->isLeaf()) { emitCode("ReplaceUses(N, " + Val + ");"); emitCode("return NULL;"); } } NodeOps.push_back(Val); } if (ModifiedVal) { VariableMap[VarName] = Val; } return NodeOps; } if (N->isLeaf()) { // If this is an explicit register reference, handle it. if (DefInit *DI = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; if (DI->getDef()->isSubClassOf("Register")) { emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + getQualifiedName(DI->getDef()) + ", " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } else if (DI->getDef()->getName() == "zero_reg") { emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(0, " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } else if (DI->getDef()->isSubClassOf("RegisterClass")) { // Handle a reference to a register class. This is used // in COPY_TO_SUBREG instructions. emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getTargetConstant(" + getQualifiedName(DI->getDef()) + "RegClassID, " + "MVT::i32);"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } } else if (IntInit *II = dynamic_cast(N->getLeafValue())) { unsigned ResNo = TmpNo++; assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getTargetConstant(0x" + utohexstr((uint64_t) II->getValue()) + "ULL, " + getEnumName(N->getTypeNum(0)) + ");"); NodeOps.push_back("Tmp" + utostr(ResNo)); return NodeOps; } #ifndef NDEBUG N->dump(); #endif assert(0 && "Unknown leaf type!"); return NodeOps; } Record *Op = N->getOperator(); if (Op->isSubClassOf("Instruction")) { const CodeGenTarget &CGT = CGP.getTargetInfo(); CodeGenInstruction &II = CGT.getInstruction(Op->getName()); const DAGInstruction &Inst = CGP.getInstruction(Op); const TreePattern *InstPat = Inst.getPattern(); // FIXME: Assume actual pattern comes before "implicit". TreePatternNode *InstPatNode = isRoot ? (InstPat ? InstPat->getTree(0) : Pattern) : (InstPat ? InstPat->getTree(0) : NULL); if (InstPatNode && !InstPatNode->isLeaf() && InstPatNode->getOperator()->getName() == "set") { InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); } bool IsVariadic = isRoot && II.isVariadic; // FIXME: fix how we deal with physical register operands. bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; bool HasImpResults = isRoot && DstRegs.size() > 0; bool NodeHasOptInFlag = isRoot && PatternHasProperty(Pattern, SDNPOptInFlag, CGP); bool NodeHasInFlag = isRoot && PatternHasProperty(Pattern, SDNPInFlag, CGP); bool NodeHasOutFlag = isRoot && PatternHasProperty(Pattern, SDNPOutFlag, CGP); bool NodeHasChain = InstPatNode && PatternHasProperty(InstPatNode, SDNPHasChain, CGP); bool InputHasChain = isRoot && NodeHasProperty(Pattern, SDNPHasChain, CGP); unsigned NumResults = Inst.getNumResults(); unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0; // Record output varargs info. OutputIsVariadic = IsVariadic; if (NodeHasOptInFlag) { emitCode("bool HasInFlag = " "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); } if (IsVariadic) emitCode("SmallVector Ops" + utostr(OpcNo) + ";"); // How many results is this pattern expected to produce? unsigned NumPatResults = 0; for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { MVT::SimpleValueType VT = Pattern->getTypeNum(i); if (VT != MVT::isVoid && VT != MVT::Flag) NumPatResults++; } if (OrigChains.size() > 0) { // The original input chain is being ignored. If it is not just // pointing to the op that's being folded, we should create a // TokenFactor with it and the chain of the folded op as the new chain. // We could potentially be doing multiple levels of folding, in that // case, the TokenFactor can have more operands. emitCode("SmallVector InChains;"); for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { emitCode("if (" + OrigChains[i].first + ".getNode() != " + OrigChains[i].second + ".getNode()) {"); emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); emitCode("}"); } emitCode("InChains.push_back(" + ChainName + ");"); emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, " "N.getDebugLoc(), MVT::Other, " "&InChains[0], InChains.size());"); if (GenDebug) { emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");"); emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");"); } } // Loop over all of the operands of the instruction pattern, emitting code // to fill them all in. The node 'N' usually has number children equal to // the number of input operands of the instruction. However, in cases // where there are predicate operands for an instruction, we need to fill // in the 'execute always' values. Match up the node operands to the // instruction operands to do this. std::vector AllOps; for (unsigned ChildNo = 0, InstOpNo = NumResults; InstOpNo != II.OperandList.size(); ++InstOpNo) { std::vector Ops; // Determine what to emit for this operand. Record *OperandNode = II.OperandList[InstOpNo].Rec; if ((OperandNode->isSubClassOf("PredicateOperand") || OperandNode->isSubClassOf("OptionalDefOperand")) && !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { // This is a predicate or optional def operand; emit the // 'default ops' operands. const DAGDefaultOperand &DefaultOp = CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs, InFlagDecled, ResNodeDecled); AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); } } else { // Otherwise this is a normal operand or a predicate operand without // 'execute always'; emit it. Ops = EmitResultCode(N->getChild(ChildNo), DstRegs, InFlagDecled, ResNodeDecled); AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); ++ChildNo; } } // Emit all the chain and CopyToReg stuff. bool ChainEmitted = NodeHasChain; if (NodeHasInFlag || HasImpInputs) EmitInFlagSelectCode(Pattern, "N", ChainEmitted, InFlagDecled, ResNodeDecled, true); if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { if (!InFlagDecled) { emitCode("SDValue InFlag(0, 0);"); InFlagDecled = true; } if (NodeHasOptInFlag) { emitCode("if (HasInFlag) {"); emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); emitCode("}"); } } unsigned ResNo = TmpNo++; unsigned OpsNo = OpcNo; std::string CodePrefix; bool ChainAssignmentNeeded = NodeHasChain && !isRoot; std::deque After; std::string NodeName; if (!isRoot) { NodeName = "Tmp" + utostr(ResNo); CodePrefix = "SDValue " + NodeName + "("; } else { NodeName = "ResNode"; if (!ResNodeDecled) { CodePrefix = "SDNode *" + NodeName + " = "; ResNodeDecled = true; } else CodePrefix = NodeName + " = "; } std::string Code = "Opc" + utostr(OpcNo); if (!isRoot || (InputHasChain && !NodeHasChain)) // For call to "getMachineNode()". Code += ", N.getDebugLoc()"; emitOpcode(II.Namespace + "::" + II.TheDef->getName()); // Output order: results, chain, flags // Result types. if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { Code += ", VT" + utostr(VTNo); emitVT(getEnumName(N->getTypeNum(0))); } // Add types for implicit results in physical registers, scheduler will // care of adding copyfromreg nodes. for (unsigned i = 0; i < NumDstRegs; i++) { Record *RR = DstRegs[i]; if (RR->isSubClassOf("Register")) { MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT); Code += ", " + getEnumName(RVT); } } if (NodeHasChain) Code += ", MVT::Other"; if (NodeHasOutFlag) Code += ", MVT::Flag"; // Inputs. if (IsVariadic) { for (unsigned i = 0, e = AllOps.size(); i != e; ++i) emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); AllOps.clear(); // Figure out whether any operands at the end of the op list are not // part of the variable section. std::string EndAdjust; if (NodeHasInFlag || HasImpInputs) EndAdjust = "-1"; // Always has one flag. else if (NodeHasOptInFlag) EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) + ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); emitCode("}"); } // Populate MemRefs with entries for each memory accesses covered by // this pattern. if (isRoot && !LSI.empty()) { std::string MemRefs = "MemRefs" + utostr(OpsNo); emitCode("MachineSDNode::mmo_iterator " + MemRefs + " = " "MF->allocateMemRefsArray(" + utostr(LSI.size()) + ");"); for (unsigned i = 0, e = LSI.size(); i != e; ++i) emitCode(MemRefs + "[" + utostr(i) + "] = " "cast(" + LSI[i] + ")->getMemOperand();"); After.push_back("cast(ResNode)->setMemRefs(" + MemRefs + ", " + MemRefs + " + " + utostr(LSI.size()) + ");"); } if (NodeHasChain) { if (IsVariadic) emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); else AllOps.push_back(ChainName); } if (IsVariadic) { if (NodeHasInFlag || HasImpInputs) emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); else if (NodeHasOptInFlag) { emitCode("if (HasInFlag)"); emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); } Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + ".size()"; } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) AllOps.push_back("InFlag"); unsigned NumOps = AllOps.size(); if (NumOps) { if (!NodeHasOptInFlag && NumOps < 4) { for (unsigned i = 0; i != NumOps; ++i) Code += ", " + AllOps[i]; } else { std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { "; for (unsigned i = 0; i != NumOps; ++i) { OpsCode += AllOps[i]; if (i != NumOps-1) OpsCode += ", "; } emitCode(OpsCode + " };"); Code += ", Ops" + utostr(OpsNo) + ", "; if (NodeHasOptInFlag) { Code += "HasInFlag ? "; Code += utostr(NumOps) + " : " + utostr(NumOps-1); } else Code += utostr(NumOps); } } if (!isRoot) Code += "), 0"; std::vector ReplaceFroms; std::vector ReplaceTos; if (!isRoot) { NodeOps.push_back("Tmp" + utostr(ResNo)); } else { if (NodeHasOutFlag) { if (!InFlagDecled) { After.push_back("SDValue InFlag(ResNode, " + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");"); InFlagDecled = true; } else After.push_back("InFlag = SDValue(ResNode, " + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");"); } for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { ReplaceFroms.push_back("SDValue(" + FoldedChains[j].first + ".getNode(), " + utostr(FoldedChains[j].second) + ")"); ReplaceTos.push_back("SDValue(ResNode, " + utostr(NumResults+NumDstRegs) + ")"); } if (NodeHasOutFlag) { if (FoldedFlag.first != "") { ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " + utostr(FoldedFlag.second) + ")"); ReplaceTos.push_back("InFlag"); } else { assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP)); ReplaceFroms.push_back("SDValue(N.getNode(), " + utostr(NumPatResults + (unsigned)InputHasChain) + ")"); ReplaceTos.push_back("InFlag"); } } if (!ReplaceFroms.empty() && InputHasChain) { ReplaceFroms.push_back("SDValue(N.getNode(), " + utostr(NumPatResults) + ")"); ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " + ChainName + ".getResNo()" + ")"); ChainAssignmentNeeded |= NodeHasChain; } // User does not expect the instruction would produce a chain! if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { ; } else if (InputHasChain && !NodeHasChain) { // One of the inner node produces a chain. if (NodeHasOutFlag) { ReplaceFroms.push_back("SDValue(N.getNode(), " + utostr(NumPatResults+1) + ")"); ReplaceTos.push_back("SDValue(ResNode, N.getResNo()-1)"); } ReplaceFroms.push_back("SDValue(N.getNode(), " + utostr(NumPatResults) + ")"); ReplaceTos.push_back(ChainName); } } if (ChainAssignmentNeeded) { // Remember which op produces the chain. std::string ChainAssign; if (!isRoot) ChainAssign = ChainName + " = SDValue(" + NodeName + ".getNode(), " + utostr(NumResults+NumDstRegs) + ");"; else ChainAssign = ChainName + " = SDValue(" + NodeName + ", " + utostr(NumResults+NumDstRegs) + ");"; After.push_front(ChainAssign); } if (ReplaceFroms.size() == 1) { After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " + ReplaceTos[0] + ");"); } else if (!ReplaceFroms.empty()) { After.push_back("const SDValue Froms[] = {"); for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : "")); After.push_back("};"); After.push_back("const SDValue Tos[] = {"); for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : "")); After.push_back("};"); After.push_back("ReplaceUses(Froms, Tos, " + itostr(ReplaceFroms.size()) + ");"); } // We prefer to use SelectNodeTo since it avoids allocation when // possible and it avoids CSE map recalculation for the node's // users, however it's tricky to use in a non-root context. // // We also don't use if the pattern replacement is being used to // jettison a chain result, since morphing the node in place // would leave users of the chain dangling. // if (!isRoot || (InputHasChain && !NodeHasChain)) { Code = "CurDAG->getMachineNode(" + Code; } else { Code = "CurDAG->SelectNodeTo(N.getNode(), " + Code; } if (isRoot) { if (After.empty()) CodePrefix = "return "; else After.push_back("return ResNode;"); } emitCode(CodePrefix + Code + ");"); if (GenDebug) { if (!isRoot) { emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"yellow\");"); emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"black\");"); } else { emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");"); emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");"); } } for (unsigned i = 0, e = After.size(); i != e; ++i) emitCode(After[i]); return NodeOps; } if (Op->isSubClassOf("SDNodeXForm")) { assert(N->getNumChildren() == 1 && "node xform should have one child!"); // PatLeaf node - the operand may or may not be a leaf node. But it should // behave like one. std::vector Ops = EmitResultCode(N->getChild(0), DstRegs, InFlagDecled, ResNodeDecled, true); unsigned ResNo = TmpNo++; emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() + "(" + Ops.back() + ".getNode());"); NodeOps.push_back("Tmp" + utostr(ResNo)); if (isRoot) emitCode("return Tmp" + utostr(ResNo) + ".getNode();"); return NodeOps; } N->dump(); errs() << "\n"; throw std::string("Unknown node in result pattern!"); } /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that /// 'Pat' may be missing types. If we find an unresolved type to add a check /// for, this returns true otherwise false if Pat has all types. bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, const std::string &Prefix, bool isRoot = false) { // Did we find one? if (Pat->getExtTypes() != Other->getExtTypes()) { // Move a type over from 'other' to 'pat'. Pat->setTypes(Other->getExtTypes()); // The top level node type is checked outside of the select function. if (!isRoot) emitCheck(Prefix + ".getValueType() == " + getName(Pat->getTypeNum(0))); return true; } unsigned OpNo = (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP); for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), Prefix + utostr(OpNo))) return true; return false; } private: /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is /// being built. void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, bool &ChainEmitted, bool &InFlagDecled, bool &ResNodeDecled, bool isRoot = false) { const CodeGenTarget &T = CGP.getTargetInfo(); unsigned OpNo = (unsigned) NodeHasProperty(N, SDNPHasChain, CGP); bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP); for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { TreePatternNode *Child = N->getChild(i); if (!Child->isLeaf()) { EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, InFlagDecled, ResNodeDecled); } else { if (DefInit *DI = dynamic_cast(Child->getLeafValue())) { if (!Child->getName().empty()) { std::string Name = RootName + utostr(OpNo); if (Duplicates.find(Name) != Duplicates.end()) // A duplicate! Do not emit a copy for this node. continue; } Record *RR = DI->getDef(); if (RR->isSubClassOf("Register")) { MVT::SimpleValueType RVT = getRegisterValueType(RR, T); if (RVT == MVT::Flag) { if (!InFlagDecled) { emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";"); InFlagDecled = true; } else emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); } else { if (!ChainEmitted) { emitCode("SDValue Chain = CurDAG->getEntryNode();"); ChainName = "Chain"; ChainEmitted = true; } if (!InFlagDecled) { emitCode("SDValue InFlag(0, 0);"); InFlagDecled = true; } std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + ", " + RootName + ".getDebugLoc()" + ", " + getQualifiedName(RR) + ", " + RootName + utostr(OpNo) + ", InFlag).getNode();"); ResNodeDecled = true; emitCode(ChainName + " = SDValue(ResNode, 0);"); emitCode("InFlag = SDValue(ResNode, 1);"); } } } } } if (HasInFlag) { if (!InFlagDecled) { emitCode("SDValue InFlag = " + RootName + ".getOperand(" + utostr(OpNo) + ");"); InFlagDecled = true; } else emitCode("InFlag = " + RootName + ".getOperand(" + utostr(OpNo) + ");"); } } }; /// EmitCodeForPattern - Given a pattern to match, emit code to the specified /// stream to match the pattern, and generate the code for the match if it /// succeeds. Returns true if the pattern is not guaranteed to match. void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern, std::vector > &GeneratedCode, std::set &GeneratedDecl, std::vector &TargetOpcodes, std::vector &TargetVTs, bool &OutputIsVariadic, unsigned &NumInputRootOps) { OutputIsVariadic = false; NumInputRootOps = 0; PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(), Pattern.getSrcPattern(), Pattern.getDstPattern(), GeneratedCode, GeneratedDecl, TargetOpcodes, TargetVTs, OutputIsVariadic, NumInputRootOps); // Emit the matcher, capturing named arguments in VariableMap. bool FoundChain = false; Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); // TP - Get *SOME* tree pattern, we don't care which. TreePattern &TP = *CGP.pf_begin()->second; // At this point, we know that we structurally match the pattern, but the // types of the nodes may not match. Figure out the fewest number of type // comparisons we need to emit. For example, if there is only one integer // type supported by a target, there should be no type comparisons at all for // integer patterns! // // To figure out the fewest number of type checks needed, clone the pattern, // remove the types, then perform type inference on the pattern as a whole. // If there are unresolved types, emit an explicit check for those types, // apply the type to the tree, then rerun type inference. Iterate until all // types are resolved. // TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); RemoveAllTypes(Pat); do { // Resolve/propagate as many types as possible. try { bool MadeChange = true; while (MadeChange) MadeChange = Pat->ApplyTypeConstraints(TP, true/*Ignore reg constraints*/); } catch (...) { assert(0 && "Error: could not find consistent types for something we" " already decided was ok!"); abort(); } // Insert a check for an unresolved type and add it to the tree. If we find // an unresolved type to add a check for, this returns true and we iterate, // otherwise we are done. } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(), false, false, false, true); delete Pat; } /// EraseCodeLine - Erase one code line from all of the patterns. If removing /// a line causes any of them to be empty, remove them and return true when /// done. static bool EraseCodeLine(std::vector > > > &Patterns) { bool ErasedPatterns = false; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { Patterns[i].second.pop_back(); if (Patterns[i].second.empty()) { Patterns.erase(Patterns.begin()+i); --i; --e; ErasedPatterns = true; } } return ErasedPatterns; } /// EmitPatterns - Emit code for at least one pattern, but try to group common /// code together between the patterns. void DAGISelEmitter::EmitPatterns(std::vector > > > &Patterns, unsigned Indent, raw_ostream &OS) { typedef std::pair CodeLine; typedef std::vector CodeList; typedef std::vector > PatternList; if (Patterns.empty()) return; // Figure out how many patterns share the next code line. Explicitly copy // FirstCodeLine so that we don't invalidate a reference when changing // Patterns. const CodeLine FirstCodeLine = Patterns.back().second.back(); unsigned LastMatch = Patterns.size()-1; while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) --LastMatch; // If not all patterns share this line, split the list into two pieces. The // first chunk will use this line, the second chunk won't. if (LastMatch != 0) { PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); // FIXME: Emit braces? if (Shared.size() == 1) { const PatternToMatch &Pattern = *Shared.back().first; OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; Pattern.getSrcPattern()->print(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; Pattern.getDstPattern()->print(OS); OS << "\n"; unsigned AddedComplexity = Pattern.getAddedComplexity(); OS << std::string(Indent, ' ') << "// Pattern complexity = " << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity << " cost = " << getResultPatternCost(Pattern.getDstPattern(), CGP) << " size = " << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; } if (FirstCodeLine.first != 1) { OS << std::string(Indent, ' ') << "{\n"; Indent += 2; } EmitPatterns(Shared, Indent, OS); if (FirstCodeLine.first != 1) { Indent -= 2; OS << std::string(Indent, ' ') << "}\n"; } if (Other.size() == 1) { const PatternToMatch &Pattern = *Other.back().first; OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; Pattern.getSrcPattern()->print(OS); OS << "\n" << std::string(Indent, ' ') << "// Emits: "; Pattern.getDstPattern()->print(OS); OS << "\n"; unsigned AddedComplexity = Pattern.getAddedComplexity(); OS << std::string(Indent, ' ') << "// Pattern complexity = " << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity << " cost = " << getResultPatternCost(Pattern.getDstPattern(), CGP) << " size = " << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; } EmitPatterns(Other, Indent, OS); return; } // Remove this code from all of the patterns that share it. bool ErasedPatterns = EraseCodeLine(Patterns); bool isPredicate = FirstCodeLine.first == 1; // Otherwise, every pattern in the list has this line. Emit it. if (!isPredicate) { // Normal code. OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; } else { OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; // If the next code line is another predicate, and if all of the pattern // in this group share the same next line, emit it inline now. Do this // until we run out of common predicates. while (!ErasedPatterns && Patterns.back().second.back().first == 1) { // Check that all of the patterns in Patterns end with the same predicate. bool AllEndWithSamePredicate = true; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) if (Patterns[i].second.back() != Patterns.back().second.back()) { AllEndWithSamePredicate = false; break; } // If all of the predicates aren't the same, we can't share them. if (!AllEndWithSamePredicate) break; // Otherwise we can. Emit it shared now. OS << " &&\n" << std::string(Indent+4, ' ') << Patterns.back().second.back().second; ErasedPatterns = EraseCodeLine(Patterns); } OS << ") {\n"; Indent += 2; } EmitPatterns(Patterns, Indent, OS); if (isPredicate) OS << std::string(Indent-2, ' ') << "}\n"; } static std::string getLegalCName(std::string OpName) { std::string::size_type pos = OpName.find("::"); if (pos != std::string::npos) OpName.replace(pos, 2, "_"); return OpName; } void DAGISelEmitter::EmitInstructionSelector(raw_ostream &OS) { const CodeGenTarget &Target = CGP.getTargetInfo(); // Get the namespace to insert instructions into. std::string InstNS = Target.getInstNamespace(); if (!InstNS.empty()) InstNS += "::"; // Group the patterns by their top-level opcodes. std::map > PatternsByOpcode; // All unique target node emission functions. std::map EmitFunctions; for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { const PatternToMatch &Pattern = *I; TreePatternNode *Node = Pattern.getSrcPattern(); if (!Node->isLeaf()) { PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)]. push_back(&Pattern); } else { const ComplexPattern *CP; if (dynamic_cast(Node->getLeafValue())) { PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)]. push_back(&Pattern); } else if ((CP = NodeGetComplexPattern(Node, CGP))) { std::vector OpNodes = CP->getRootNodes(); for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)] .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(), &Pattern); } } else { errs() << "Unrecognized opcode '"; Node->dump(); errs() << "' on tree pattern '"; errs() << Pattern.getDstPattern()->getOperator()->getName() << "'!\n"; exit(1); } } } // For each opcode, there might be multiple select functions, one per // ValueType of the node (or its first operand if it doesn't produce a // non-chain result. std::map > OpcodeVTMap; // Emit one Select_* method for each top-level opcode. We do this instead of // emitting one giant switch statement to support compilers where this will // result in the recursive functions taking less stack space. for (std::map >::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const std::string &OpName = PBOI->first; std::vector &PatternsOfOp = PBOI->second; assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); // Split them into groups by type. std::map > PatternsByType; for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { const PatternToMatch *Pat = PatternsOfOp[i]; TreePatternNode *SrcPat = Pat->getSrcPattern(); PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat); } for (std::map >::iterator II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; ++II) { MVT::SimpleValueType OpVT = II->first; std::vector &Patterns = II->second; typedef std::pair CodeLine; typedef std::vector CodeList; typedef CodeList::iterator CodeListI; std::vector > CodeForPatterns; std::vector > PatternOpcodes; std::vector > PatternVTs; std::vector > PatternDecls; std::vector OutputIsVariadicFlags; std::vector NumInputRootOpsCounts; for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { CodeList GeneratedCode; std::set GeneratedDecl; std::vector TargetOpcodes; std::vector TargetVTs; bool OutputIsVariadic; unsigned NumInputRootOps; GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, TargetOpcodes, TargetVTs, OutputIsVariadic, NumInputRootOps); CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); PatternDecls.push_back(GeneratedDecl); PatternOpcodes.push_back(TargetOpcodes); PatternVTs.push_back(TargetVTs); OutputIsVariadicFlags.push_back(OutputIsVariadic); NumInputRootOpsCounts.push_back(NumInputRootOps); } // Factor target node emission code (emitted by EmitResultCode) into // separate functions. Uniquing and share them among all instruction // selection routines. for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; std::vector &TargetOpcodes = PatternOpcodes[i]; std::vector &TargetVTs = PatternVTs[i]; std::set Decls = PatternDecls[i]; bool OutputIsVariadic = OutputIsVariadicFlags[i]; unsigned NumInputRootOps = NumInputRootOpsCounts[i]; std::vector AddedInits; int CodeSize = (int)GeneratedCode.size(); int LastPred = -1; for (int j = CodeSize-1; j >= 0; --j) { if (LastPred == -1 && GeneratedCode[j].first == 1) LastPred = j; else if (LastPred != -1 && GeneratedCode[j].first == 2) AddedInits.push_back(GeneratedCode[j].second); } std::string CalleeCode = "(const SDValue &N"; std::string CallerCode = "(N"; for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { CalleeCode += ", unsigned Opc" + utostr(j); CallerCode += ", " + TargetOpcodes[j]; } for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { CalleeCode += ", MVT::SimpleValueType VT" + utostr(j); CallerCode += ", " + TargetVTs[j]; } for (std::set::iterator I = Decls.begin(), E = Decls.end(); I != E; ++I) { std::string Name = *I; CalleeCode += ", SDValue &" + Name; CallerCode += ", " + Name; } if (OutputIsVariadic) { CalleeCode += ", unsigned NumInputRootOps"; CallerCode += ", " + utostr(NumInputRootOps); } CallerCode += ");"; CalleeCode += ") "; // Prevent emission routines from being inlined to reduce selection // routines stack frame sizes. CalleeCode += "DISABLE_INLINE "; CalleeCode += "{\n"; for (std::vector::const_reverse_iterator I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) CalleeCode += " " + *I + "\n"; for (int j = LastPred+1; j < CodeSize; ++j) CalleeCode += " " + GeneratedCode[j].second + "\n"; for (int j = LastPred+1; j < CodeSize; ++j) GeneratedCode.pop_back(); CalleeCode += "}\n"; // Uniquing the emission routines. unsigned EmitFuncNum; std::map::iterator EFI = EmitFunctions.find(CalleeCode); if (EFI != EmitFunctions.end()) { EmitFuncNum = EFI->second; } else { EmitFuncNum = EmitFunctions.size(); EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; } // Replace the emission code within selection routines with calls to the // emission functions. if (GenDebug) { GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"red\");")); } CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode; GeneratedCode.push_back(std::make_pair(3, CallerCode)); if (GenDebug) { GeneratedCode.push_back(std::make_pair(0, "if(Result) {")); GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"yellow\");")); GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"black\");")); GeneratedCode.push_back(std::make_pair(0, "}")); //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"black\");")); } GeneratedCode.push_back(std::make_pair(0, "return Result;")); } // Print function. std::string OpVTStr; if (OpVT == MVT::iPTR) { OpVTStr = "_iPTR"; } else if (OpVT == MVT::iPTRAny) { OpVTStr = "_iPTRAny"; } else if (OpVT == MVT::isVoid) { // Nodes with a void result actually have a first result type of either // Other (a chain) or Flag. Since there is no one-to-one mapping from // void to this case, we handle it specially here. } else { OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' } std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); if (OpVTI == OpcodeVTMap.end()) { std::vector VTSet; VTSet.push_back(OpVTStr); OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); } else OpVTI->second.push_back(OpVTStr); // We want to emit all of the matching code now. However, we want to emit // the matches in order of minimal cost. Sort the patterns so the least // cost one is at the start. std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(), PatternSortingPredicate(CGP)); // Scan the code to see if all of the patterns are reachable and if it is // possible that the last one might not match. bool mightNotMatch = true; for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; mightNotMatch = false; for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { if (GeneratedCode[j].first == 1) { // predicate. mightNotMatch = true; break; } } // If this pattern definitely matches, and if it isn't the last one, the // patterns after it CANNOT ever match. Error out. if (mightNotMatch == false && i != CodeForPatterns.size()-1) { errs() << "Pattern '"; CodeForPatterns[i].first->getSrcPattern()->print(errs()); errs() << "' is impossible to select!\n"; exit(1); } } // Loop through and reverse all of the CodeList vectors, as we will be // accessing them from their logical front, but accessing the end of a // vector is more efficient. for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { CodeList &GeneratedCode = CodeForPatterns[i].second; std::reverse(GeneratedCode.begin(), GeneratedCode.end()); } // Next, reverse the list of patterns itself for the same reason. std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); OS << "SDNode *Select_" << getLegalCName(OpName) << OpVTStr << "(const SDValue &N) {\n"; // Emit all of the patterns now, grouped together to share code. EmitPatterns(CodeForPatterns, 2, OS); // If the last pattern has predicates (which could fail) emit code to // catch the case where nothing handles a pattern. if (mightNotMatch) { OS << "\n"; if (OpName != "ISD::INTRINSIC_W_CHAIN" && OpName != "ISD::INTRINSIC_WO_CHAIN" && OpName != "ISD::INTRINSIC_VOID") OS << " CannotYetSelect(N);\n"; else OS << " CannotYetSelectIntrinsic(N);\n"; OS << " return NULL;\n"; } OS << "}\n\n"; } } OS << "// The main instruction selector code.\n" << "SDNode *SelectCode(SDValue N) {\n" << " MVT::SimpleValueType NVT = N.getNode()->getValueType(0).getSimpleVT().SimpleTy;\n" << " switch (N.getOpcode()) {\n" << " default:\n" << " assert(!N.isMachineOpcode() && \"Node already selected!\");\n" << " break;\n" << " case ISD::EntryToken: // These nodes remain the same.\n" << " case ISD::BasicBlock:\n" << " case ISD::Register:\n" << " case ISD::HANDLENODE:\n" << " case ISD::TargetConstant:\n" << " case ISD::TargetConstantFP:\n" << " case ISD::TargetConstantPool:\n" << " case ISD::TargetFrameIndex:\n" << " case ISD::TargetExternalSymbol:\n" << " case ISD::TargetBlockAddress:\n" << " case ISD::TargetJumpTable:\n" << " case ISD::TargetGlobalTLSAddress:\n" << " case ISD::TargetGlobalAddress:\n" << " case ISD::TokenFactor:\n" << " case ISD::CopyFromReg:\n" << " case ISD::CopyToReg: {\n" << " return NULL;\n" << " }\n" << " case ISD::AssertSext:\n" << " case ISD::AssertZext: {\n" << " ReplaceUses(N, N.getOperand(0));\n" << " return NULL;\n" << " }\n" << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" << " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n" << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n" << " case ISD::UNDEF: return Select_UNDEF(N);\n"; // Loop over all of the case statements, emiting a call to each method we // emitted above. for (std::map >::iterator PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { const std::string &OpName = PBOI->first; // Potentially multiple versions of select for this opcode. One for each // ValueType of the node (or its first true operand if it doesn't produce a // result. std::map >::iterator OpVTI = OpcodeVTMap.find(OpName); std::vector &OpVTs = OpVTI->second; OS << " case " << OpName << ": {\n"; // If we have only one variant and it's the default, elide the // switch. Marginally faster, and makes MSVC happier. if (OpVTs.size()==1 && OpVTs[0].empty()) { OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; OS << " break;\n"; OS << " }\n"; continue; } // Keep track of whether we see a pattern that has an iPtr result. bool HasPtrPattern = false; bool HasDefaultPattern = false; OS << " switch (NVT) {\n"; for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { std::string &VTStr = OpVTs[i]; if (VTStr.empty()) { HasDefaultPattern = true; continue; } // If this is a match on iPTR: don't emit it directly, we need special // code. if (VTStr == "_iPTR") { HasPtrPattern = true; continue; } OS << " case MVT::" << VTStr.substr(1) << ":\n" << " return Select_" << getLegalCName(OpName) << VTStr << "(N);\n"; } OS << " default:\n"; // If there is an iPTR result version of this pattern, emit it here. if (HasPtrPattern) { OS << " if (TLI.getPointerTy() == NVT)\n"; OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; } if (HasDefaultPattern) { OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; } OS << " break;\n"; OS << " }\n"; OS << " break;\n"; OS << " }\n"; } OS << " } // end of big switch.\n\n" << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" << " CannotYetSelect(N);\n" << " } else {\n" << " CannotYetSelectIntrinsic(N);\n" << " }\n" << " return NULL;\n" << "}\n\n"; } void DAGISelEmitter::run(raw_ostream &OS) { EmitSourceFileHeader("DAG Instruction Selector for the " + CGP.getTargetInfo().getName() + " target", OS); OS << "// *** NOTE: This file is #included into the middle of the target\n" << "// *** instruction selector class. These functions are really " << "methods.\n\n"; OS << "// Include standard, target-independent definitions and methods used\n" << "// by the instruction selector.\n"; OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n"; EmitNodeTransforms(OS); EmitPredicateFunctions(OS); DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n"); for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); I != E; ++I) { DEBUG(errs() << "PATTERN: "; I->getSrcPattern()->dump()); DEBUG(errs() << "\nRESULT: "; I->getDstPattern()->dump()); DEBUG(errs() << "\n"); } // At this point, we have full information about the 'Patterns' we need to // parse, both implicitly from instructions as well as from explicit pattern // definitions. Emit the resultant instruction selector. EmitInstructionSelector(OS); }