//===- RegisterInfoEmitter.cpp - Generate a Register File Desc. -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of a target // register file for a code generator. It uses instances of the Register, // RegisterAliases, and RegisterClass classes to gather this information. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Format.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include using namespace llvm; namespace { class RegisterInfoEmitter { RecordKeeper &Records; public: RegisterInfoEmitter(RecordKeeper &R) : Records(R) {} // runEnums - Print out enum values for all of the registers. void runEnums(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runMCDesc - Print out MC register descriptions. void runMCDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetHeader - Emit a header fragment for the register info emitter. void runTargetHeader(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // runTargetDesc - Output the target register and register file descriptions. void runTargetDesc(raw_ostream &o, CodeGenTarget &Target, CodeGenRegBank &Bank); // run - Output the register file description. void run(raw_ostream &o); private: void EmitRegMapping(raw_ostream &o, const std::vector &Regs, bool isCtor); void EmitRegMappingTables(raw_ostream &o, const std::vector &Regs, bool isCtor); void EmitRegClasses(raw_ostream &OS, CodeGenTarget &Target); void EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName); void emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClassName); }; } // End anonymous namespace // runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &Bank) { const std::vector &Registers = Bank.getRegisters(); // Register enums are stored as uint16_t in the tables. Make sure we'll fit. assert(Registers.size() <= 0xffff && "Too many regs to fit in tables"); std::string Namespace = Registers[0]->TheDef->getValueAsString("Namespace"); emitSourceFileHeader("Target Register Enum Values", OS); OS << "\n#ifdef GET_REGINFO_ENUM\n"; OS << "#undef GET_REGINFO_ENUM\n"; OS << "namespace llvm {\n\n"; OS << "class MCRegisterClass;\n" << "extern const MCRegisterClass " << Namespace << "MCRegisterClasses[];\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) OS << " " << Registers[i]->getName() << " = " << Registers[i]->EnumValue << ",\n"; assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && "Register enum value mismatch!"); OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; ArrayRef RegisterClasses = Bank.getRegClasses(); if (!RegisterClasses.empty()) { // RegisterClass enums are stored as uint16_t in the tables. assert(RegisterClasses.size() <= 0xffff && "Too many register classes to fit in tables"); OS << "\n// Register classes\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { if (i) OS << ",\n"; OS << " " << RegisterClasses[i]->getName() << "RegClassID"; OS << " = " << i; } OS << "\n };\n"; if (!Namespace.empty()) OS << "}\n"; } const std::vector RegAltNameIndices = Target.getRegAltNameIndices(); // If the only definition is the default NoRegAltName, we don't need to // emit anything. if (RegAltNameIndices.size() > 1) { OS << "\n// Register alternate name indices\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n"; for (unsigned i = 0, e = RegAltNameIndices.size(); i != e; ++i) OS << " " << RegAltNameIndices[i]->getName() << ",\t// " << i << "\n"; OS << " NUM_TARGET_REG_ALT_NAMES = " << RegAltNameIndices.size() << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; } ArrayRef SubRegIndices = Bank.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n"; std::string Namespace = SubRegIndices[0]->getNamespace(); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoSubRegister,\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) OS << " " << SubRegIndices[i]->getName() << ",\t// " << i+1 << "\n"; OS << " NUM_TARGET_SUBREGS\n};\n"; if (!Namespace.empty()) OS << "}\n"; } OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_ENUM\n\n"; } void RegisterInfoEmitter:: EmitRegUnitPressure(raw_ostream &OS, const CodeGenRegBank &RegBank, const std::string &ClassName) { unsigned NumRCs = RegBank.getRegClasses().size(); unsigned NumSets = RegBank.getNumRegPressureSets(); OS << "/// Get the weight in units of pressure for this register class.\n" << "const RegClassWeight &" << ClassName << "::\n" << "getRegClassWeight(const TargetRegisterClass *RC) const {\n" << " static const RegClassWeight RCWeightTable[] = {\n"; for (unsigned i = 0, e = NumRCs; i != e; ++i) { const CodeGenRegisterClass &RC = *RegBank.getRegClasses()[i]; const CodeGenRegister::Set &Regs = RC.getMembers(); if (Regs.empty()) OS << " {0, 0"; else { std::vector RegUnits; RC.buildRegUnitSet(RegUnits); OS << " {" << (*Regs.begin())->getWeight(RegBank) << ", " << RegBank.getRegUnitSetWeight(RegUnits); } OS << "}, \t// " << RC.getName() << "\n"; } OS << " {0, 0} };\n" << " return RCWeightTable[RC->getID()];\n" << "}\n\n"; OS << "\n" << "// Get the number of dimensions of register pressure.\n" << "unsigned " << ClassName << "::getNumRegPressureSets() const {\n" << " return " << NumSets << ";\n}\n\n"; OS << "// Get the name of this register unit pressure set.\n" << "const char *" << ClassName << "::\n" << "getRegPressureSetName(unsigned Idx) const {\n" << " static const char *PressureNameTable[] = {\n"; for (unsigned i = 0; i < NumSets; ++i ) { OS << " \"" << RegBank.getRegPressureSet(i).Name << "\",\n"; } OS << " 0 };\n" << " return PressureNameTable[Idx];\n" << "}\n\n"; OS << "// Get the register unit pressure limit for this dimension.\n" << "// This limit must be adjusted dynamically for reserved registers.\n" << "unsigned " << ClassName << "::\n" << "getRegPressureSetLimit(unsigned Idx) const {\n" << " static const unsigned PressureLimitTable[] = {\n"; for (unsigned i = 0; i < NumSets; ++i ) { const RegUnitSet &RegUnits = RegBank.getRegPressureSet(i); OS << " " << RegBank.getRegUnitSetWeight(RegUnits.Units) << ", \t// " << i << ": " << RegUnits.Name << "\n"; } OS << " 0 };\n" << " return PressureLimitTable[Idx];\n" << "}\n\n"; OS << "/// Get the dimensions of register pressure " << "impacted by this register class.\n" << "/// Returns a -1 terminated array of pressure set IDs\n" << "const int* " << ClassName << "::\n" << "getRegClassPressureSets(const TargetRegisterClass *RC) const {\n" << " static const int RCSetsTable[] = {\n "; std::vector RCSetStarts(NumRCs); for (unsigned i = 0, StartIdx = 0, e = NumRCs; i != e; ++i) { RCSetStarts[i] = StartIdx; ArrayRef PSetIDs = RegBank.getRCPressureSetIDs(i); for (ArrayRef::iterator PSetI = PSetIDs.begin(), PSetE = PSetIDs.end(); PSetI != PSetE; ++PSetI) { OS << *PSetI << ", "; ++StartIdx; } OS << "-1, \t// " << RegBank.getRegClasses()[i]->getName() << "\n "; ++StartIdx; } OS << "-1 };\n"; OS << " static const unsigned RCSetStartTable[] = {\n "; for (unsigned i = 0, e = NumRCs; i != e; ++i) { OS << RCSetStarts[i] << ","; } OS << "0 };\n" << " unsigned SetListStart = RCSetStartTable[RC->getID()];\n" << " return &RCSetsTable[SetListStart];\n" << "}\n\n"; } void RegisterInfoEmitter::EmitRegMappingTables(raw_ostream &OS, const std::vector &Regs, bool isCtor) { // Collect all information about dwarf register numbers typedef std::map, LessRecord> DwarfRegNumsMapTy; DwarfRegNumsMapTy DwarfRegNums; // First, just pull all provided information to the map unsigned maxLength = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; std::vector RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); if (DwarfRegNums.count(Reg)) PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") + getQualifiedName(Reg) + "specified multiple times"); DwarfRegNums[Reg] = RegNums; } if (!maxLength) return; // Now we know maximal length of number list. Append -1's, where needed for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) I->second.push_back(-1); std::string Namespace = Regs[0]->TheDef->getValueAsString("Namespace"); OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n"; // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "Dwarf2L[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the LLVM reg num so lookup can be done // with a binary search. std::map Dwarf2LMap; for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int DwarfRegNo = I->second[i]; if (DwarfRegNo < 0) continue; Dwarf2LMap[DwarfRegNo] = I->first; } for (std::map::iterator I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I) OS << " { " << I->first << "U, " << getQualifiedName(I->second) << " },\n"; OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize"; if (!isCtor) OS << " = sizeof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L)/sizeof(MCRegisterInfo::DwarfLLVMRegPair);\n\n"; else OS << ";\n\n"; } } for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; const RecordVal *V = Reg->getValue("DwarfAlias"); if (!V || !V->getValue()) continue; DefInit *DI = cast(V->getValue()); Record *Alias = DI->getDef(); DwarfRegNums[Reg] = DwarfRegNums[Alias]; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace; OS << (j == 0 ? "DwarfFlavour" : "EHFlavour"); OS << i << "L2Dwarf[]"; if (!isCtor) { OS << " = {\n"; // Store the mapping sorted by the Dwarf reg num so lookup can be done // with a binary search. for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int RegNo = I->second[i]; if (RegNo == -1) // -1 is the default value, don't emit a mapping. continue; OS << " { " << getQualifiedName(I->first) << ", " << RegNo << "U },\n"; } OS << "};\n"; } else { OS << ";\n"; } // We have to store the size in a const global, it's used in multiple // places. OS << "extern const unsigned " << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize"; if (!isCtor) OS << " = sizeof(" << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf)/sizeof(MCRegisterInfo::DwarfLLVMRegPair);\n\n"; else OS << ";\n\n"; } } } void RegisterInfoEmitter::EmitRegMapping(raw_ostream &OS, const std::vector &Regs, bool isCtor) { // Emit the initializer so the tables from EmitRegMappingTables get wired up // to the MCRegisterInfo object. unsigned maxLength = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; maxLength = std::max((size_t)maxLength, Reg->getValueAsListOfInts("DwarfNumbers").size()); } if (!maxLength) return; std::string Namespace = Regs[0]->TheDef->getValueAsString("Namespace"); // Emit reverse information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2L"; OS << "mapDwarfRegsToLLVMRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } // Emit information about the dwarf register numbers. for (unsigned j = 0; j < 2; ++j) { OS << " switch ("; if (j == 0) OS << "DwarfFlavour"; else OS << "EHFlavour"; OS << ") {\n" << " default:\n" << " llvm_unreachable(\"Unknown DWARF flavour\");\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n"; OS << " "; if (!isCtor) OS << "RI->"; std::string Tmp; raw_string_ostream(Tmp) << Namespace << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2Dwarf"; OS << "mapLLVMRegsToDwarfRegs(" << Tmp << ", " << Tmp << "Size, "; if (j == 0) OS << "false"; else OS << "true"; OS << ");\n"; OS << " break;\n"; } OS << " }\n"; } } // Print a BitVector as a sequence of hex numbers using a little-endian mapping. // Width is the number of bits per hex number. static void printBitVectorAsHex(raw_ostream &OS, const BitVector &Bits, unsigned Width) { assert(Width <= 32 && "Width too large"); unsigned Digits = (Width + 3) / 4; for (unsigned i = 0, e = Bits.size(); i < e; i += Width) { unsigned Value = 0; for (unsigned j = 0; j != Width && i + j != e; ++j) Value |= Bits.test(i + j) << j; OS << format("0x%0*x, ", Digits, Value); } } // Helper to emit a set of bits into a constant byte array. class BitVectorEmitter { BitVector Values; public: void add(unsigned v) { if (v >= Values.size()) Values.resize(((v/8)+1)*8); // Round up to the next byte. Values[v] = true; } void print(raw_ostream &OS) { printBitVectorAsHex(OS, Values, 8); } }; static void printSimpleValueType(raw_ostream &OS, MVT::SimpleValueType VT) { OS << getEnumName(VT); } static void printSubRegIndex(raw_ostream &OS, const CodeGenSubRegIndex *Idx) { OS << Idx->EnumValue; } // Differentially encoded register and regunit lists allow for better // compression on regular register banks. The sequence is computed from the // differential list as: // // out[0] = InitVal; // out[n+1] = out[n] + diff[n]; // n = 0, 1, ... // // The initial value depends on the specific list. The list is terminated by a // 0 differential which means we can't encode repeated elements. typedef SmallVector DiffVec; // Differentially encode a sequence of numbers into V. The starting value and // terminating 0 are not added to V, so it will have the same size as List. static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, ArrayRef List) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (unsigned i = 0; i != List.size(); ++i) { uint16_t Cur = List[i]; V.push_back(Cur - Val); Val = Cur; } return V; } template static DiffVec &diffEncode(DiffVec &V, unsigned InitVal, Iter Begin, Iter End) { assert(V.empty() && "Clear DiffVec before diffEncode."); uint16_t Val = uint16_t(InitVal); for (Iter I = Begin; I != End; ++I) { uint16_t Cur = (*I)->EnumValue; V.push_back(Cur - Val); Val = Cur; } return V; } static void printDiff16(raw_ostream &OS, uint16_t Val) { OS << Val; } // Try to combine Idx's compose map into Vec if it is compatible. // Return false if it's not possible. static bool combine(const CodeGenSubRegIndex *Idx, SmallVectorImpl &Vec) { const CodeGenSubRegIndex::CompMap &Map = Idx->getComposites(); for (CodeGenSubRegIndex::CompMap::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) { CodeGenSubRegIndex *&Entry = Vec[I->first->EnumValue - 1]; if (Entry && Entry != I->second) return false; } // All entries are compatible. Make it so. for (CodeGenSubRegIndex::CompMap::const_iterator I = Map.begin(), E = Map.end(); I != E; ++I) Vec[I->first->EnumValue - 1] = I->second; return true; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range < 0xFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } void RegisterInfoEmitter::emitComposeSubRegIndices(raw_ostream &OS, CodeGenRegBank &RegBank, const std::string &ClName) { ArrayRef SubRegIndices = RegBank.getSubRegIndices(); OS << "unsigned " << ClName << "::composeSubRegIndicesImpl(unsigned IdxA, unsigned IdxB) const {\n"; // Many sub-register indexes are composition-compatible, meaning that // // compose(IdxA, IdxB) == compose(IdxA', IdxB) // // for many IdxA, IdxA' pairs. Not all sub-register indexes can be composed. // The illegal entries can be use as wildcards to compress the table further. // Map each Sub-register index to a compatible table row. SmallVector RowMap; SmallVector, 4> Rows; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { unsigned Found = ~0u; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { if (combine(SubRegIndices[i], Rows[r])) { Found = r; break; } } if (Found == ~0u) { Found = Rows.size(); Rows.resize(Found + 1); Rows.back().resize(SubRegIndices.size()); combine(SubRegIndices[i], Rows.back()); } RowMap.push_back(Found); } // Output the row map if there is multiple rows. if (Rows.size() > 1) { OS << " static const " << getMinimalTypeForRange(Rows.size()) << " RowMap[" << SubRegIndices.size() << "] = {\n "; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) OS << RowMap[i] << ", "; OS << "\n };\n"; } // Output the rows. OS << " static const " << getMinimalTypeForRange(SubRegIndices.size()+1) << " Rows[" << Rows.size() << "][" << SubRegIndices.size() << "] = {\n"; for (unsigned r = 0, re = Rows.size(); r != re; ++r) { OS << " { "; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) if (Rows[r][i]) OS << Rows[r][i]->EnumValue << ", "; else OS << "0, "; OS << "},\n"; } OS << " };\n\n"; OS << " --IdxA; assert(IdxA < " << SubRegIndices.size() << ");\n" << " --IdxB; assert(IdxB < " << SubRegIndices.size() << ");\n"; if (Rows.size() > 1) OS << " return Rows[RowMap[IdxA]][IdxB];\n"; else OS << " return Rows[0][IdxB];\n"; OS << "}\n\n"; } // // runMCDesc - Print out MC register descriptions. // void RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("MC Register Information", OS); OS << "\n#ifdef GET_REGINFO_MC_DESC\n"; OS << "#undef GET_REGINFO_MC_DESC\n"; const std::vector &Regs = RegBank.getRegisters(); // The lists of sub-registers, super-registers, and overlaps all go in the // same array. That allows us to share suffixes. typedef std::vector RegVec; // Differentially encoded lists. SequenceToOffsetTable DiffSeqs; SmallVector SubRegLists(Regs.size()); SmallVector SuperRegLists(Regs.size()); SmallVector OverlapLists(Regs.size()); SmallVector RegUnitLists(Regs.size()); SmallVector RegUnitInitScale(Regs.size()); // Keep track of sub-register names as well. These are not differentially // encoded. typedef SmallVector SubRegIdxVec; SequenceToOffsetTable SubRegIdxSeqs; SmallVector SubRegIdxLists(Regs.size()); SequenceToOffsetTable RegStrings; // Precompute register lists for the SequenceToOffsetTable. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; RegStrings.add(Reg->getName()); // Compute the ordered sub-register list. SetVector SR; Reg->addSubRegsPreOrder(SR, RegBank); diffEncode(SubRegLists[i], Reg->EnumValue, SR.begin(), SR.end()); DiffSeqs.add(SubRegLists[i]); // Compute the corresponding sub-register indexes. SubRegIdxVec &SRIs = SubRegIdxLists[i]; for (unsigned j = 0, je = SR.size(); j != je; ++j) SRIs.push_back(Reg->getSubRegIndex(SR[j])); SubRegIdxSeqs.add(SRIs); // Super-registers are already computed. const RegVec &SuperRegList = Reg->getSuperRegs(); diffEncode(SuperRegLists[i], Reg->EnumValue, SuperRegList.begin(), SuperRegList.end()); DiffSeqs.add(SuperRegLists[i]); // The list of overlaps doesn't need to have any particular order, and Reg // itself must be omitted. DiffVec &OverlapList = OverlapLists[i]; CodeGenRegister::Set OSet; Reg->computeOverlaps(OSet, RegBank); OSet.erase(Reg); diffEncode(OverlapList, Reg->EnumValue, OSet.begin(), OSet.end()); DiffSeqs.add(OverlapList); // Differentially encode the register unit list, seeded by register number. // First compute a scale factor that allows more diff-lists to be reused: // // D0 -> (S0, S1) // D1 -> (S2, S3) // // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial // value for the differential decoder is the register number multiplied by // the scale. // // Check the neighboring registers for arithmetic progressions. unsigned ScaleA = ~0u, ScaleB = ~0u; ArrayRef RUs = Reg->getNativeRegUnits(); if (i > 0 && Regs[i-1]->getNativeRegUnits().size() == RUs.size()) ScaleB = RUs.front() - Regs[i-1]->getNativeRegUnits().front(); if (i+1 != Regs.size() && Regs[i+1]->getNativeRegUnits().size() == RUs.size()) ScaleA = Regs[i+1]->getNativeRegUnits().front() - RUs.front(); unsigned Scale = std::min(ScaleB, ScaleA); // Default the scale to 0 if it can't be encoded in 4 bits. if (Scale >= 16) Scale = 0; RegUnitInitScale[i] = Scale; DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg->EnumValue, RUs)); } // Compute the final layout of the sequence table. DiffSeqs.layout(); SubRegIdxSeqs.layout(); OS << "namespace llvm {\n\n"; const std::string &TargetName = Target.getName(); // Emit the shared table of differential lists. OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[] = {\n"; DiffSeqs.emit(OS, printDiff16); OS << "};\n\n"; // Emit the table of sub-register indexes. OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n"; SubRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit the string table. RegStrings.layout(); OS << "extern const char " << TargetName << "RegStrings[] = {\n"; RegStrings.emit(OS, printChar); OS << "};\n\n"; OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[] = { // Descriptors\n"; OS << " { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n"; // Emit the register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister *Reg = Regs[i]; OS << " { " << RegStrings.get(Reg->getName()) << ", " << DiffSeqs.get(OverlapLists[i]) << ", " << DiffSeqs.get(SubRegLists[i]) << ", " << DiffSeqs.get(SuperRegLists[i]) << ", " << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", " << (DiffSeqs.get(RegUnitLists[i])*16 + RegUnitInitScale[i]) << " },\n"; } OS << "};\n\n"; // End of register descriptors... // Emit the table of register unit roots. Each regunit has one or two root // registers. OS << "extern const uint16_t " << TargetName << "RegUnitRoots[][2] = {\n"; for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) { ArrayRef Roots = RegBank.getRegUnit(i).getRoots(); assert(!Roots.empty() && "All regunits must have a root register."); assert(Roots.size() <= 2 && "More than two roots not supported yet."); OS << " { " << getQualifiedName(Roots.front()->TheDef); for (unsigned r = 1; r != Roots.size(); ++r) OS << ", " << getQualifiedName(Roots[r]->TheDef); OS << " },\n"; } OS << "};\n\n"; ArrayRef RegisterClasses = RegBank.getRegClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef Order = RC.getOrder(); // Give the register class a legal C name if it's anonymous. std::string Name = RC.getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " const uint16_t " << Name << "[] = {\n "; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; OS << getQualifiedName(Reg) << ", "; } OS << "\n };\n\n"; OS << " // " << Name << " Bit set.\n" << " const uint8_t " << Name << "Bits[] = {\n "; BitVectorEmitter BVE; for (unsigned i = 0, e = Order.size(); i != e; ++i) { Record *Reg = Order[i]; BVE.add(Target.getRegBank().getReg(Reg)->EnumValue); } BVE.print(OS); OS << "\n };\n\n"; } OS << "}\n\n"; OS << "extern const MCRegisterClass " << TargetName << "MCRegisterClasses[] = {\n"; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; // Asserts to make sure values will fit in table assuming types from // MCRegisterInfo.h assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large."); assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large."); assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large."); OS << " { " << '\"' << RC.getName() << "\", " << RC.getName() << ", " << RC.getName() << "Bits, " << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), " << RC.getQualifiedName() + "RegClassID" << ", " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.Allocatable << " },\n"; } OS << "};\n\n"; ArrayRef SubRegIndices = RegBank.getSubRegIndices(); EmitRegMappingTables(OS, Regs, false); // Emit Reg encoding table OS << "extern const uint16_t " << TargetName; OS << "RegEncodingTable[] = {\n"; // Add entry for NoRegister OS << " 0,\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i]->TheDef; BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding"); uint64_t Value = 0; for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) { if (BitInit *B = dyn_cast(BI->getBit(b))) Value |= (uint64_t)B->getValue() << b; } OS << " " << Value << ",\n"; } OS << "};\n"; // End of HW encoding table // MCRegisterInfo initialization routine. OS << "static inline void Init" << TargetName << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, " << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n" << " RI->InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ", " << TargetName << "RegUnitRoots, " << RegBank.getNumNativeRegUnits() << ", " << TargetName << "RegDiffLists, " << TargetName << "RegStrings, " << TargetName << "SubRegIdxLists, " << (SubRegIndices.size() + 1) << ",\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, false); OS << "}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_MC_DESC\n\n"; } void RegisterInfoEmitter::runTargetHeader(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank) { emitSourceFileHeader("Register Information Header Fragment", OS); OS << "\n#ifdef GET_REGINFO_HEADER\n"; OS << "#undef GET_REGINFO_HEADER\n"; const std::string &TargetName = Target.getName(); std::string ClassName = TargetName + "GenRegisterInfo"; OS << "#include \"llvm/Target/TargetRegisterInfo.h\"\n\n"; OS << "namespace llvm {\n\n"; OS << "struct " << ClassName << " : public TargetRegisterInfo {\n" << " explicit " << ClassName << "(unsigned RA, unsigned D = 0, unsigned E = 0);\n" << " virtual bool needsStackRealignment(const MachineFunction &) const\n" << " { return false; }\n"; if (!RegBank.getSubRegIndices().empty()) { OS << " virtual unsigned composeSubRegIndicesImpl" << "(unsigned, unsigned) const;\n" << " virtual const TargetRegisterClass *" "getSubClassWithSubReg(const TargetRegisterClass*, unsigned) const;\n"; } OS << " virtual const RegClassWeight &getRegClassWeight(" << "const TargetRegisterClass *RC) const;\n" << " virtual unsigned getNumRegPressureSets() const;\n" << " virtual const char *getRegPressureSetName(unsigned Idx) const;\n" << " virtual unsigned getRegPressureSetLimit(unsigned Idx) const;\n" << " virtual const int *getRegClassPressureSets(" << "const TargetRegisterClass *RC) const;\n" << "};\n\n"; ArrayRef RegisterClasses = RegBank.getRegClasses(); if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses[0]->Namespace << " { // Register classes\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RegisterClasses[i]; const std::string &Name = RC.getName(); // Output the extern for the instance. OS << " extern const TargetRegisterClass " << Name << "RegClass;\n"; } OS << "} // end of namespace " << TargetName << "\n\n"; } OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_HEADER\n\n"; } // // runTargetDesc - Output the target register and register file descriptions. // void RegisterInfoEmitter::runTargetDesc(raw_ostream &OS, CodeGenTarget &Target, CodeGenRegBank &RegBank){ emitSourceFileHeader("Target Register and Register Classes Information", OS); OS << "\n#ifdef GET_REGINFO_TARGET_DESC\n"; OS << "#undef GET_REGINFO_TARGET_DESC\n"; OS << "namespace llvm {\n\n"; // Get access to MCRegisterClass data. OS << "extern const MCRegisterClass " << Target.getName() << "MCRegisterClasses[];\n"; // Start out by emitting each of the register classes. ArrayRef RegisterClasses = RegBank.getRegClasses(); ArrayRef SubRegIndices = RegBank.getSubRegIndices(); // Collect all registers belonging to any allocatable class. std::set AllocatableRegs; // Collect allocatable registers. for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef Order = RC.getOrder(); if (RC.Allocatable) AllocatableRegs.insert(Order.begin(), Order.end()); } // Build a shared array of value types. SequenceToOffsetTable > VTSeqs; for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) VTSeqs.add(RegisterClasses[rc]->VTs); VTSeqs.layout(); OS << "\nstatic const MVT::SimpleValueType VTLists[] = {\n"; VTSeqs.emit(OS, printSimpleValueType, "MVT::Other"); OS << "};\n"; // Emit SubRegIndex names, skipping 0. OS << "\nstatic const char *const SubRegIndexNameTable[] = { \""; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << SubRegIndices[i]->getName(); if (i + 1 != e) OS << "\", \""; } OS << "\" };\n\n"; // Emit SubRegIndex lane masks, including 0. OS << "\nstatic const unsigned SubRegIndexLaneMaskTable[] = {\n ~0u,\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << format(" 0x%08x, // ", SubRegIndices[i]->LaneMask) << SubRegIndices[i]->getName() << '\n'; } OS << " };\n\n"; OS << "\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "\nstatic const TargetRegisterClass *const " << "NullRegClasses[] = { NULL };\n\n"; // Emit register class bit mask tables. The first bit mask emitted for a // register class, RC, is the set of sub-classes, including RC itself. // // If RC has super-registers, also create a list of subreg indices and bit // masks, (Idx, Mask). The bit mask has a bit for every superreg regclass, // SuperRC, that satisfies: // // For all SuperReg in SuperRC: SuperReg:Idx in RC // // The 0-terminated list of subreg indices starts at: // // RC->getSuperRegIndices() = SuperRegIdxSeqs + ... // // The corresponding bitmasks follow the sub-class mask in memory. Each // mask has RCMaskWords uint32_t entries. // // Every bit mask present in the list has at least one bit set. // Compress the sub-reg index lists. typedef std::vector IdxList; SmallVector SuperRegIdxLists(RegisterClasses.size()); SequenceToOffsetTable SuperRegIdxSeqs; BitVector MaskBV(RegisterClasses.size()); for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; OS << "static const uint32_t " << RC.getName() << "SubClassMask[] = {\n "; printBitVectorAsHex(OS, RC.getSubClasses(), 32); // Emit super-reg class masks for any relevant SubRegIndices that can // project into RC. IdxList &SRIList = SuperRegIdxLists[rc]; for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { CodeGenSubRegIndex *Idx = SubRegIndices[sri]; MaskBV.reset(); RC.getSuperRegClasses(Idx, MaskBV); if (MaskBV.none()) continue; SRIList.push_back(Idx); OS << "\n "; printBitVectorAsHex(OS, MaskBV, 32); OS << "// " << Idx->getName(); } SuperRegIdxSeqs.add(SRIList); OS << "\n};\n\n"; } OS << "static const uint16_t SuperRegIdxSeqs[] = {\n"; SuperRegIdxSeqs.layout(); SuperRegIdxSeqs.emit(OS, printSubRegIndex); OS << "};\n\n"; // Emit NULL terminated super-class lists. for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = *RegisterClasses[rc]; ArrayRef Supers = RC.getSuperClasses(); // Skip classes without supers. We can reuse NullRegClasses. if (Supers.empty()) continue; OS << "static const TargetRegisterClass *const " << RC.getName() << "Superclasses[] = {\n"; for (unsigned i = 0; i != Supers.size(); ++i) OS << " &" << Supers[i]->getQualifiedName() << "RegClass,\n"; OS << " NULL\n};\n\n"; } // Emit methods. for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RegisterClasses[i]; if (!RC.AltOrderSelect.empty()) { OS << "\nstatic inline unsigned " << RC.getName() << "AltOrderSelect(const MachineFunction &MF) {" << RC.AltOrderSelect << "}\n\n" << "static ArrayRef " << RC.getName() << "GetRawAllocationOrder(const MachineFunction &MF) {\n"; for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) { ArrayRef Elems = RC.getOrder(oi); if (!Elems.empty()) { OS << " static const MCPhysReg AltOrder" << oi << "[] = {"; for (unsigned elem = 0; elem != Elems.size(); ++elem) OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]); OS << " };\n"; } } OS << " const MCRegisterClass &MCR = " << Target.getName() << "MCRegisterClasses[" << RC.getQualifiedName() + "RegClassID];\n" << " const ArrayRef Order[] = {\n" << " makeArrayRef(MCR.begin(), MCR.getNumRegs()"; for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi) if (RC.getOrder(oi).empty()) OS << "),\n ArrayRef("; else OS << "),\n makeArrayRef(AltOrder" << oi; OS << ")\n };\n const unsigned Select = " << RC.getName() << "AltOrderSelect(MF);\n assert(Select < " << RC.getNumOrders() << ");\n return Order[Select];\n}\n"; } } // Now emit the actual value-initialized register class instances. OS << "namespace " << RegisterClasses[0]->Namespace << " { // Register class instances\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RegisterClasses[i]; OS << " extern const TargetRegisterClass " << RegisterClasses[i]->getName() << "RegClass = {\n " << '&' << Target.getName() << "MCRegisterClasses[" << RC.getName() << "RegClassID],\n " << "VTLists + " << VTSeqs.get(RC.VTs) << ",\n " << RC.getName() << "SubClassMask,\n SuperRegIdxSeqs + " << SuperRegIdxSeqs.get(SuperRegIdxLists[i]) << ",\n "; if (RC.getSuperClasses().empty()) OS << "NullRegClasses,\n "; else OS << RC.getName() << "Superclasses,\n "; if (RC.AltOrderSelect.empty()) OS << "0\n"; else OS << RC.getName() << "GetRawAllocationOrder\n"; OS << " };\n\n"; } OS << "}\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) OS << " &" << RegisterClasses[i]->getQualifiedName() << "RegClass,\n"; OS << " };\n"; OS << "}\n"; // End of anonymous namespace... // Emit extra information about registers. const std::string &TargetName = Target.getName(); OS << "\nstatic const TargetRegisterInfoDesc " << TargetName << "RegInfoDesc[] = { // Extra Descriptors\n"; OS << " { 0, 0 },\n"; const std::vector &Regs = RegBank.getRegisters(); for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = *Regs[i]; OS << " { "; OS << Reg.CostPerUse << ", " << int(AllocatableRegs.count(Reg.TheDef)) << " },\n"; } OS << "};\n"; // End of register descriptors... std::string ClassName = Target.getName() + "GenRegisterInfo"; if (!SubRegIndices.empty()) emitComposeSubRegIndices(OS, RegBank, ClassName); // Emit getSubClassWithSubReg. if (!SubRegIndices.empty()) { OS << "const TargetRegisterClass *" << ClassName << "::getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx)" << " const {\n"; // Use the smallest type that can hold a regclass ID with room for a // sentinel. if (RegisterClasses.size() < UINT8_MAX) OS << " static const uint8_t Table["; else if (RegisterClasses.size() < UINT16_MAX) OS << " static const uint16_t Table["; else PrintFatalError("Too many register classes."); OS << RegisterClasses.size() << "][" << SubRegIndices.size() << "] = {\n"; for (unsigned rci = 0, rce = RegisterClasses.size(); rci != rce; ++rci) { const CodeGenRegisterClass &RC = *RegisterClasses[rci]; OS << " {\t// " << RC.getName() << "\n"; for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { CodeGenSubRegIndex *Idx = SubRegIndices[sri]; if (CodeGenRegisterClass *SRC = RC.getSubClassWithSubReg(Idx)) OS << " " << SRC->EnumValue + 1 << ",\t// " << Idx->getName() << " -> " << SRC->getName() << "\n"; else OS << " 0,\t// " << Idx->getName() << "\n"; } OS << " },\n"; } OS << " };\n assert(RC && \"Missing regclass\");\n" << " if (!Idx) return RC;\n --Idx;\n" << " assert(Idx < " << SubRegIndices.size() << " && \"Bad subreg\");\n" << " unsigned TV = Table[RC->getID()][Idx];\n" << " return TV ? getRegClass(TV - 1) : 0;\n}\n\n"; } EmitRegUnitPressure(OS, RegBank, ClassName); // Emit the constructor of the class... OS << "extern const MCRegisterDesc " << TargetName << "RegDesc[];\n"; OS << "extern const MCPhysReg " << TargetName << "RegDiffLists[];\n"; OS << "extern const char " << TargetName << "RegStrings[];\n"; OS << "extern const uint16_t " << TargetName << "RegUnitRoots[][2];\n"; OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[];\n"; OS << "extern const uint16_t " << TargetName << "RegEncodingTable[];\n"; EmitRegMappingTables(OS, Regs, true); OS << ClassName << "::\n" << ClassName << "(unsigned RA, unsigned DwarfFlavour, unsigned EHFlavour)\n" << " : TargetRegisterInfo(" << TargetName << "RegInfoDesc" << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" << " SubRegIndexNameTable, SubRegIndexLaneMaskTable) {\n" << " InitMCRegisterInfo(" << TargetName << "RegDesc, " << Regs.size()+1 << ", RA,\n " << TargetName << "MCRegisterClasses, " << RegisterClasses.size() << ",\n" << " " << TargetName << "RegUnitRoots,\n" << " " << RegBank.getNumNativeRegUnits() << ",\n" << " " << TargetName << "RegDiffLists,\n" << " " << TargetName << "RegStrings,\n" << " " << TargetName << "SubRegIdxLists,\n" << " " << SubRegIndices.size() + 1 << ",\n" << " " << TargetName << "RegEncodingTable);\n\n"; EmitRegMapping(OS, Regs, true); OS << "}\n\n"; // Emit CalleeSavedRegs information. std::vector CSRSets = Records.getAllDerivedDefinitions("CalleeSavedRegs"); for (unsigned i = 0, e = CSRSets.size(); i != e; ++i) { Record *CSRSet = CSRSets[i]; const SetTheory::RecVec *Regs = RegBank.getSets().expand(CSRSet); assert(Regs && "Cannot expand CalleeSavedRegs instance"); // Emit the *_SaveList list of callee-saved registers. OS << "static const MCPhysReg " << CSRSet->getName() << "_SaveList[] = { "; for (unsigned r = 0, re = Regs->size(); r != re; ++r) OS << getQualifiedName((*Regs)[r]) << ", "; OS << "0 };\n"; // Emit the *_RegMask bit mask of call-preserved registers. OS << "static const uint32_t " << CSRSet->getName() << "_RegMask[] = { "; printBitVectorAsHex(OS, RegBank.computeCoveredRegisters(*Regs), 32); OS << "};\n"; } OS << "\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_REGINFO_TARGET_DESC\n\n"; } void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenTarget Target(Records); CodeGenRegBank &RegBank = Target.getRegBank(); RegBank.computeDerivedInfo(); runEnums(OS, Target, RegBank); runMCDesc(OS, Target, RegBank); runTargetHeader(OS, Target, RegBank); runTargetDesc(OS, Target, RegBank); } namespace llvm { void EmitRegisterInfo(RecordKeeper &RK, raw_ostream &OS) { RegisterInfoEmitter(RK).run(OS); } } // End llvm namespace