/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "main/core.h" #include "ir.h" #include "linker.h" #include "ir_uniform.h" /* These functions are put in a "private" namespace instead of being marked * static so that the unit tests can access them. See * http://code.google.com/p/googletest/wiki/AdvancedGuide#Testing_Private_Code */ namespace linker { gl_uniform_storage * get_storage(gl_uniform_storage *storage, unsigned num_storage, const char *name) { for (unsigned int i = 0; i < num_storage; i++) { if (strcmp(name, storage[i].name) == 0) return &storage[i]; } return NULL; } void copy_constant_to_storage(union gl_constant_value *storage, const ir_constant *val, const enum glsl_base_type base_type, const unsigned int elements, unsigned int boolean_true) { for (unsigned int i = 0; i < elements; i++) { switch (base_type) { case GLSL_TYPE_UINT: storage[i].u = val->value.u[i]; break; case GLSL_TYPE_INT: case GLSL_TYPE_SAMPLER: storage[i].i = val->value.i[i]; break; case GLSL_TYPE_FLOAT: storage[i].f = val->value.f[i]; break; case GLSL_TYPE_DOUBLE: /* XXX need to check on big-endian */ storage[i * 2].u = *(uint32_t *)&val->value.d[i]; storage[i * 2 + 1].u = *(((uint32_t *)&val->value.d[i]) + 1); break; case GLSL_TYPE_BOOL: storage[i].b = val->value.b[i] ? boolean_true : 0; break; case GLSL_TYPE_ARRAY: case GLSL_TYPE_STRUCT: case GLSL_TYPE_IMAGE: case GLSL_TYPE_ATOMIC_UINT: case GLSL_TYPE_INTERFACE: case GLSL_TYPE_VOID: case GLSL_TYPE_SUBROUTINE: case GLSL_TYPE_FUNCTION: case GLSL_TYPE_ERROR: /* All other types should have already been filtered by other * paths in the caller. */ assert(!"Should not get here."); break; } } } /** * Initialize an opaque uniform from the value of an explicit binding * qualifier specified in the shader. Atomic counters are different because * they have no storage and should be handled elsewhere. */ void set_opaque_binding(void *mem_ctx, gl_shader_program *prog, const glsl_type *type, const char *name, int *binding) { if (type->is_array() && type->fields.array->is_array()) { const glsl_type *const element_type = type->fields.array; for (unsigned int i = 0; i < type->length; i++) { const char *element_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i); set_opaque_binding(mem_ctx, prog, element_type, element_name, binding); } } else { struct gl_uniform_storage *const storage = get_storage(prog->UniformStorage, prog->NumUniformStorage, name); if (storage == NULL) { assert(storage != NULL); return; } const unsigned elements = MAX2(storage->array_elements, 1); /* Section 4.4.4 (Opaque-Uniform Layout Qualifiers) of the GLSL 4.20 spec * says: * * "If the binding identifier is used with an array, the first element * of the array takes the specified unit and each subsequent element * takes the next consecutive unit." */ for (unsigned int i = 0; i < elements; i++) { storage->storage[i].i = (*binding)++; } for (int sh = 0; sh < MESA_SHADER_STAGES; sh++) { gl_shader *shader = prog->_LinkedShaders[sh]; if (shader) { if (storage->type->base_type == GLSL_TYPE_SAMPLER && storage->opaque[sh].active) { for (unsigned i = 0; i < elements; i++) { const unsigned index = storage->opaque[sh].index + i; shader->SamplerUnits[index] = storage->storage[i].i; } } else if (storage->type->base_type == GLSL_TYPE_IMAGE && storage->opaque[sh].active) { for (unsigned i = 0; i < elements; i++) { const unsigned index = storage->opaque[sh].index + i; if (index >= ARRAY_SIZE(shader->ImageUnits)) break; shader->ImageUnits[index] = storage->storage[i].i; } } } } } } void set_block_binding(gl_shader_program *prog, const char *block_name, unsigned mode, int binding) { unsigned num_blocks = mode == ir_var_uniform ? prog->NumUniformBlocks : prog->NumShaderStorageBlocks; struct gl_uniform_block *blks = mode == ir_var_uniform ? prog->UniformBlocks : prog->ShaderStorageBlocks; for (unsigned i = 0; i < num_blocks; i++) { if (!strcmp(blks[i].Name, block_name)) { blks[i].Binding = binding; return; } } unreachable("Failed to initialize block binding"); } void set_uniform_initializer(void *mem_ctx, gl_shader_program *prog, const char *name, const glsl_type *type, ir_constant *val, unsigned int boolean_true) { const glsl_type *t_without_array = type->without_array(); if (type->is_record()) { ir_constant *field_constant; field_constant = (ir_constant *)val->components.get_head(); for (unsigned int i = 0; i < type->length; i++) { const glsl_type *field_type = type->fields.structure[i].type; const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name, type->fields.structure[i].name); set_uniform_initializer(mem_ctx, prog, field_name, field_type, field_constant, boolean_true); field_constant = (ir_constant *)field_constant->next; } return; } else if (t_without_array->is_record() || (type->is_array() && type->fields.array->is_array())) { const glsl_type *const element_type = type->fields.array; for (unsigned int i = 0; i < type->length; i++) { const char *element_name = ralloc_asprintf(mem_ctx, "%s[%d]", name, i); set_uniform_initializer(mem_ctx, prog, element_name, element_type, val->array_elements[i], boolean_true); } return; } struct gl_uniform_storage *const storage = get_storage(prog->UniformStorage, prog->NumUniformStorage, name); if (storage == NULL) { assert(storage != NULL); return; } if (val->type->is_array()) { const enum glsl_base_type base_type = val->array_elements[0]->type->base_type; const unsigned int elements = val->array_elements[0]->type->components(); unsigned int idx = 0; unsigned dmul = glsl_base_type_is_64bit(base_type) ? 2 : 1; assert(val->type->length >= storage->array_elements); for (unsigned int i = 0; i < storage->array_elements; i++) { copy_constant_to_storage(& storage->storage[idx], val->array_elements[i], base_type, elements, boolean_true); idx += elements * dmul; } } else { copy_constant_to_storage(storage->storage, val, val->type->base_type, val->type->components(), boolean_true); if (storage->type->is_sampler()) { for (int sh = 0; sh < MESA_SHADER_STAGES; sh++) { gl_shader *shader = prog->_LinkedShaders[sh]; if (shader && storage->opaque[sh].active) { unsigned index = storage->opaque[sh].index; shader->SamplerUnits[index] = storage->storage[0].i; } } } } } } void link_set_uniform_initializers(struct gl_shader_program *prog, unsigned int boolean_true) { void *mem_ctx = NULL; for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { struct gl_shader *shader = prog->_LinkedShaders[i]; if (shader == NULL) continue; foreach_in_list(ir_instruction, node, shader->ir) { ir_variable *const var = node->as_variable(); if (!var || (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) continue; if (!mem_ctx) mem_ctx = ralloc_context(NULL); if (var->data.explicit_binding) { const glsl_type *const type = var->type; if (type->without_array()->is_sampler() || type->without_array()->is_image()) { int binding = var->data.binding; linker::set_opaque_binding(mem_ctx, prog, var->type, var->name, &binding); } else if (var->is_in_buffer_block()) { const glsl_type *const iface_type = var->get_interface_type(); /* If the variable is an array and it is an interface instance, * we need to set the binding for each array element. Just * checking that the variable is an array is not sufficient. * The variable could be an array element of a uniform block * that lacks an instance name. For example: * * uniform U { * float f[4]; * }; * * In this case "f" would pass is_in_buffer_block (above) and * type->is_array(), but it will fail is_interface_instance(). */ if (var->is_interface_instance() && var->type->is_array()) { for (unsigned i = 0; i < var->type->length; i++) { const char *name = ralloc_asprintf(mem_ctx, "%s[%u]", iface_type->name, i); /* Section 4.4.3 (Uniform Block Layout Qualifiers) of the * GLSL 4.20 spec says: * * "If the binding identifier is used with a uniform * block instanced as an array then the first element * of the array takes the specified block binding and * each subsequent element takes the next consecutive * uniform block binding point." */ linker::set_block_binding(prog, name, var->data.mode, var->data.binding + i); } } else { linker::set_block_binding(prog, iface_type->name, var->data.mode, var->data.binding); } } else if (type->contains_atomic()) { /* we don't actually need to do anything. */ } else { assert(!"Explicit binding not on a sampler, UBO or atomic."); } } else if (var->constant_initializer) { linker::set_uniform_initializer(mem_ctx, prog, var->name, var->type, var->constant_initializer, boolean_true); } } } ralloc_free(mem_ctx); }