/* * Copyright © 2010 Luca Barbieri * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file lower_variable_index_to_cond_assign.cpp * * Turns non-constant indexing into array types to a series of * conditional moves of each element into a temporary. * * Pre-DX10 GPUs often don't have a native way to do this operation, * and this works around that. * * The lowering process proceeds as follows. Each non-constant index * found in an r-value is converted to a canonical form \c array[i]. Each * element of the array is conditionally assigned to a temporary by comparing * \c i to a constant index. This is done by cloning the canonical form and * replacing all occurances of \c i with a constant. Each remaining occurance * of the canonical form in the IR is replaced with a dereference of the * temporary variable. * * L-values with non-constant indices are handled similarly. In this case, * the RHS of the assignment is assigned to a temporary. The non-constant * index is replace with the canonical form (just like for r-values). The * temporary is conditionally assigned to each element of the canonical form * by comparing \c i with each index. The same clone-and-replace scheme is * used. */ #include "ir.h" #include "ir_rvalue_visitor.h" #include "ir_optimization.h" #include "compiler/glsl_types.h" #include "main/macros.h" /** * Generate a comparison value for a block of indices * * Lowering passes for non-constant indexing of arrays, matrices, or vectors * can use this to generate blocks of index comparison values. * * \param instructions List where new instructions will be appended * \param index \c ir_variable containing the desired index * \param base Base value for this block of comparisons * \param components Number of unique index values to compare. This must * be on the range [1, 4]. * \param mem_ctx ralloc memory context to be used for all allocations. * * \returns * An \c ir_rvalue that \b must be cloned for each use in conditional * assignments, etc. */ ir_rvalue * compare_index_block(exec_list *instructions, ir_variable *index, unsigned base, unsigned components, void *mem_ctx) { ir_rvalue *broadcast_index = new(mem_ctx) ir_dereference_variable(index); assert(index->type->is_scalar()); assert(index->type->base_type == GLSL_TYPE_INT || index->type->base_type == GLSL_TYPE_UINT); assert(components >= 1 && components <= 4); if (components > 1) { const ir_swizzle_mask m = { 0, 0, 0, 0, components, false }; broadcast_index = new(mem_ctx) ir_swizzle(broadcast_index, m); } /* Compare the desired index value with the next block of four indices. */ ir_constant_data test_indices_data; memset(&test_indices_data, 0, sizeof(test_indices_data)); test_indices_data.i[0] = base; test_indices_data.i[1] = base + 1; test_indices_data.i[2] = base + 2; test_indices_data.i[3] = base + 3; ir_constant *const test_indices = new(mem_ctx) ir_constant(broadcast_index->type, &test_indices_data); ir_rvalue *const condition_val = new(mem_ctx) ir_expression(ir_binop_equal, glsl_type::bvec(components), broadcast_index, test_indices); ir_variable *const condition = new(mem_ctx) ir_variable(condition_val->type, "dereference_condition", ir_var_temporary); instructions->push_tail(condition); ir_rvalue *const cond_deref = new(mem_ctx) ir_dereference_variable(condition); instructions->push_tail(new(mem_ctx) ir_assignment(cond_deref, condition_val, 0)); return cond_deref; } static inline bool is_array_or_matrix(const ir_rvalue *ir) { return (ir->type->is_array() || ir->type->is_matrix()); } namespace { /** * Replace a dereference of a variable with a specified r-value * * Each time a dereference of the specified value is replaced, the r-value * tree is cloned. */ class deref_replacer : public ir_rvalue_visitor { public: deref_replacer(const ir_variable *variable_to_replace, ir_rvalue *value) : variable_to_replace(variable_to_replace), value(value), progress(false) { assert(this->variable_to_replace != NULL); assert(this->value != NULL); } virtual void handle_rvalue(ir_rvalue **rvalue) { ir_dereference_variable *const dv = (*rvalue)->as_dereference_variable(); if ((dv != NULL) && (dv->var == this->variable_to_replace)) { this->progress = true; *rvalue = this->value->clone(ralloc_parent(*rvalue), NULL); } } const ir_variable *variable_to_replace; ir_rvalue *value; bool progress; }; /** * Find a variable index dereference of an array in an rvalue tree */ class find_variable_index : public ir_hierarchical_visitor { public: find_variable_index() : deref(NULL) { /* empty */ } virtual ir_visitor_status visit_enter(ir_dereference_array *ir) { if (is_array_or_matrix(ir->array) && (ir->array_index->as_constant() == NULL)) { this->deref = ir; return visit_stop; } return visit_continue; } /** * First array dereference found in the tree that has a non-constant index. */ ir_dereference_array *deref; }; struct assignment_generator { ir_instruction* base_ir; ir_dereference *rvalue; ir_variable *old_index; bool is_write; unsigned int write_mask; ir_variable* var; assignment_generator() : base_ir(NULL), rvalue(NULL), old_index(NULL), is_write(false), write_mask(0), var(NULL) { } void generate(unsigned i, ir_rvalue* condition, exec_list *list) const { /* Just clone the rest of the deref chain when trying to get at the * underlying variable. */ void *mem_ctx = ralloc_parent(base_ir); /* Clone the old r-value in its entirety. Then replace any occurances of * the old variable index with the new constant index. */ ir_dereference *element = this->rvalue->clone(mem_ctx, NULL); ir_constant *const index = new(mem_ctx) ir_constant(i); deref_replacer r(this->old_index, index); element->accept(&r); assert(r.progress); /* Generate a conditional assignment to (or from) the constant indexed * array dereference. */ ir_rvalue *variable = new(mem_ctx) ir_dereference_variable(this->var); ir_assignment *const assignment = (is_write) ? new(mem_ctx) ir_assignment(element, variable, condition, write_mask) : new(mem_ctx) ir_assignment(variable, element, condition); list->push_tail(assignment); } }; struct switch_generator { /* make TFunction a template parameter if you need to use other generators */ typedef assignment_generator TFunction; const TFunction& generator; ir_variable* index; unsigned linear_sequence_max_length; unsigned condition_components; void *mem_ctx; switch_generator(const TFunction& generator, ir_variable *index, unsigned linear_sequence_max_length, unsigned condition_components) : generator(generator), index(index), linear_sequence_max_length(linear_sequence_max_length), condition_components(condition_components) { this->mem_ctx = ralloc_parent(index); } void linear_sequence(unsigned begin, unsigned end, exec_list *list) { if (begin == end) return; /* If the array access is a read, read the first element of this subregion * unconditionally. The remaining tests will possibly overwrite this * value with one of the other array elements. * * This optimization cannot be done for writes because it will cause the * first element of the subregion to be written possibly *in addition* to * one of the other elements. */ unsigned first; if (!this->generator.is_write) { this->generator.generate(begin, 0, list); first = begin + 1; } else { first = begin; } for (unsigned i = first; i < end; i += 4) { const unsigned comps = MIN2(condition_components, end - i); ir_rvalue *const cond_deref = compare_index_block(list, index, i, comps, this->mem_ctx); if (comps == 1) { this->generator.generate(i, cond_deref->clone(this->mem_ctx, NULL), list); } else { for (unsigned j = 0; j < comps; j++) { ir_rvalue *const cond_swiz = new(this->mem_ctx) ir_swizzle(cond_deref->clone(this->mem_ctx, NULL), j, 0, 0, 0, 1); this->generator.generate(i + j, cond_swiz, list); } } } } void bisect(unsigned begin, unsigned end, exec_list *list) { unsigned middle = (begin + end) >> 1; assert(index->type->is_integer()); ir_constant *const middle_c = (index->type->base_type == GLSL_TYPE_UINT) ? new(this->mem_ctx) ir_constant((unsigned)middle) : new(this->mem_ctx) ir_constant((int)middle); ir_dereference_variable *deref = new(this->mem_ctx) ir_dereference_variable(this->index); ir_expression *less = new(this->mem_ctx) ir_expression(ir_binop_less, glsl_type::bool_type, deref, middle_c); ir_if *if_less = new(this->mem_ctx) ir_if(less); generate(begin, middle, &if_less->then_instructions); generate(middle, end, &if_less->else_instructions); list->push_tail(if_less); } void generate(unsigned begin, unsigned end, exec_list *list) { unsigned length = end - begin; if (length <= this->linear_sequence_max_length) return linear_sequence(begin, end, list); else return bisect(begin, end, list); } }; /** * Visitor class for replacing expressions with ir_constant values. */ class variable_index_to_cond_assign_visitor : public ir_rvalue_visitor { public: variable_index_to_cond_assign_visitor(gl_shader_stage stage, bool lower_input, bool lower_output, bool lower_temp, bool lower_uniform) { this->progress = false; this->stage = stage; this->lower_inputs = lower_input; this->lower_outputs = lower_output; this->lower_temps = lower_temp; this->lower_uniforms = lower_uniform; } bool progress; gl_shader_stage stage; bool lower_inputs; bool lower_outputs; bool lower_temps; bool lower_uniforms; bool storage_type_needs_lowering(ir_dereference_array *deref) const { /* If a variable isn't eventually the target of this dereference, then * it must be a constant or some sort of anonymous temporary storage. * * FINISHME: Is this correct? Most drivers treat arrays of constants as * FINISHME: uniforms. It seems like this should do the same. */ const ir_variable *const var = deref->array->variable_referenced(); if (var == NULL) return this->lower_temps; switch (var->data.mode) { case ir_var_auto: case ir_var_temporary: return this->lower_temps; case ir_var_uniform: case ir_var_shader_storage: return this->lower_uniforms; case ir_var_shader_shared: return false; case ir_var_function_in: case ir_var_const_in: return this->lower_temps; case ir_var_shader_in: /* The input array size is unknown at compiler time for non-patch * inputs in TCS and TES. The arrays are sized to * the implementation-dependent limit "gl_MaxPatchVertices", but * the real size is stored in the "gl_PatchVerticesIn" built-in * uniform. * * The TCS input array size is specified by * glPatchParameteri(GL_PATCH_VERTICES). * * The TES input array size is specified by the "vertices" output * layout qualifier in TCS. */ if ((stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL) && !var->data.patch) return false; return this->lower_inputs; case ir_var_function_out: /* TCS non-patch outputs can only be indexed with "gl_InvocationID". * Other expressions are not allowed. */ if (stage == MESA_SHADER_TESS_CTRL && !var->data.patch) return false; return this->lower_temps; case ir_var_shader_out: return this->lower_outputs; case ir_var_function_inout: return this->lower_temps; } assert(!"Should not get here."); return false; } bool needs_lowering(ir_dereference_array *deref) const { if (deref == NULL || deref->array_index->as_constant() || !is_array_or_matrix(deref->array)) return false; return this->storage_type_needs_lowering(deref); } ir_variable *convert_dereference_array(ir_dereference_array *orig_deref, ir_assignment* orig_assign, ir_dereference *orig_base) { assert(is_array_or_matrix(orig_deref->array)); const unsigned length = (orig_deref->array->type->is_array()) ? orig_deref->array->type->length : orig_deref->array->type->matrix_columns; void *const mem_ctx = ralloc_parent(base_ir); /* Temporary storage for either the result of the dereference of * the array, or the RHS that's being assigned into the * dereference of the array. */ ir_variable *var; if (orig_assign) { var = new(mem_ctx) ir_variable(orig_assign->rhs->type, "dereference_array_value", ir_var_temporary); base_ir->insert_before(var); ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(var); ir_assignment *assign = new(mem_ctx) ir_assignment(lhs, orig_assign->rhs, NULL); base_ir->insert_before(assign); } else { var = new(mem_ctx) ir_variable(orig_deref->type, "dereference_array_value", ir_var_temporary); base_ir->insert_before(var); } /* Store the index to a temporary to avoid reusing its tree. */ ir_variable *index = new(mem_ctx) ir_variable(orig_deref->array_index->type, "dereference_array_index", ir_var_temporary); base_ir->insert_before(index); ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(index); ir_assignment *assign = new(mem_ctx) ir_assignment(lhs, orig_deref->array_index, NULL); base_ir->insert_before(assign); orig_deref->array_index = lhs->clone(mem_ctx, NULL); assignment_generator ag; ag.rvalue = orig_base; ag.base_ir = base_ir; ag.old_index = index; ag.var = var; if (orig_assign) { ag.is_write = true; ag.write_mask = orig_assign->write_mask; } else { ag.is_write = false; } switch_generator sg(ag, index, 4, 4); /* If the original assignment has a condition, respect that original * condition! This is acomplished by wrapping the new conditional * assignments in an if-statement that uses the original condition. */ if ((orig_assign != NULL) && (orig_assign->condition != NULL)) { /* No need to clone the condition because the IR that it hangs on is * going to be removed from the instruction sequence. */ ir_if *if_stmt = new(mem_ctx) ir_if(orig_assign->condition); sg.generate(0, length, &if_stmt->then_instructions); base_ir->insert_before(if_stmt); } else { exec_list list; sg.generate(0, length, &list); base_ir->insert_before(&list); } return var; } virtual void handle_rvalue(ir_rvalue **pir) { if (this->in_assignee) return; if (!*pir) return; ir_dereference_array* orig_deref = (*pir)->as_dereference_array(); if (needs_lowering(orig_deref)) { ir_variable *var = convert_dereference_array(orig_deref, NULL, orig_deref); assert(var); *pir = new(ralloc_parent(base_ir)) ir_dereference_variable(var); this->progress = true; } } ir_visitor_status visit_leave(ir_assignment *ir) { ir_rvalue_visitor::visit_leave(ir); find_variable_index f; ir->lhs->accept(&f); if ((f.deref != NULL) && storage_type_needs_lowering(f.deref)) { convert_dereference_array(f.deref, ir, ir->lhs); ir->remove(); this->progress = true; } return visit_continue; } }; } /* anonymous namespace */ bool lower_variable_index_to_cond_assign(gl_shader_stage stage, exec_list *instructions, bool lower_input, bool lower_output, bool lower_temp, bool lower_uniform) { variable_index_to_cond_assign_visitor v(stage, lower_input, lower_output, lower_temp, lower_uniform); /* Continue lowering until no progress is made. If there are multiple * levels of indirection (e.g., non-constant indexing of array elements and * matrix columns of an array of matrix), each pass will only lower one * level of indirection. */ bool progress_ever = false; do { v.progress = false; visit_list_elements(&v, instructions); progress_ever = v.progress || progress_ever; } while (v.progress); return progress_ever; }