/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Connor Abbott (cwabbott0@gmail.com) * */ #include "nir.h" #include "nir_control_flow_private.h" #include nir_shader * nir_shader_create(void *mem_ctx, gl_shader_stage stage, const nir_shader_compiler_options *options) { nir_shader *shader = ralloc(mem_ctx, nir_shader); exec_list_make_empty(&shader->uniforms); exec_list_make_empty(&shader->inputs); exec_list_make_empty(&shader->outputs); exec_list_make_empty(&shader->shared); shader->options = options; memset(&shader->info, 0, sizeof(shader->info)); exec_list_make_empty(&shader->functions); exec_list_make_empty(&shader->registers); exec_list_make_empty(&shader->globals); exec_list_make_empty(&shader->system_values); shader->reg_alloc = 0; shader->num_inputs = 0; shader->num_outputs = 0; shader->num_uniforms = 0; shader->num_shared = 0; shader->stage = stage; return shader; } static nir_register * reg_create(void *mem_ctx, struct exec_list *list) { nir_register *reg = ralloc(mem_ctx, nir_register); list_inithead(®->uses); list_inithead(®->defs); list_inithead(®->if_uses); reg->num_components = 0; reg->bit_size = 32; reg->num_array_elems = 0; reg->is_packed = false; reg->name = NULL; exec_list_push_tail(list, ®->node); return reg; } nir_register * nir_global_reg_create(nir_shader *shader) { nir_register *reg = reg_create(shader, &shader->registers); reg->index = shader->reg_alloc++; reg->is_global = true; return reg; } nir_register * nir_local_reg_create(nir_function_impl *impl) { nir_register *reg = reg_create(ralloc_parent(impl), &impl->registers); reg->index = impl->reg_alloc++; reg->is_global = false; return reg; } void nir_reg_remove(nir_register *reg) { exec_node_remove(®->node); } void nir_shader_add_variable(nir_shader *shader, nir_variable *var) { switch (var->data.mode) { case nir_var_all: assert(!"invalid mode"); break; case nir_var_local: assert(!"nir_shader_add_variable cannot be used for local variables"); break; case nir_var_param: assert(!"nir_shader_add_variable cannot be used for function parameters"); break; case nir_var_global: exec_list_push_tail(&shader->globals, &var->node); break; case nir_var_shader_in: exec_list_push_tail(&shader->inputs, &var->node); break; case nir_var_shader_out: exec_list_push_tail(&shader->outputs, &var->node); break; case nir_var_uniform: case nir_var_shader_storage: exec_list_push_tail(&shader->uniforms, &var->node); break; case nir_var_shared: assert(shader->stage == MESA_SHADER_COMPUTE); exec_list_push_tail(&shader->shared, &var->node); break; case nir_var_system_value: exec_list_push_tail(&shader->system_values, &var->node); break; } } nir_variable * nir_variable_create(nir_shader *shader, nir_variable_mode mode, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = mode; if ((mode == nir_var_shader_in && shader->stage != MESA_SHADER_VERTEX) || (mode == nir_var_shader_out && shader->stage != MESA_SHADER_FRAGMENT)) var->data.interpolation = INTERP_MODE_SMOOTH; if (mode == nir_var_shader_in || mode == nir_var_uniform) var->data.read_only = true; nir_shader_add_variable(shader, var); return var; } nir_variable * nir_local_variable_create(nir_function_impl *impl, const struct glsl_type *type, const char *name) { nir_variable *var = rzalloc(impl->function->shader, nir_variable); var->name = ralloc_strdup(var, name); var->type = type; var->data.mode = nir_var_local; nir_function_impl_add_variable(impl, var); return var; } nir_function * nir_function_create(nir_shader *shader, const char *name) { nir_function *func = ralloc(shader, nir_function); exec_list_push_tail(&shader->functions, &func->node); func->name = ralloc_strdup(func, name); func->shader = shader; func->num_params = 0; func->params = NULL; func->return_type = glsl_void_type(); func->impl = NULL; return func; } void nir_src_copy(nir_src *dest, const nir_src *src, void *mem_ctx) { dest->is_ssa = src->is_ssa; if (src->is_ssa) { dest->ssa = src->ssa; } else { dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = ralloc(mem_ctx, nir_src); nir_src_copy(dest->reg.indirect, src->reg.indirect, mem_ctx); } else { dest->reg.indirect = NULL; } } } void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr) { /* Copying an SSA definition makes no sense whatsoever. */ assert(!src->is_ssa); dest->is_ssa = false; dest->reg.base_offset = src->reg.base_offset; dest->reg.reg = src->reg.reg; if (src->reg.indirect) { dest->reg.indirect = ralloc(instr, nir_src); nir_src_copy(dest->reg.indirect, src->reg.indirect, instr); } else { dest->reg.indirect = NULL; } } void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src, nir_alu_instr *instr) { nir_src_copy(&dest->src, &src->src, &instr->instr); dest->abs = src->abs; dest->negate = src->negate; for (unsigned i = 0; i < 4; i++) dest->swizzle[i] = src->swizzle[i]; } void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src, nir_alu_instr *instr) { nir_dest_copy(&dest->dest, &src->dest, &instr->instr); dest->write_mask = src->write_mask; dest->saturate = src->saturate; } static void cf_init(nir_cf_node *node, nir_cf_node_type type) { exec_node_init(&node->node); node->parent = NULL; node->type = type; } nir_function_impl * nir_function_impl_create_bare(nir_shader *shader) { nir_function_impl *impl = ralloc(shader, nir_function_impl); impl->function = NULL; cf_init(&impl->cf_node, nir_cf_node_function); exec_list_make_empty(&impl->body); exec_list_make_empty(&impl->registers); exec_list_make_empty(&impl->locals); impl->num_params = 0; impl->params = NULL; impl->return_var = NULL; impl->reg_alloc = 0; impl->ssa_alloc = 0; impl->valid_metadata = nir_metadata_none; /* create start & end blocks */ nir_block *start_block = nir_block_create(shader); nir_block *end_block = nir_block_create(shader); start_block->cf_node.parent = &impl->cf_node; end_block->cf_node.parent = &impl->cf_node; impl->end_block = end_block; exec_list_push_tail(&impl->body, &start_block->cf_node.node); start_block->successors[0] = end_block; _mesa_set_add(end_block->predecessors, start_block); return impl; } nir_function_impl * nir_function_impl_create(nir_function *function) { assert(function->impl == NULL); nir_function_impl *impl = nir_function_impl_create_bare(function->shader); function->impl = impl; impl->function = function; impl->num_params = function->num_params; impl->params = ralloc_array(function->shader, nir_variable *, impl->num_params); for (unsigned i = 0; i < impl->num_params; i++) { impl->params[i] = rzalloc(function->shader, nir_variable); impl->params[i]->type = function->params[i].type; impl->params[i]->data.mode = nir_var_param; impl->params[i]->data.location = i; } if (!glsl_type_is_void(function->return_type)) { impl->return_var = rzalloc(function->shader, nir_variable); impl->return_var->type = function->return_type; impl->return_var->data.mode = nir_var_param; impl->return_var->data.location = -1; } else { impl->return_var = NULL; } return impl; } nir_block * nir_block_create(nir_shader *shader) { nir_block *block = ralloc(shader, nir_block); cf_init(&block->cf_node, nir_cf_node_block); block->successors[0] = block->successors[1] = NULL; block->predecessors = _mesa_set_create(block, _mesa_hash_pointer, _mesa_key_pointer_equal); block->imm_dom = NULL; /* XXX maybe it would be worth it to defer allocation? This * way it doesn't get allocated for shader ref's that never run * nir_calc_dominance? For example, state-tracker creates an * initial IR, clones that, runs appropriate lowering pass, passes * to driver which does common lowering/opt, and then stores ref * which is later used to do state specific lowering and futher * opt. Do any of the references not need dominance metadata? */ block->dom_frontier = _mesa_set_create(block, _mesa_hash_pointer, _mesa_key_pointer_equal); exec_list_make_empty(&block->instr_list); return block; } static inline void src_init(nir_src *src) { src->is_ssa = false; src->reg.reg = NULL; src->reg.indirect = NULL; src->reg.base_offset = 0; } nir_if * nir_if_create(nir_shader *shader) { nir_if *if_stmt = ralloc(shader, nir_if); cf_init(&if_stmt->cf_node, nir_cf_node_if); src_init(&if_stmt->condition); nir_block *then = nir_block_create(shader); exec_list_make_empty(&if_stmt->then_list); exec_list_push_tail(&if_stmt->then_list, &then->cf_node.node); then->cf_node.parent = &if_stmt->cf_node; nir_block *else_stmt = nir_block_create(shader); exec_list_make_empty(&if_stmt->else_list); exec_list_push_tail(&if_stmt->else_list, &else_stmt->cf_node.node); else_stmt->cf_node.parent = &if_stmt->cf_node; return if_stmt; } nir_loop * nir_loop_create(nir_shader *shader) { nir_loop *loop = ralloc(shader, nir_loop); cf_init(&loop->cf_node, nir_cf_node_loop); nir_block *body = nir_block_create(shader); exec_list_make_empty(&loop->body); exec_list_push_tail(&loop->body, &body->cf_node.node); body->cf_node.parent = &loop->cf_node; body->successors[0] = body; _mesa_set_add(body->predecessors, body); return loop; } static void instr_init(nir_instr *instr, nir_instr_type type) { instr->type = type; instr->block = NULL; exec_node_init(&instr->node); } static void dest_init(nir_dest *dest) { dest->is_ssa = false; dest->reg.reg = NULL; dest->reg.indirect = NULL; dest->reg.base_offset = 0; } static void alu_dest_init(nir_alu_dest *dest) { dest_init(&dest->dest); dest->saturate = false; dest->write_mask = 0xf; } static void alu_src_init(nir_alu_src *src) { src_init(&src->src); src->abs = src->negate = false; src->swizzle[0] = 0; src->swizzle[1] = 1; src->swizzle[2] = 2; src->swizzle[3] = 3; } nir_alu_instr * nir_alu_instr_create(nir_shader *shader, nir_op op) { unsigned num_srcs = nir_op_infos[op].num_inputs; nir_alu_instr *instr = ralloc_size(shader, sizeof(nir_alu_instr) + num_srcs * sizeof(nir_alu_src)); instr_init(&instr->instr, nir_instr_type_alu); instr->op = op; alu_dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) alu_src_init(&instr->src[i]); return instr; } nir_jump_instr * nir_jump_instr_create(nir_shader *shader, nir_jump_type type) { nir_jump_instr *instr = ralloc(shader, nir_jump_instr); instr_init(&instr->instr, nir_instr_type_jump); instr->type = type; return instr; } nir_load_const_instr * nir_load_const_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_load_const_instr *instr = ralloc(shader, nir_load_const_instr); instr_init(&instr->instr, nir_instr_type_load_const); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL); return instr; } nir_intrinsic_instr * nir_intrinsic_instr_create(nir_shader *shader, nir_intrinsic_op op) { unsigned num_srcs = nir_intrinsic_infos[op].num_srcs; nir_intrinsic_instr *instr = ralloc_size(shader, sizeof(nir_intrinsic_instr) + num_srcs * sizeof(nir_src)); instr_init(&instr->instr, nir_instr_type_intrinsic); instr->intrinsic = op; if (nir_intrinsic_infos[op].has_dest) dest_init(&instr->dest); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i]); return instr; } nir_call_instr * nir_call_instr_create(nir_shader *shader, nir_function *callee) { nir_call_instr *instr = ralloc(shader, nir_call_instr); instr_init(&instr->instr, nir_instr_type_call); instr->callee = callee; instr->num_params = callee->num_params; instr->params = ralloc_array(instr, nir_deref_var *, instr->num_params); instr->return_deref = NULL; return instr; } nir_tex_instr * nir_tex_instr_create(nir_shader *shader, unsigned num_srcs) { nir_tex_instr *instr = rzalloc(shader, nir_tex_instr); instr_init(&instr->instr, nir_instr_type_tex); dest_init(&instr->dest); instr->num_srcs = num_srcs; instr->src = ralloc_array(instr, nir_tex_src, num_srcs); for (unsigned i = 0; i < num_srcs; i++) src_init(&instr->src[i].src); instr->texture_index = 0; instr->texture_array_size = 0; instr->texture = NULL; instr->sampler_index = 0; instr->sampler = NULL; return instr; } void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx) { assert(src_idx < tex->num_srcs); /* First rewrite the source to NIR_SRC_INIT */ nir_instr_rewrite_src(&tex->instr, &tex->src[src_idx].src, NIR_SRC_INIT); /* Now, move all of the other sources down */ for (unsigned i = src_idx + 1; i < tex->num_srcs; i++) { tex->src[i-1].src_type = tex->src[i].src_type; nir_instr_move_src(&tex->instr, &tex->src[i-1].src, &tex->src[i].src); } tex->num_srcs--; } nir_phi_instr * nir_phi_instr_create(nir_shader *shader) { nir_phi_instr *instr = ralloc(shader, nir_phi_instr); instr_init(&instr->instr, nir_instr_type_phi); dest_init(&instr->dest); exec_list_make_empty(&instr->srcs); return instr; } nir_parallel_copy_instr * nir_parallel_copy_instr_create(nir_shader *shader) { nir_parallel_copy_instr *instr = ralloc(shader, nir_parallel_copy_instr); instr_init(&instr->instr, nir_instr_type_parallel_copy); exec_list_make_empty(&instr->entries); return instr; } nir_ssa_undef_instr * nir_ssa_undef_instr_create(nir_shader *shader, unsigned num_components, unsigned bit_size) { nir_ssa_undef_instr *instr = ralloc(shader, nir_ssa_undef_instr); instr_init(&instr->instr, nir_instr_type_ssa_undef); nir_ssa_def_init(&instr->instr, &instr->def, num_components, bit_size, NULL); return instr; } nir_deref_var * nir_deref_var_create(void *mem_ctx, nir_variable *var) { nir_deref_var *deref = ralloc(mem_ctx, nir_deref_var); deref->deref.deref_type = nir_deref_type_var; deref->deref.child = NULL; deref->deref.type = var->type; deref->var = var; return deref; } nir_deref_array * nir_deref_array_create(void *mem_ctx) { nir_deref_array *deref = ralloc(mem_ctx, nir_deref_array); deref->deref.deref_type = nir_deref_type_array; deref->deref.child = NULL; deref->deref_array_type = nir_deref_array_type_direct; src_init(&deref->indirect); deref->base_offset = 0; return deref; } nir_deref_struct * nir_deref_struct_create(void *mem_ctx, unsigned field_index) { nir_deref_struct *deref = ralloc(mem_ctx, nir_deref_struct); deref->deref.deref_type = nir_deref_type_struct; deref->deref.child = NULL; deref->index = field_index; return deref; } static nir_deref_var * copy_deref_var(void *mem_ctx, nir_deref_var *deref) { nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var); ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(ret, deref->deref.child); return ret; } static nir_deref_array * copy_deref_array(void *mem_ctx, nir_deref_array *deref) { nir_deref_array *ret = nir_deref_array_create(mem_ctx); ret->base_offset = deref->base_offset; ret->deref_array_type = deref->deref_array_type; if (deref->deref_array_type == nir_deref_array_type_indirect) { nir_src_copy(&ret->indirect, &deref->indirect, mem_ctx); } ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(ret, deref->deref.child); return ret; } static nir_deref_struct * copy_deref_struct(void *mem_ctx, nir_deref_struct *deref) { nir_deref_struct *ret = nir_deref_struct_create(mem_ctx, deref->index); ret->deref.type = deref->deref.type; if (deref->deref.child) ret->deref.child = nir_copy_deref(ret, deref->deref.child); return ret; } nir_deref * nir_copy_deref(void *mem_ctx, nir_deref *deref) { if (deref == NULL) return NULL; switch (deref->deref_type) { case nir_deref_type_var: return ©_deref_var(mem_ctx, nir_deref_as_var(deref))->deref; case nir_deref_type_array: return ©_deref_array(mem_ctx, nir_deref_as_array(deref))->deref; case nir_deref_type_struct: return ©_deref_struct(mem_ctx, nir_deref_as_struct(deref))->deref; default: unreachable("Invalid dereference type"); } return NULL; } /* This is the second step in the recursion. We've found the tail and made a * copy. Now we need to iterate over all possible leaves and call the * callback on each one. */ static bool deref_foreach_leaf_build_recur(nir_deref_var *deref, nir_deref *tail, nir_deref_foreach_leaf_cb cb, void *state) { unsigned length; union { nir_deref_array arr; nir_deref_struct str; } tmp; assert(tail->child == NULL); switch (glsl_get_base_type(tail->type)) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_BOOL: if (glsl_type_is_vector_or_scalar(tail->type)) return cb(deref, state); /* Fall Through */ case GLSL_TYPE_ARRAY: tmp.arr.deref.deref_type = nir_deref_type_array; tmp.arr.deref.type = glsl_get_array_element(tail->type); tmp.arr.deref_array_type = nir_deref_array_type_direct; tmp.arr.indirect = NIR_SRC_INIT; tail->child = &tmp.arr.deref; length = glsl_get_length(tail->type); for (unsigned i = 0; i < length; i++) { tmp.arr.deref.child = NULL; tmp.arr.base_offset = i; if (!deref_foreach_leaf_build_recur(deref, &tmp.arr.deref, cb, state)) return false; } return true; case GLSL_TYPE_STRUCT: tmp.str.deref.deref_type = nir_deref_type_struct; tail->child = &tmp.str.deref; length = glsl_get_length(tail->type); for (unsigned i = 0; i < length; i++) { tmp.arr.deref.child = NULL; tmp.str.deref.type = glsl_get_struct_field(tail->type, i); tmp.str.index = i; if (!deref_foreach_leaf_build_recur(deref, &tmp.arr.deref, cb, state)) return false; } return true; default: unreachable("Invalid type for dereference"); } } /* This is the first step of the foreach_leaf recursion. In this step we are * walking to the end of the deref chain and making a copy in the stack as we * go. This is because we don't want to mutate the deref chain that was * passed in by the caller. The downside is that this deref chain is on the * stack and , if the caller wants to do anything with it, they will have to * make their own copy because this one will go away. */ static bool deref_foreach_leaf_copy_recur(nir_deref_var *deref, nir_deref *tail, nir_deref_foreach_leaf_cb cb, void *state) { union { nir_deref_array arr; nir_deref_struct str; } c; if (tail->child) { switch (tail->child->deref_type) { case nir_deref_type_array: c.arr = *nir_deref_as_array(tail->child); tail->child = &c.arr.deref; return deref_foreach_leaf_copy_recur(deref, &c.arr.deref, cb, state); case nir_deref_type_struct: c.str = *nir_deref_as_struct(tail->child); tail->child = &c.str.deref; return deref_foreach_leaf_copy_recur(deref, &c.str.deref, cb, state); case nir_deref_type_var: default: unreachable("Invalid deref type for a child"); } } else { /* We've gotten to the end of the original deref. Time to start * building our own derefs. */ return deref_foreach_leaf_build_recur(deref, tail, cb, state); } } /** * This function iterates over all of the possible derefs that can be created * with the given deref as the head. It then calls the provided callback with * a full deref for each one. * * The deref passed to the callback will be allocated on the stack. You will * need to make a copy if you want it to hang around. */ bool nir_deref_foreach_leaf(nir_deref_var *deref, nir_deref_foreach_leaf_cb cb, void *state) { nir_deref_var copy = *deref; return deref_foreach_leaf_copy_recur(©, ©.deref, cb, state); } /* Returns a load_const instruction that represents the constant * initializer for the given deref chain. The caller is responsible for * ensuring that there actually is a constant initializer. */ nir_load_const_instr * nir_deref_get_const_initializer_load(nir_shader *shader, nir_deref_var *deref) { nir_constant *constant = deref->var->constant_initializer; assert(constant); const nir_deref *tail = &deref->deref; unsigned matrix_offset = 0; while (tail->child) { switch (tail->child->deref_type) { case nir_deref_type_array: { nir_deref_array *arr = nir_deref_as_array(tail->child); assert(arr->deref_array_type == nir_deref_array_type_direct); if (glsl_type_is_matrix(tail->type)) { assert(arr->deref.child == NULL); matrix_offset = arr->base_offset; } else { constant = constant->elements[arr->base_offset]; } break; } case nir_deref_type_struct: { constant = constant->elements[nir_deref_as_struct(tail->child)->index]; break; } default: unreachable("Invalid deref child type"); } tail = tail->child; } unsigned bit_size = glsl_get_bit_size(tail->type); nir_load_const_instr *load = nir_load_const_instr_create(shader, glsl_get_vector_elements(tail->type), bit_size); matrix_offset *= load->def.num_components; for (unsigned i = 0; i < load->def.num_components; i++) { switch (glsl_get_base_type(tail->type)) { case GLSL_TYPE_FLOAT: case GLSL_TYPE_INT: case GLSL_TYPE_UINT: load->value.u32[i] = constant->value.u[matrix_offset + i]; break; case GLSL_TYPE_DOUBLE: load->value.f64[i] = constant->value.d[matrix_offset + i]; break; case GLSL_TYPE_BOOL: load->value.u32[i] = constant->value.b[matrix_offset + i] ? NIR_TRUE : NIR_FALSE; break; default: unreachable("Invalid immediate type"); } } return load; } nir_function_impl * nir_cf_node_get_function(nir_cf_node *node) { while (node->type != nir_cf_node_function) { node = node->parent; } return nir_cf_node_as_function(node); } /* Reduces a cursor by trying to convert everything to after and trying to * go up to block granularity when possible. */ static nir_cursor reduce_cursor(nir_cursor cursor) { switch (cursor.option) { case nir_cursor_before_block: assert(nir_cf_node_prev(&cursor.block->cf_node) == NULL || nir_cf_node_prev(&cursor.block->cf_node)->type != nir_cf_node_block); if (exec_list_is_empty(&cursor.block->instr_list)) { /* Empty block. After is as good as before. */ cursor.option = nir_cursor_after_block; } return cursor; case nir_cursor_after_block: return cursor; case nir_cursor_before_instr: { nir_instr *prev_instr = nir_instr_prev(cursor.instr); if (prev_instr) { /* Before this instruction is after the previous */ cursor.instr = prev_instr; cursor.option = nir_cursor_after_instr; } else { /* No previous instruction. Switch to before block */ cursor.block = cursor.instr->block; cursor.option = nir_cursor_before_block; } return reduce_cursor(cursor); } case nir_cursor_after_instr: if (nir_instr_next(cursor.instr) == NULL) { /* This is the last instruction, switch to after block */ cursor.option = nir_cursor_after_block; cursor.block = cursor.instr->block; } return cursor; default: unreachable("Inavlid cursor option"); } } bool nir_cursors_equal(nir_cursor a, nir_cursor b) { /* Reduced cursors should be unique */ a = reduce_cursor(a); b = reduce_cursor(b); return a.block == b.block && a.option == b.option; } static bool add_use_cb(nir_src *src, void *state) { nir_instr *instr = state; src->parent_instr = instr; list_addtail(&src->use_link, src->is_ssa ? &src->ssa->uses : &src->reg.reg->uses); return true; } static bool add_ssa_def_cb(nir_ssa_def *def, void *state) { nir_instr *instr = state; if (instr->block && def->index == UINT_MAX) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; } return true; } static bool add_reg_def_cb(nir_dest *dest, void *state) { nir_instr *instr = state; if (!dest->is_ssa) { dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &dest->reg.reg->defs); } return true; } static void add_defs_uses(nir_instr *instr) { nir_foreach_src(instr, add_use_cb, instr); nir_foreach_dest(instr, add_reg_def_cb, instr); nir_foreach_ssa_def(instr, add_ssa_def_cb, instr); } void nir_instr_insert(nir_cursor cursor, nir_instr *instr) { switch (cursor.option) { case nir_cursor_before_block: /* Only allow inserting jumps into empty blocks. */ if (instr->type == nir_instr_type_jump) assert(exec_list_is_empty(&cursor.block->instr_list)); instr->block = cursor.block; add_defs_uses(instr); exec_list_push_head(&cursor.block->instr_list, &instr->node); break; case nir_cursor_after_block: { /* Inserting instructions after a jump is illegal. */ nir_instr *last = nir_block_last_instr(cursor.block); assert(last == NULL || last->type != nir_instr_type_jump); (void) last; instr->block = cursor.block; add_defs_uses(instr); exec_list_push_tail(&cursor.block->instr_list, &instr->node); break; } case nir_cursor_before_instr: assert(instr->type != nir_instr_type_jump); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_node_before(&cursor.instr->node, &instr->node); break; case nir_cursor_after_instr: /* Inserting instructions after a jump is illegal. */ assert(cursor.instr->type != nir_instr_type_jump); /* Only allow inserting jumps at the end of the block. */ if (instr->type == nir_instr_type_jump) assert(cursor.instr == nir_block_last_instr(cursor.instr->block)); instr->block = cursor.instr->block; add_defs_uses(instr); exec_node_insert_after(&cursor.instr->node, &instr->node); break; } if (instr->type == nir_instr_type_jump) nir_handle_add_jump(instr->block); } static bool src_is_valid(const nir_src *src) { return src->is_ssa ? (src->ssa != NULL) : (src->reg.reg != NULL); } static bool remove_use_cb(nir_src *src, void *state) { (void) state; if (src_is_valid(src)) list_del(&src->use_link); return true; } static bool remove_def_cb(nir_dest *dest, void *state) { (void) state; if (!dest->is_ssa) list_del(&dest->reg.def_link); return true; } static void remove_defs_uses(nir_instr *instr) { nir_foreach_dest(instr, remove_def_cb, instr); nir_foreach_src(instr, remove_use_cb, instr); } void nir_instr_remove(nir_instr *instr) { remove_defs_uses(instr); exec_node_remove(&instr->node); if (instr->type == nir_instr_type_jump) { nir_jump_instr *jump_instr = nir_instr_as_jump(instr); nir_handle_remove_jump(instr->block, jump_instr->type); } } /*@}*/ void nir_index_local_regs(nir_function_impl *impl) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &impl->registers) { reg->index = index++; } impl->reg_alloc = index; } void nir_index_global_regs(nir_shader *shader) { unsigned index = 0; foreach_list_typed(nir_register, reg, node, &shader->registers) { reg->index = index++; } shader->reg_alloc = index; } static bool visit_alu_dest(nir_alu_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest.dest, state); } static bool visit_intrinsic_dest(nir_intrinsic_instr *instr, nir_foreach_dest_cb cb, void *state) { if (nir_intrinsic_infos[instr->intrinsic].has_dest) return cb(&instr->dest, state); return true; } static bool visit_texture_dest(nir_tex_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_phi_dest(nir_phi_instr *instr, nir_foreach_dest_cb cb, void *state) { return cb(&instr->dest, state); } static bool visit_parallel_copy_dest(nir_parallel_copy_instr *instr, nir_foreach_dest_cb cb, void *state) { nir_foreach_parallel_copy_entry(entry, instr) { if (!cb(&entry->dest, state)) return false; } return true; } bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: return visit_alu_dest(nir_instr_as_alu(instr), cb, state); case nir_instr_type_intrinsic: return visit_intrinsic_dest(nir_instr_as_intrinsic(instr), cb, state); case nir_instr_type_tex: return visit_texture_dest(nir_instr_as_tex(instr), cb, state); case nir_instr_type_phi: return visit_phi_dest(nir_instr_as_phi(instr), cb, state); case nir_instr_type_parallel_copy: return visit_parallel_copy_dest(nir_instr_as_parallel_copy(instr), cb, state); case nir_instr_type_load_const: case nir_instr_type_ssa_undef: case nir_instr_type_call: case nir_instr_type_jump: break; default: unreachable("Invalid instruction type"); break; } return true; } struct foreach_ssa_def_state { nir_foreach_ssa_def_cb cb; void *client_state; }; static inline bool nir_ssa_def_visitor(nir_dest *dest, void *void_state) { struct foreach_ssa_def_state *state = void_state; if (dest->is_ssa) return state->cb(&dest->ssa, state->client_state); else return true; } bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: case nir_instr_type_tex: case nir_instr_type_intrinsic: case nir_instr_type_phi: case nir_instr_type_parallel_copy: { struct foreach_ssa_def_state foreach_state = {cb, state}; return nir_foreach_dest(instr, nir_ssa_def_visitor, &foreach_state); } case nir_instr_type_load_const: return cb(&nir_instr_as_load_const(instr)->def, state); case nir_instr_type_ssa_undef: return cb(&nir_instr_as_ssa_undef(instr)->def, state); case nir_instr_type_call: case nir_instr_type_jump: return true; default: unreachable("Invalid instruction type"); } } static bool visit_src(nir_src *src, nir_foreach_src_cb cb, void *state) { if (!cb(src, state)) return false; if (!src->is_ssa && src->reg.indirect) return cb(src->reg.indirect, state); return true; } static bool visit_deref_array_src(nir_deref_array *deref, nir_foreach_src_cb cb, void *state) { if (deref->deref_array_type == nir_deref_array_type_indirect) return visit_src(&deref->indirect, cb, state); return true; } static bool visit_deref_src(nir_deref_var *deref, nir_foreach_src_cb cb, void *state) { nir_deref *cur = &deref->deref; while (cur != NULL) { if (cur->deref_type == nir_deref_type_array) { if (!visit_deref_array_src(nir_deref_as_array(cur), cb, state)) return false; } cur = cur->child; } return true; } static bool visit_alu_src(nir_alu_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) if (!visit_src(&instr->src[i].src, cb, state)) return false; return true; } static bool visit_tex_src(nir_tex_instr *instr, nir_foreach_src_cb cb, void *state) { for (unsigned i = 0; i < instr->num_srcs; i++) { if (!visit_src(&instr->src[i].src, cb, state)) return false; } if (instr->texture != NULL) { if (!visit_deref_src(instr->texture, cb, state)) return false; } if (instr->sampler != NULL) { if (!visit_deref_src(instr->sampler, cb, state)) return false; } return true; } static bool visit_intrinsic_src(nir_intrinsic_instr *instr, nir_foreach_src_cb cb, void *state) { unsigned num_srcs = nir_intrinsic_infos[instr->intrinsic].num_srcs; for (unsigned i = 0; i < num_srcs; i++) { if (!visit_src(&instr->src[i], cb, state)) return false; } unsigned num_vars = nir_intrinsic_infos[instr->intrinsic].num_variables; for (unsigned i = 0; i < num_vars; i++) { if (!visit_deref_src(instr->variables[i], cb, state)) return false; } return true; } static bool visit_phi_src(nir_phi_instr *instr, nir_foreach_src_cb cb, void *state) { nir_foreach_phi_src(src, instr) { if (!visit_src(&src->src, cb, state)) return false; } return true; } static bool visit_parallel_copy_src(nir_parallel_copy_instr *instr, nir_foreach_src_cb cb, void *state) { nir_foreach_parallel_copy_entry(entry, instr) { if (!visit_src(&entry->src, cb, state)) return false; } return true; } typedef struct { void *state; nir_foreach_src_cb cb; } visit_dest_indirect_state; static bool visit_dest_indirect(nir_dest *dest, void *_state) { visit_dest_indirect_state *state = (visit_dest_indirect_state *) _state; if (!dest->is_ssa && dest->reg.indirect) return state->cb(dest->reg.indirect, state->state); return true; } bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state) { switch (instr->type) { case nir_instr_type_alu: if (!visit_alu_src(nir_instr_as_alu(instr), cb, state)) return false; break; case nir_instr_type_intrinsic: if (!visit_intrinsic_src(nir_instr_as_intrinsic(instr), cb, state)) return false; break; case nir_instr_type_tex: if (!visit_tex_src(nir_instr_as_tex(instr), cb, state)) return false; break; case nir_instr_type_call: /* Call instructions have no regular sources */ break; case nir_instr_type_load_const: /* Constant load instructions have no regular sources */ break; case nir_instr_type_phi: if (!visit_phi_src(nir_instr_as_phi(instr), cb, state)) return false; break; case nir_instr_type_parallel_copy: if (!visit_parallel_copy_src(nir_instr_as_parallel_copy(instr), cb, state)) return false; break; case nir_instr_type_jump: case nir_instr_type_ssa_undef: return true; default: unreachable("Invalid instruction type"); break; } visit_dest_indirect_state dest_state; dest_state.state = state; dest_state.cb = cb; return nir_foreach_dest(instr, visit_dest_indirect, &dest_state); } nir_const_value * nir_src_as_const_value(nir_src src) { if (!src.is_ssa) return NULL; if (src.ssa->parent_instr->type != nir_instr_type_load_const) return NULL; nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr); return &load->value; } /** * Returns true if the source is known to be dynamically uniform. Otherwise it * returns false which means it may or may not be dynamically uniform but it * can't be determined. */ bool nir_src_is_dynamically_uniform(nir_src src) { if (!src.is_ssa) return false; /* Constants are trivially dynamically uniform */ if (src.ssa->parent_instr->type == nir_instr_type_load_const) return true; /* As are uniform variables */ if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); if (intr->intrinsic == nir_intrinsic_load_uniform) return true; } /* XXX: this could have many more tests, such as when a sampler function is * called with dynamically uniform arguments. */ return false; } static void src_remove_all_uses(nir_src *src) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; list_del(&src->use_link); } } static void src_add_all_uses(nir_src *src, nir_instr *parent_instr, nir_if *parent_if) { for (; src; src = src->is_ssa ? NULL : src->reg.indirect) { if (!src_is_valid(src)) continue; if (parent_instr) { src->parent_instr = parent_instr; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->uses); else list_addtail(&src->use_link, &src->reg.reg->uses); } else { assert(parent_if); src->parent_if = parent_if; if (src->is_ssa) list_addtail(&src->use_link, &src->ssa->if_uses); else list_addtail(&src->use_link, &src->reg.reg->if_uses); } } } void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src) { assert(!src_is_valid(src) || src->parent_instr == instr); src_remove_all_uses(src); *src = new_src; src_add_all_uses(src, instr, NULL); } void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src) { assert(!src_is_valid(dest) || dest->parent_instr == dest_instr); src_remove_all_uses(dest); src_remove_all_uses(src); *dest = *src; *src = NIR_SRC_INIT; src_add_all_uses(dest, dest_instr, NULL); } void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src) { nir_src *src = &if_stmt->condition; assert(!src_is_valid(src) || src->parent_if == if_stmt); src_remove_all_uses(src); *src = new_src; src_add_all_uses(src, NULL, if_stmt); } void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest, nir_dest new_dest) { if (dest->is_ssa) { /* We can only overwrite an SSA destination if it has no uses. */ assert(list_empty(&dest->ssa.uses) && list_empty(&dest->ssa.if_uses)); } else { list_del(&dest->reg.def_link); if (dest->reg.indirect) src_remove_all_uses(dest->reg.indirect); } /* We can't re-write with an SSA def */ assert(!new_dest.is_ssa); nir_dest_copy(dest, &new_dest, instr); dest->reg.parent_instr = instr; list_addtail(&dest->reg.def_link, &new_dest.reg.reg->defs); if (dest->reg.indirect) src_add_all_uses(dest->reg.indirect, instr, NULL); } /* note: does *not* take ownership of 'name' */ void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def, unsigned num_components, unsigned bit_size, const char *name) { def->name = ralloc_strdup(instr, name); def->parent_instr = instr; list_inithead(&def->uses); list_inithead(&def->if_uses); def->num_components = num_components; def->bit_size = bit_size; if (instr->block) { nir_function_impl *impl = nir_cf_node_get_function(&instr->block->cf_node); def->index = impl->ssa_alloc++; } else { def->index = UINT_MAX; } } /* note: does *not* take ownership of 'name' */ void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest, unsigned num_components, unsigned bit_size, const char *name) { dest->is_ssa = true; nir_ssa_def_init(instr, &dest->ssa, num_components, bit_size, name); } void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src) { assert(!new_src.is_ssa || def != new_src.ssa); nir_foreach_use_safe(use_src, def) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition(use_src->parent_if, new_src); } static bool is_instr_between(nir_instr *start, nir_instr *end, nir_instr *between) { assert(start->block == end->block); if (between->block != start->block) return false; /* Search backwards looking for "between" */ while (start != end) { if (between == end) return true; end = nir_instr_prev(end); assert(end); } return false; } /* Replaces all uses of the given SSA def with the given source but only if * the use comes after the after_me instruction. This can be useful if you * are emitting code to fix up the result of some instruction: you can freely * use the result in that code and then call rewrite_uses_after and pass the * last fixup instruction as after_me and it will replace all of the uses you * want without touching the fixup code. * * This function assumes that after_me is in the same block as * def->parent_instr and that after_me comes after def->parent_instr. */ void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src, nir_instr *after_me) { assert(!new_src.is_ssa || def != new_src.ssa); nir_foreach_use_safe(use_src, def) { assert(use_src->parent_instr != def->parent_instr); /* Since def already dominates all of its uses, the only way a use can * not be dominated by after_me is if it is between def and after_me in * the instruction list. */ if (!is_instr_between(def->parent_instr, after_me, use_src->parent_instr)) nir_instr_rewrite_src(use_src->parent_instr, use_src, new_src); } nir_foreach_if_use_safe(use_src, def) nir_if_rewrite_condition(use_src->parent_if, new_src); } uint8_t nir_ssa_def_components_read(nir_ssa_def *def) { uint8_t read_mask = 0; nir_foreach_use(use, def) { if (use->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *alu = nir_instr_as_alu(use->parent_instr); nir_alu_src *alu_src = exec_node_data(nir_alu_src, use, src); int src_idx = alu_src - &alu->src[0]; assert(src_idx >= 0 && src_idx < nir_op_infos[alu->op].num_inputs); for (unsigned c = 0; c < 4; c++) { if (!nir_alu_instr_channel_used(alu, src_idx, c)) continue; read_mask |= (1 << alu_src->swizzle[c]); } } else { return (1 << def->num_components) - 1; } } return read_mask; } nir_block * nir_block_cf_tree_next(nir_block *block) { if (block == NULL) { /* nir_foreach_block_safe() will call this function on a NULL block * after the last iteration, but it won't use the result so just return * NULL here. */ return NULL; } nir_cf_node *cf_next = nir_cf_node_next(&block->cf_node); if (cf_next) return nir_cf_node_cf_tree_first(cf_next); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the end of the if? Go to the beginning of the else */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_last_then_block(if_stmt)) return nir_if_first_else_block(if_stmt); assert(block == nir_if_last_else_block(if_stmt)); /* fall through */ } case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_next(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block * nir_block_cf_tree_prev(nir_block *block) { if (block == NULL) { /* do this for consistency with nir_block_cf_tree_next() */ return NULL; } nir_cf_node *cf_prev = nir_cf_node_prev(&block->cf_node); if (cf_prev) return nir_cf_node_cf_tree_last(cf_prev); nir_cf_node *parent = block->cf_node.parent; switch (parent->type) { case nir_cf_node_if: { /* Are we at the beginning of the else? Go to the end of the if */ nir_if *if_stmt = nir_cf_node_as_if(parent); if (block == nir_if_first_else_block(if_stmt)) return nir_if_last_then_block(if_stmt); assert(block == nir_if_first_then_block(if_stmt)); /* fall through */ } case nir_cf_node_loop: return nir_cf_node_as_block(nir_cf_node_prev(parent)); case nir_cf_node_function: return NULL; default: unreachable("unknown cf node type"); } } nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_start_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_first_then_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_first_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node) { switch (node->type) { case nir_cf_node_function: { nir_function_impl *impl = nir_cf_node_as_function(node); return nir_impl_last_block(impl); } case nir_cf_node_if: { nir_if *if_stmt = nir_cf_node_as_if(node); return nir_if_last_else_block(if_stmt); } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(node); return nir_loop_last_block(loop); } case nir_cf_node_block: { return nir_cf_node_as_block(node); } default: unreachable("unknown node type"); } } nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node) { if (node->type == nir_cf_node_block) return nir_cf_node_cf_tree_first(nir_cf_node_next(node)); else if (node->type == nir_cf_node_function) return NULL; else return nir_cf_node_as_block(nir_cf_node_next(node)); } nir_if * nir_block_get_following_if(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_if) return NULL; return nir_cf_node_as_if(next_node); } nir_loop * nir_block_get_following_loop(nir_block *block) { if (exec_node_is_tail_sentinel(&block->cf_node.node)) return NULL; if (nir_cf_node_is_last(&block->cf_node)) return NULL; nir_cf_node *next_node = nir_cf_node_next(&block->cf_node); if (next_node->type != nir_cf_node_loop) return NULL; return nir_cf_node_as_loop(next_node); } void nir_index_blocks(nir_function_impl *impl) { unsigned index = 0; if (impl->valid_metadata & nir_metadata_block_index) return; nir_foreach_block(block, impl) { block->index = index++; } impl->num_blocks = index; } static bool index_ssa_def_cb(nir_ssa_def *def, void *state) { unsigned *index = (unsigned *) state; def->index = (*index)++; return true; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ void nir_index_ssa_defs(nir_function_impl *impl) { unsigned index = 0; nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) nir_foreach_ssa_def(instr, index_ssa_def_cb, &index); } impl->ssa_alloc = index; } /** * The indices are applied top-to-bottom which has the very nice property * that, if A dominates B, then A->index <= B->index. */ unsigned nir_index_instrs(nir_function_impl *impl) { unsigned index = 0; nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) instr->index = index++; } return index; } nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val) { switch (val) { case SYSTEM_VALUE_VERTEX_ID: return nir_intrinsic_load_vertex_id; case SYSTEM_VALUE_INSTANCE_ID: return nir_intrinsic_load_instance_id; case SYSTEM_VALUE_DRAW_ID: return nir_intrinsic_load_draw_id; case SYSTEM_VALUE_BASE_INSTANCE: return nir_intrinsic_load_base_instance; case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE: return nir_intrinsic_load_vertex_id_zero_base; case SYSTEM_VALUE_BASE_VERTEX: return nir_intrinsic_load_base_vertex; case SYSTEM_VALUE_INVOCATION_ID: return nir_intrinsic_load_invocation_id; case SYSTEM_VALUE_FRONT_FACE: return nir_intrinsic_load_front_face; case SYSTEM_VALUE_SAMPLE_ID: return nir_intrinsic_load_sample_id; case SYSTEM_VALUE_SAMPLE_POS: return nir_intrinsic_load_sample_pos; case SYSTEM_VALUE_SAMPLE_MASK_IN: return nir_intrinsic_load_sample_mask_in; case SYSTEM_VALUE_LOCAL_INVOCATION_ID: return nir_intrinsic_load_local_invocation_id; case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX: return nir_intrinsic_load_local_invocation_index; case SYSTEM_VALUE_WORK_GROUP_ID: return nir_intrinsic_load_work_group_id; case SYSTEM_VALUE_NUM_WORK_GROUPS: return nir_intrinsic_load_num_work_groups; case SYSTEM_VALUE_PRIMITIVE_ID: return nir_intrinsic_load_primitive_id; case SYSTEM_VALUE_TESS_COORD: return nir_intrinsic_load_tess_coord; case SYSTEM_VALUE_TESS_LEVEL_OUTER: return nir_intrinsic_load_tess_level_outer; case SYSTEM_VALUE_TESS_LEVEL_INNER: return nir_intrinsic_load_tess_level_inner; case SYSTEM_VALUE_VERTICES_IN: return nir_intrinsic_load_patch_vertices_in; case SYSTEM_VALUE_HELPER_INVOCATION: return nir_intrinsic_load_helper_invocation; default: unreachable("system value does not directly correspond to intrinsic"); } } gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin) { switch (intrin) { case nir_intrinsic_load_vertex_id: return SYSTEM_VALUE_VERTEX_ID; case nir_intrinsic_load_instance_id: return SYSTEM_VALUE_INSTANCE_ID; case nir_intrinsic_load_draw_id: return SYSTEM_VALUE_DRAW_ID; case nir_intrinsic_load_base_instance: return SYSTEM_VALUE_BASE_INSTANCE; case nir_intrinsic_load_vertex_id_zero_base: return SYSTEM_VALUE_VERTEX_ID_ZERO_BASE; case nir_intrinsic_load_base_vertex: return SYSTEM_VALUE_BASE_VERTEX; case nir_intrinsic_load_invocation_id: return SYSTEM_VALUE_INVOCATION_ID; case nir_intrinsic_load_front_face: return SYSTEM_VALUE_FRONT_FACE; case nir_intrinsic_load_sample_id: return SYSTEM_VALUE_SAMPLE_ID; case nir_intrinsic_load_sample_pos: return SYSTEM_VALUE_SAMPLE_POS; case nir_intrinsic_load_sample_mask_in: return SYSTEM_VALUE_SAMPLE_MASK_IN; case nir_intrinsic_load_local_invocation_id: return SYSTEM_VALUE_LOCAL_INVOCATION_ID; case nir_intrinsic_load_local_invocation_index: return SYSTEM_VALUE_LOCAL_INVOCATION_INDEX; case nir_intrinsic_load_num_work_groups: return SYSTEM_VALUE_NUM_WORK_GROUPS; case nir_intrinsic_load_work_group_id: return SYSTEM_VALUE_WORK_GROUP_ID; case nir_intrinsic_load_primitive_id: return SYSTEM_VALUE_PRIMITIVE_ID; case nir_intrinsic_load_tess_coord: return SYSTEM_VALUE_TESS_COORD; case nir_intrinsic_load_tess_level_outer: return SYSTEM_VALUE_TESS_LEVEL_OUTER; case nir_intrinsic_load_tess_level_inner: return SYSTEM_VALUE_TESS_LEVEL_INNER; case nir_intrinsic_load_patch_vertices_in: return SYSTEM_VALUE_VERTICES_IN; case nir_intrinsic_load_helper_invocation: return SYSTEM_VALUE_HELPER_INVOCATION; default: unreachable("intrinsic doesn't produce a system value"); } }