/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "nir.h" #include "nir_builder.h" #include "c99_math.h" /* * Lowers some unsupported double operations, using only: * * - pack/unpackDouble2x32 * - conversion to/from single-precision * - double add, mul, and fma * - conditional select * - 32-bit integer and floating point arithmetic */ /* Creates a double with the exponent bits set to a given integer value */ static nir_ssa_def * set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp) { /* Split into bits 0-31 and 32-63 */ nir_ssa_def *lo = nir_unpack_double_2x32_split_x(b, src); nir_ssa_def *hi = nir_unpack_double_2x32_split_y(b, src); /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent * to 1023 */ nir_ssa_def *new_hi = nir_bfi(b, nir_imm_int(b, 0x7ff00000), exp, hi); /* recombine */ return nir_pack_double_2x32_split(b, lo, new_hi); } static nir_ssa_def * get_exponent(nir_builder *b, nir_ssa_def *src) { /* get bits 32-63 */ nir_ssa_def *hi = nir_unpack_double_2x32_split_y(b, src); /* extract bits 20-30 of the high word */ return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11)); } /* Return infinity with the sign of the given source which is +/-0 */ static nir_ssa_def * get_signed_inf(nir_builder *b, nir_ssa_def *zero) { nir_ssa_def *zero_hi = nir_unpack_double_2x32_split_y(b, zero); /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit * is the highest bit. Only the sign bit can be non-zero in the passed in * source. So we essentially need to OR the infinity and the zero, except * the low 32 bits are always 0 so we can construct the correct high 32 * bits and then pack it together with zero low 32 bits. */ nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi); return nir_pack_double_2x32_split(b, nir_imm_int(b, 0), inf_hi); } /* * Generates the correctly-signed infinity if the source was zero, and flushes * the result to 0 if the source was infinity or the calculated exponent was * too small to be representable. */ static nir_ssa_def * fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src, nir_ssa_def *exp) { /* If the exponent is too small or the original input was infinity/NaN, * force the result to 0 (flush denorms) to avoid the work of handling * denorms properly. Note that this doesn't preserve positive/negative * zeros, but GLSL doesn't require it. */ res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp), nir_feq(b, nir_fabs(b, src), nir_imm_double(b, INFINITY))), nir_imm_double(b, 0.0f), res); /* If the original input was 0, generate the correctly-signed infinity */ res = nir_bcsel(b, nir_fne(b, src, nir_imm_double(b, 0.0f)), res, get_signed_inf(b, src)); return res; } static nir_ssa_def * lower_rcp(nir_builder *b, nir_ssa_def *src) { /* normalize the input to avoid range issues */ nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023)); /* cast to float, do an rcp, and then cast back to get an approximate * result */ nir_ssa_def *ra = nir_f2d(b, nir_frcp(b, nir_d2f(b, src_norm))); /* Fixup the exponent of the result - note that we check if this is too * small below. */ nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), nir_isub(b, get_exponent(b, src), nir_imm_int(b, 1023))); ra = set_exponent(b, ra, new_exp); /* Do a few Newton-Raphson steps to improve precision. * * Each step doubles the precision, and we started off with around 24 bits, * so we only need to do 2 steps to get to full precision. The step is: * * x_new = x * (2 - x*src) * * But we can re-arrange this to improve precision by using another fused * multiply-add: * * x_new = x + x * (1 - x*src) * * See https://en.wikipedia.org/wiki/Division_algorithm for more details. */ ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); ra = nir_ffma(b, ra, nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra); return fix_inv_result(b, ra, src, new_exp); } static nir_ssa_def * lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt) { /* We want to compute: * * 1/sqrt(m * 2^e) * * When the exponent is even, this is equivalent to: * * 1/sqrt(m) * 2^(-e/2) * * and then the exponent is odd, this is equal to: * * 1/sqrt(m * 2) * 2^(-(e - 1)/2) * * where the m * 2 is absorbed into the exponent. So we want the exponent * inside the square root to be 1 if e is odd and 0 if e is even, and we * want to subtract off e/2 from the final exponent, rounded to negative * infinity. We can do the former by first computing the unbiased exponent, * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by * shifting right by 1. */ nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), nir_imm_int(b, 1023)); nir_ssa_def *even = nir_iand(b, unbiased_exp, nir_imm_int(b, 1)); nir_ssa_def *half = nir_ishr(b, unbiased_exp, nir_imm_int(b, 1)); nir_ssa_def *src_norm = set_exponent(b, src, nir_iadd(b, nir_imm_int(b, 1023), even)); nir_ssa_def *ra = nir_f2d(b, nir_frsq(b, nir_d2f(b, src_norm))); nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half); ra = set_exponent(b, ra, new_exp); /* * The following implements an iterative algorithm that's very similar * between sqrt and rsqrt. We start with an iteration of Goldschmit's * algorithm, which looks like: * * a = the source * y_0 = initial (single-precision) rsqrt estimate * * h_0 = .5 * y_0 * g_0 = a * y_0 * r_0 = .5 - h_0 * g_0 * g_1 = g_0 * r_0 + g_0 * h_1 = h_0 * r_0 + h_0 * * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue * applying another round of Goldschmit, but since we would never refer * back to a (the original source), we would add too much rounding error. * So instead, we do one last round of Newton-Raphson, which has better * rounding characteristics, to get the final rounding correct. This is * split into two cases: * * 1. sqrt * * Normally, doing a round of Newton-Raphson for sqrt involves taking a * reciprocal of the original estimate, which is slow since it isn't * supported in HW. But we can take advantage of the fact that we already * computed a good estimate of 1/(2 * g_1) by rearranging it like so: * * g_2 = .5 * (g_1 + a / g_1) * = g_1 + .5 * (a / g_1 - g_1) * = g_1 + (.5 / g_1) * (a - g_1^2) * = g_1 + h_1 * (a - g_1^2) * * The second term represents the error, and by splitting it out we can get * better precision by computing it as part of a fused multiply-add. Since * both Newton-Raphson and Goldschmit approximately double the precision of * the result, these two steps should be enough. * * 2. rsqrt * * First off, note that the first round of the Goldschmit algorithm is * really just a Newton-Raphson step in disguise: * * h_1 = h_0 * (.5 - h_0 * g_0) + h_0 * = h_0 * (1.5 - h_0 * g_0) * = h_0 * (1.5 - .5 * a * y_0^2) * = (.5 * y_0) * (1.5 - .5 * a * y_0^2) * * which is the standard formula multiplied by .5. Unlike in the sqrt case, * we don't need the inverse to do a Newton-Raphson step; we just need h_1, * so we can skip the calculation of g_1. Instead, we simply do another * Newton-Raphson step: * * y_1 = 2 * h_1 * r_1 = .5 - h_1 * y_1 * a * y_2 = y_1 * r_1 + y_1 * * Where the difference from Goldschmit is that we calculate y_1 * a * instead of using g_1. Doing it this way should be as fast as computing * y_1 up front instead of h_1, and it lets us share the code for the * initial Goldschmit step with the sqrt case. * * Putting it together, the computations are: * * h_0 = .5 * y_0 * g_0 = a * y_0 * r_0 = .5 - h_0 * g_0 * h_1 = h_0 * r_0 + h_0 * if sqrt: * g_1 = g_0 * r_0 + g_0 * r_1 = a - g_1 * g_1 * g_2 = h_1 * r_1 + g_1 * else: * y_1 = 2 * h_1 * r_1 = .5 - y_1 * (h_1 * a) * y_2 = y_1 * r_1 + y_1 * * For more on the ideas behind this, see "Software Division and Square * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page * on square roots * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots). */ nir_ssa_def *one_half = nir_imm_double(b, 0.5); nir_ssa_def *h_0 = nir_fmul(b, one_half, ra); nir_ssa_def *g_0 = nir_fmul(b, src, ra); nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half); nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0); nir_ssa_def *res; if (sqrt) { nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0); nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src); res = nir_ffma(b, h_1, r_1, g_1); } else { nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1); nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src), one_half); res = nir_ffma(b, y_1, r_1, y_1); } if (sqrt) { /* Here, the special cases we need to handle are * 0 -> 0 and * +inf -> +inf */ res = nir_bcsel(b, nir_ior(b, nir_feq(b, src, nir_imm_double(b, 0.0)), nir_feq(b, src, nir_imm_double(b, INFINITY))), src, res); } else { res = fix_inv_result(b, res, src, new_exp); } return res; } static nir_ssa_def * lower_trunc(nir_builder *b, nir_ssa_def *src) { nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src), nir_imm_int(b, 1023)); nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp); /* * Decide the operation to apply depending on the unbiased exponent: * * if (unbiased_exp < 0) * return 0 * else if (unbiased_exp > 52) * return src * else * return src & (~0 << frac_bits) * * Notice that the else branch is a 64-bit integer operation that we need * to implement in terms of 32-bit integer arithmetics (at least until we * support 64-bit integer arithmetics). */ /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */ nir_ssa_def *mask_lo = nir_bcsel(b, nir_ige(b, frac_bits, nir_imm_int(b, 32)), nir_imm_int(b, 0), nir_ishl(b, nir_imm_int(b, ~0), frac_bits)); nir_ssa_def *mask_hi = nir_bcsel(b, nir_ilt(b, frac_bits, nir_imm_int(b, 33)), nir_imm_int(b, ~0), nir_ishl(b, nir_imm_int(b, ~0), nir_isub(b, frac_bits, nir_imm_int(b, 32)))); nir_ssa_def *src_lo = nir_unpack_double_2x32_split_x(b, src); nir_ssa_def *src_hi = nir_unpack_double_2x32_split_y(b, src); return nir_bcsel(b, nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)), nir_imm_double(b, 0.0), nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)), src, nir_pack_double_2x32_split(b, nir_iand(b, mask_lo, src_lo), nir_iand(b, mask_hi, src_hi)))); } static nir_ssa_def * lower_floor(nir_builder *b, nir_ssa_def *src) { /* * For x >= 0, floor(x) = trunc(x) * For x < 0, * - if x is integer, floor(x) = x * - otherwise, floor(x) = trunc(x) - 1 */ nir_ssa_def *tr = nir_ftrunc(b, src); nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0)); return nir_bcsel(b, nir_ior(b, positive, nir_feq(b, src, tr)), tr, nir_fsub(b, tr, nir_imm_double(b, 1.0))); } static nir_ssa_def * lower_ceil(nir_builder *b, nir_ssa_def *src) { /* if x < 0, ceil(x) = trunc(x) * else if (x - trunc(x) == 0), ceil(x) = x * else, ceil(x) = trunc(x) + 1 */ nir_ssa_def *tr = nir_ftrunc(b, src); nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0)); return nir_bcsel(b, nir_ior(b, negative, nir_feq(b, src, tr)), tr, nir_fadd(b, tr, nir_imm_double(b, 1.0))); } static nir_ssa_def * lower_fract(nir_builder *b, nir_ssa_def *src) { return nir_fsub(b, src, nir_ffloor(b, src)); } static nir_ssa_def * lower_round_even(nir_builder *b, nir_ssa_def *src) { /* If fract(src) == 0.5, then we will have to decide the rounding direction. * We will do this by computing the mod(abs(src), 2) and testing if it * is < 1 or not. * * We compute mod(abs(src), 2) as: * abs(src) - 2.0 * floor(abs(src) / 2.0) */ nir_ssa_def *two = nir_imm_double(b, 2.0); nir_ssa_def *abs_src = nir_fabs(b, src); nir_ssa_def *mod = nir_fsub(b, abs_src, nir_fmul(b, two, nir_ffloor(b, nir_fmul(b, abs_src, nir_imm_double(b, 0.5))))); /* * If fract(src) != 0.5, then we round as floor(src + 0.5) * * If fract(src) == 0.5, then we have to check the modulo: * * if it is < 1 we need a trunc operation so we get: * 0.5 -> 0, -0.5 -> -0 * 2.5 -> 2, -2.5 -> -2 * * otherwise we need to check if src >= 0, in which case we need to round * upwards, or not, in which case we need to round downwards so we get: * 1.5 -> 2, -1.5 -> -2 * 3.5 -> 4, -3.5 -> -4 */ nir_ssa_def *fract = nir_ffract(b, src); return nir_bcsel(b, nir_fne(b, fract, nir_imm_double(b, 0.5)), nir_ffloor(b, nir_fadd(b, src, nir_imm_double(b, 0.5))), nir_bcsel(b, nir_flt(b, mod, nir_imm_double(b, 1.0)), nir_ftrunc(b, src), nir_bcsel(b, nir_fge(b, src, nir_imm_double(b, 0.0)), nir_fadd(b, src, nir_imm_double(b, 0.5)), nir_fsub(b, src, nir_imm_double(b, 0.5))))); } static nir_ssa_def * lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1) { /* mod(x,y) = x - y * floor(x/y) * * If the division is lowered, it could add some rounding errors that make * floor() to return the quotient minus one when x = N * y. If this is the * case, we return zero because mod(x, y) output value is [0, y). */ nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1)); nir_ssa_def *mod = nir_fsub(b, src0, nir_fmul(b, src1, floor)); return nir_bcsel(b, nir_fne(b, mod, src1), mod, nir_imm_double(b, 0.0)); } static void lower_doubles_instr(nir_alu_instr *instr, nir_lower_doubles_options options) { assert(instr->dest.dest.is_ssa); if (instr->dest.dest.ssa.bit_size != 64) return; switch (instr->op) { case nir_op_frcp: if (!(options & nir_lower_drcp)) return; break; case nir_op_fsqrt: if (!(options & nir_lower_dsqrt)) return; break; case nir_op_frsq: if (!(options & nir_lower_drsq)) return; break; case nir_op_ftrunc: if (!(options & nir_lower_dtrunc)) return; break; case nir_op_ffloor: if (!(options & nir_lower_dfloor)) return; break; case nir_op_fceil: if (!(options & nir_lower_dceil)) return; break; case nir_op_ffract: if (!(options & nir_lower_dfract)) return; break; case nir_op_fround_even: if (!(options & nir_lower_dround_even)) return; break; case nir_op_fmod: if (!(options & nir_lower_dmod)) return; break; default: return; } nir_builder bld; nir_builder_init(&bld, nir_cf_node_get_function(&instr->instr.block->cf_node)); bld.cursor = nir_before_instr(&instr->instr); nir_ssa_def *src = nir_fmov_alu(&bld, instr->src[0], instr->dest.dest.ssa.num_components); nir_ssa_def *result; switch (instr->op) { case nir_op_frcp: result = lower_rcp(&bld, src); break; case nir_op_fsqrt: result = lower_sqrt_rsq(&bld, src, true); break; case nir_op_frsq: result = lower_sqrt_rsq(&bld, src, false); break; case nir_op_ftrunc: result = lower_trunc(&bld, src); break; case nir_op_ffloor: result = lower_floor(&bld, src); break; case nir_op_fceil: result = lower_ceil(&bld, src); break; case nir_op_ffract: result = lower_fract(&bld, src); break; case nir_op_fround_even: result = lower_round_even(&bld, src); break; case nir_op_fmod: { nir_ssa_def *src1 = nir_fmov_alu(&bld, instr->src[1], instr->dest.dest.ssa.num_components); result = lower_mod(&bld, src, src1); } break; default: unreachable("unhandled opcode"); } nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(result)); nir_instr_remove(&instr->instr); } void nir_lower_doubles(nir_shader *shader, nir_lower_doubles_options options) { nir_foreach_function(function, shader) { if (!function->impl) continue; nir_foreach_block(block, function->impl) { nir_foreach_instr_safe(instr, block) { if (instr->type == nir_instr_type_alu) lower_doubles_instr(nir_instr_as_alu(instr), options); } } } }