/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include #include "nir_search.h" struct match_state { bool inexact_match; bool has_exact_alu; unsigned variables_seen; nir_alu_src variables[NIR_SEARCH_MAX_VARIABLES]; }; static bool match_expression(const nir_search_expression *expr, nir_alu_instr *instr, unsigned num_components, const uint8_t *swizzle, struct match_state *state); static const uint8_t identity_swizzle[] = { 0, 1, 2, 3 }; /** * Check if a source produces a value of the given type. * * Used for satisfying 'a@type' constraints. */ static bool src_is_type(nir_src src, nir_alu_type type) { assert(type != nir_type_invalid); if (!src.is_ssa) return false; /* Turn nir_type_bool32 into nir_type_bool...they're the same thing. */ if (nir_alu_type_get_base_type(type) == nir_type_bool) type = nir_type_bool; if (src.ssa->parent_instr->type == nir_instr_type_alu) { nir_alu_instr *src_alu = nir_instr_as_alu(src.ssa->parent_instr); nir_alu_type output_type = nir_op_infos[src_alu->op].output_type; if (type == nir_type_bool) { switch (src_alu->op) { case nir_op_iand: case nir_op_ior: case nir_op_ixor: return src_is_type(src_alu->src[0].src, nir_type_bool) && src_is_type(src_alu->src[1].src, nir_type_bool); case nir_op_inot: return src_is_type(src_alu->src[0].src, nir_type_bool); default: break; } } return nir_alu_type_get_base_type(output_type) == type; } else if (src.ssa->parent_instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(src.ssa->parent_instr); if (type == nir_type_bool) { return intr->intrinsic == nir_intrinsic_load_front_face || intr->intrinsic == nir_intrinsic_load_helper_invocation; } } /* don't know */ return false; } static bool match_value(const nir_search_value *value, nir_alu_instr *instr, unsigned src, unsigned num_components, const uint8_t *swizzle, struct match_state *state) { uint8_t new_swizzle[4]; /* If the source is an explicitly sized source, then we need to reset * both the number of components and the swizzle. */ if (nir_op_infos[instr->op].input_sizes[src] != 0) { num_components = nir_op_infos[instr->op].input_sizes[src]; swizzle = identity_swizzle; } for (unsigned i = 0; i < num_components; ++i) new_swizzle[i] = instr->src[src].swizzle[swizzle[i]]; /* If the value has a specific bit size and it doesn't match, bail */ if (value->bit_size && nir_src_bit_size(instr->src[src].src) != value->bit_size) return false; switch (value->type) { case nir_search_value_expression: if (!instr->src[src].src.is_ssa) return false; if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu) return false; return match_expression(nir_search_value_as_expression(value), nir_instr_as_alu(instr->src[src].src.ssa->parent_instr), num_components, new_swizzle, state); case nir_search_value_variable: { nir_search_variable *var = nir_search_value_as_variable(value); assert(var->variable < NIR_SEARCH_MAX_VARIABLES); if (state->variables_seen & (1 << var->variable)) { if (!nir_srcs_equal(state->variables[var->variable].src, instr->src[src].src)) return false; assert(!instr->src[src].abs && !instr->src[src].negate); for (unsigned i = 0; i < num_components; ++i) { if (state->variables[var->variable].swizzle[i] != new_swizzle[i]) return false; } return true; } else { if (var->is_constant && instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const) return false; if (var->cond && !var->cond(instr, src, num_components, new_swizzle)) return false; if (var->type != nir_type_invalid && !src_is_type(instr->src[src].src, var->type)) return false; state->variables_seen |= (1 << var->variable); state->variables[var->variable].src = instr->src[src].src; state->variables[var->variable].abs = false; state->variables[var->variable].negate = false; for (unsigned i = 0; i < 4; ++i) { if (i < num_components) state->variables[var->variable].swizzle[i] = new_swizzle[i]; else state->variables[var->variable].swizzle[i] = 0; } return true; } } case nir_search_value_constant: { nir_search_constant *const_val = nir_search_value_as_constant(value); if (!instr->src[src].src.is_ssa) return false; if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_load_const) return false; nir_load_const_instr *load = nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr); switch (const_val->type) { case nir_type_float: for (unsigned i = 0; i < num_components; ++i) { double val; switch (load->def.bit_size) { case 32: val = load->value.f32[new_swizzle[i]]; break; case 64: val = load->value.f64[new_swizzle[i]]; break; default: unreachable("unknown bit size"); } if (val != const_val->data.d) return false; } return true; case nir_type_int: for (unsigned i = 0; i < num_components; ++i) { int64_t val; switch (load->def.bit_size) { case 32: val = load->value.i32[new_swizzle[i]]; break; case 64: val = load->value.i64[new_swizzle[i]]; break; default: unreachable("unknown bit size"); } if (val != const_val->data.i) return false; } return true; case nir_type_uint: case nir_type_bool32: for (unsigned i = 0; i < num_components; ++i) { uint64_t val; switch (load->def.bit_size) { case 32: val = load->value.u32[new_swizzle[i]]; break; case 64: val = load->value.u64[new_swizzle[i]]; break; default: unreachable("unknown bit size"); } if (val != const_val->data.u) return false; } return true; default: unreachable("Invalid alu source type"); } } default: unreachable("Invalid search value type"); } } static bool match_expression(const nir_search_expression *expr, nir_alu_instr *instr, unsigned num_components, const uint8_t *swizzle, struct match_state *state) { if (instr->op != expr->opcode) return false; assert(instr->dest.dest.is_ssa); if (expr->value.bit_size && instr->dest.dest.ssa.bit_size != expr->value.bit_size) return false; state->inexact_match = expr->inexact || state->inexact_match; state->has_exact_alu = instr->exact || state->has_exact_alu; if (state->inexact_match && state->has_exact_alu) return false; assert(!instr->dest.saturate); assert(nir_op_infos[instr->op].num_inputs > 0); /* If we have an explicitly sized destination, we can only handle the * identity swizzle. While dot(vec3(a, b, c).zxy) is a valid * expression, we don't have the information right now to propagate that * swizzle through. We can only properly propagate swizzles if the * instruction is vectorized. */ if (nir_op_infos[instr->op].output_size != 0) { for (unsigned i = 0; i < num_components; i++) { if (swizzle[i] != i) return false; } } /* Stash off the current variables_seen bitmask. This way we can * restore it prior to matching in the commutative case below. */ unsigned variables_seen_stash = state->variables_seen; bool matched = true; for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) { if (!match_value(expr->srcs[i], instr, i, num_components, swizzle, state)) { matched = false; break; } } if (matched) return true; if (nir_op_infos[instr->op].algebraic_properties & NIR_OP_IS_COMMUTATIVE) { assert(nir_op_infos[instr->op].num_inputs == 2); /* Restore the variables_seen bitmask. If we don't do this, then we * could end up with an erroneous failure due to variables found in the * first match attempt above not matching those in the second. */ state->variables_seen = variables_seen_stash; if (!match_value(expr->srcs[0], instr, 1, num_components, swizzle, state)) return false; return match_value(expr->srcs[1], instr, 0, num_components, swizzle, state); } else { return false; } } typedef struct bitsize_tree { unsigned num_srcs; struct bitsize_tree *srcs[4]; unsigned common_size; bool is_src_sized[4]; bool is_dest_sized; unsigned dest_size; unsigned src_size[4]; } bitsize_tree; static bitsize_tree * build_bitsize_tree(void *mem_ctx, struct match_state *state, const nir_search_value *value) { bitsize_tree *tree = ralloc(mem_ctx, bitsize_tree); switch (value->type) { case nir_search_value_expression: { nir_search_expression *expr = nir_search_value_as_expression(value); nir_op_info info = nir_op_infos[expr->opcode]; tree->num_srcs = info.num_inputs; tree->common_size = 0; for (unsigned i = 0; i < info.num_inputs; i++) { tree->is_src_sized[i] = !!nir_alu_type_get_type_size(info.input_types[i]); if (tree->is_src_sized[i]) tree->src_size[i] = nir_alu_type_get_type_size(info.input_types[i]); tree->srcs[i] = build_bitsize_tree(mem_ctx, state, expr->srcs[i]); } tree->is_dest_sized = !!nir_alu_type_get_type_size(info.output_type); if (tree->is_dest_sized) tree->dest_size = nir_alu_type_get_type_size(info.output_type); break; } case nir_search_value_variable: { nir_search_variable *var = nir_search_value_as_variable(value); tree->num_srcs = 0; tree->is_dest_sized = true; tree->dest_size = nir_src_bit_size(state->variables[var->variable].src); break; } case nir_search_value_constant: { tree->num_srcs = 0; tree->is_dest_sized = false; tree->common_size = 0; break; } } if (value->bit_size) { assert(!tree->is_dest_sized || tree->dest_size == value->bit_size); tree->common_size = value->bit_size; } return tree; } static unsigned bitsize_tree_filter_up(bitsize_tree *tree) { for (unsigned i = 0; i < tree->num_srcs; i++) { unsigned src_size = bitsize_tree_filter_up(tree->srcs[i]); if (src_size == 0) continue; if (tree->is_src_sized[i]) { assert(src_size == tree->src_size[i]); } else if (tree->common_size != 0) { assert(src_size == tree->common_size); tree->src_size[i] = src_size; } else { tree->common_size = src_size; tree->src_size[i] = src_size; } } if (tree->num_srcs && tree->common_size) { if (tree->dest_size == 0) tree->dest_size = tree->common_size; else if (!tree->is_dest_sized) assert(tree->dest_size == tree->common_size); for (unsigned i = 0; i < tree->num_srcs; i++) { if (!tree->src_size[i]) tree->src_size[i] = tree->common_size; } } return tree->dest_size; } static void bitsize_tree_filter_down(bitsize_tree *tree, unsigned size) { if (tree->dest_size) assert(tree->dest_size == size); else tree->dest_size = size; if (!tree->is_dest_sized) { if (tree->common_size) assert(tree->common_size == size); else tree->common_size = size; } for (unsigned i = 0; i < tree->num_srcs; i++) { if (!tree->src_size[i]) { assert(tree->common_size); tree->src_size[i] = tree->common_size; } bitsize_tree_filter_down(tree->srcs[i], tree->src_size[i]); } } static nir_alu_src construct_value(const nir_search_value *value, unsigned num_components, bitsize_tree *bitsize, struct match_state *state, nir_instr *instr, void *mem_ctx) { switch (value->type) { case nir_search_value_expression: { const nir_search_expression *expr = nir_search_value_as_expression(value); if (nir_op_infos[expr->opcode].output_size != 0) num_components = nir_op_infos[expr->opcode].output_size; nir_alu_instr *alu = nir_alu_instr_create(mem_ctx, expr->opcode); nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components, bitsize->dest_size, NULL); alu->dest.write_mask = (1 << num_components) - 1; alu->dest.saturate = false; /* We have no way of knowing what values in a given search expression * map to a particular replacement value. Therefore, if the * expression we are replacing has any exact values, the entire * replacement should be exact. */ alu->exact = state->has_exact_alu; for (unsigned i = 0; i < nir_op_infos[expr->opcode].num_inputs; i++) { /* If the source is an explicitly sized source, then we need to reset * the number of components to match. */ if (nir_op_infos[alu->op].input_sizes[i] != 0) num_components = nir_op_infos[alu->op].input_sizes[i]; alu->src[i] = construct_value(expr->srcs[i], num_components, bitsize->srcs[i], state, instr, mem_ctx); } nir_instr_insert_before(instr, &alu->instr); nir_alu_src val; val.src = nir_src_for_ssa(&alu->dest.dest.ssa); val.negate = false; val.abs = false, memcpy(val.swizzle, identity_swizzle, sizeof val.swizzle); return val; } case nir_search_value_variable: { const nir_search_variable *var = nir_search_value_as_variable(value); assert(state->variables_seen & (1 << var->variable)); nir_alu_src val = { NIR_SRC_INIT }; nir_alu_src_copy(&val, &state->variables[var->variable], mem_ctx); assert(!var->is_constant); return val; } case nir_search_value_constant: { const nir_search_constant *c = nir_search_value_as_constant(value); nir_load_const_instr *load = nir_load_const_instr_create(mem_ctx, 1, bitsize->dest_size); switch (c->type) { case nir_type_float: load->def.name = ralloc_asprintf(load, "%f", c->data.d); switch (bitsize->dest_size) { case 32: load->value.f32[0] = c->data.d; break; case 64: load->value.f64[0] = c->data.d; break; default: unreachable("unknown bit size"); } break; case nir_type_int: load->def.name = ralloc_asprintf(load, "%" PRIi64, c->data.i); switch (bitsize->dest_size) { case 32: load->value.i32[0] = c->data.i; break; case 64: load->value.i64[0] = c->data.i; break; default: unreachable("unknown bit size"); } break; case nir_type_uint: load->def.name = ralloc_asprintf(load, "%" PRIu64, c->data.u); switch (bitsize->dest_size) { case 32: load->value.u32[0] = c->data.u; break; case 64: load->value.u64[0] = c->data.u; break; default: unreachable("unknown bit size"); } break; case nir_type_bool32: load->value.u32[0] = c->data.u; break; default: unreachable("Invalid alu source type"); } nir_instr_insert_before(instr, &load->instr); nir_alu_src val; val.src = nir_src_for_ssa(&load->def); val.negate = false; val.abs = false, memset(val.swizzle, 0, sizeof val.swizzle); return val; } default: unreachable("Invalid search value type"); } } nir_alu_instr * nir_replace_instr(nir_alu_instr *instr, const nir_search_expression *search, const nir_search_value *replace, void *mem_ctx) { uint8_t swizzle[4] = { 0, 0, 0, 0 }; for (unsigned i = 0; i < instr->dest.dest.ssa.num_components; ++i) swizzle[i] = i; assert(instr->dest.dest.is_ssa); struct match_state state; state.inexact_match = false; state.has_exact_alu = false; state.variables_seen = 0; if (!match_expression(search, instr, instr->dest.dest.ssa.num_components, swizzle, &state)) return NULL; void *bitsize_ctx = ralloc_context(NULL); bitsize_tree *tree = build_bitsize_tree(bitsize_ctx, &state, replace); bitsize_tree_filter_up(tree); bitsize_tree_filter_down(tree, instr->dest.dest.ssa.bit_size); /* Inserting a mov may be unnecessary. However, it's much easier to * simply let copy propagation clean this up than to try to go through * and rewrite swizzles ourselves. */ nir_alu_instr *mov = nir_alu_instr_create(mem_ctx, nir_op_imov); mov->dest.write_mask = instr->dest.write_mask; nir_ssa_dest_init(&mov->instr, &mov->dest.dest, instr->dest.dest.ssa.num_components, instr->dest.dest.ssa.bit_size, NULL); mov->src[0] = construct_value(replace, instr->dest.dest.ssa.num_components, tree, &state, &instr->instr, mem_ctx); nir_instr_insert_before(&instr->instr, &mov->instr); nir_ssa_def_rewrite_uses(&instr->dest.dest.ssa, nir_src_for_ssa(&mov->dest.dest.ssa)); /* We know this one has no more uses because we just rewrote them all, * so we can remove it. The rest of the matched expression, however, we * don't know so much about. We'll just let dead code clean them up. */ nir_instr_remove(&instr->instr); ralloc_free(bitsize_ctx); return mov; }